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Abstract.   In this paper, a refined exponential shear deformation beam theory is developed for bending 
analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain 
through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam 
without using shear correction factors. Contrary to the others refined theories elaborated, where the 
stretching effect is neglected, in the current investigation this so-called “stretching effect” is taken into 
consideration. The material properties of the functionally graded beam are assumed to vary according to 
power law distribution of the volume fraction of the constituents. Based on the present shear deformation 
beam theory, the equilibrium equations are derived from the principle of virtual displacements. Analytical 
solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present 
theory. 
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1. Introduction 

 
Composite materials have been successfully used in aircraft and other engineering applications 

for many years because of their excellent strength to weight and stiffness to weight ratios. 
Recently, advanced composite materials known as functionally graded material have attracted 
much attention in many engineering applications due to their advantages of being able to resist 
high temperature gradient while maintaining structural integrity (Koizumi 1997). The functionally 
graded materials (FGMs) are microscopically inhomogeneous, in which the mechanical properties 
vary smoothly and continuously from one surface to the other. They are usually made from a 
mixture of ceramics and metals to attain the significant requirement of material properties 
(Benachour et al. 2011, El Meiche et al. 2011, Bouderba et al. 2013, Ait Amar Meziane et al. 
2014, Khalfi et al. 2014, Mahi et al. 2015). 

Due to the increased relevance of the FGMs structural components in the design of engineering 
structures, many studies have been reported on the static, and vibration analyses of functionally 
graded (FG) plates. Aydogdu (2008) presented the vibration of multi-walled carbon nanotubes by 
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generalized shear deformation theory. Sina et al. (2009) provided an analytical method for free 
vibration analysis of functionally graded beams. 

Aydogdu (2007) studied the thermal buckling analysis of cross-ply laminated composite beams 
with general boundary conditions. Li (2008) investigated static bending and transverse vibration of 
FGM Timoshenko beams, in which by introducing a new function, the governing equations for 
bending and vibration of FGM beams were decoupled and the deflection, rotational angle and the 
resultant force and moment were expressed only in the terms of this new function. Benatta et al. 
(2009) proposed an analytical solution to the bending problem of a symmetric FG beam by 
including warping of the cross-section and shear deformation effect. Thai and Vo (2012) presented 
a Bending and free vibration of functionally graded beams using various higher-order shear 
deformation beam theories. Ould larbi latifa et al. (2013) developed an efficient shear deformation 
beam theory based on neutral surface position for bending and free vibration of functionally 
graded beams. Allahverdizadeh et al. (2014) proposed a nonlinear vibration analysis of FGER 
sandwich beams. Kadoli et al. (2008) studied the static behavior of an FG beam by using 
higher-order shear deformation theory and finite element method. 

Recently, Hadji et al. (2014) studied the static and free vibration of FGM beam using a higher 
order shear deformation theory. Wattanasakulpong and Ungbhakorn (2014) studied linear and 
nonlinear vibration problems of elastically end restrained FG beams having porosities. Bourada et 
al. (2015) proposed a new simple shear and normal deformations theory for functionally graded 
Beams. Houari et al. (2013) presented the Thermoelastic bending analysis of functionally graded 
sandwich plates using a new higher order shear and normal deformation theory with stretching 
effects. The stretching effect was included also in the analysis of the mechanical responses of thick 
FG plates (Mantari and Guedes Soares 2014, Thai and Kim 2013, Saidi et al. 2013, Bessaim et al. 
2013, Bousahla et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, Hebali et al. 2014, Hamidi et 
al. 2015, Mantari and Granados 2015). Bourada et al. (2015) investigated also effects of thickness 
stretching in FG beams. 

In the present study, the bending of simply supported FG beams was investigated by using a 
refined exponential shear deformation beam theory with  .0z  Contrary to the others refined 
theories elaborated, where the stretching effect is neglected, in the current investigation this 
o-called “stretching effect” is taken into consideration. The most interesting feature of this theory 
is that it accounts for a parabolic variation of the transverse shear strains across the thickness and 
satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without 
using shear correction factors. Then, the present theory together with Hamilton’s principle, are 
employed to extract the motion equations of the functionally graded beams. Analytical solutions 
for static and free vibration are obtained. Numerical examples are presented to verify the accuracy 
of the present theory. 
 

Fig. 1 Geometry and coordinate of a FG beam 

830



 
 
 
 
 
 

Analytical solution for bending analysis of functionally graded beam 

2. Problem formulation 
 
Consider a functionally graded beam with length L and rectangular cross section b × h, with b 

being the width and h being the height as shown in Fig. 1. The beam is made of isotropic material 
with material properties varying smoothly in the thickness direction. 

 
2.1 Material properties 
 
The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 
function is commonly used to describe these variations of materials properties. The expression 
given below represents the profile for the volume fraction. 
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k is a parameter that dictates material variation profile through the thickness. The value of k 
equal to zero represents a fully ceramic beam, whereas infinite k indicates a fully metallic beam, 
and for different values of k one can obtain different volume fractions of metal. 

The material properties of FG beams are assumed to vary continuously through the depth of the 
beam by the rule of mixture (Marur 1999, Tounsi et al. 2013a, Bachir Bouiadjra et al. 2013, Zidi 
et al. 2014) as 

  bCbt P VPPP(z)   (1b)
 

where P denotes a generic material property like modulus, Pt and Pb denotes the property of the 
top and bottom faces of the beam respectively, Here, it is assumed that modules E, G and v vary 
according to the Eq. (1). 

 
2.2 Kinematics and constitutive equations 
 
The displacement field of the proposed theory takes the simpler form as follows 
 

 

  ),()(),(

,),(),( 0

xzgwxwzxu
x

w
zf

x

w
ztxuzxu

zsb

sb










 (2)
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Where 
 2/2)( hzzezzf   and ).(1)( zfzg   It can be seen from Eq. (3c) that the 

transverse shears strain γxz is equal to zero at the top  2/hz   and bottom  2/hz   surfaces 
of the beam, thus satisfying the zero transverse shear stress conditions. 

The state of stress in the beam is given by the generalized Hooke’s law as follows 
 

    zxx zQzQ  1311   (4a)
 

  xzxz zQ  55  (4b)
 

    zxz zQzQ  3313   (4c)
 
The Qij expressions in terms of engineering constants are 
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2.3 Governing equations 
 
The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The principle of virtual work in the present case yields 
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Substituting Eqs. (3) and (4) into Eq. (5) and integrating through the thickness of the beam, Eq. 

(5) can be rewritten as 
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where N, M, P and Q are the stress resultants defined by 
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The governing equations of equilibrium can be derived from Eq. (6) by integrating the 

displacement gradients by parts and setting the coefficients zero δu0, δwb, δws and δφz separately. 
Thus one can obtain the equilibrium equations associated with the present exponential shear 
deformation theory 
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Eqs. (8a)-(8d) can be expressed in terms of displacements (u0, wb, ws, φz) by using Eqs. (2), (3), 

(4) and (7) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equilibrium equations admit the Navier solutions for simply supported beams. The 
variables u0, wb, ws, φz, can be written by assuming the following variations. 
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where Um, Wbm, Wsm and ϕzm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with mth eigenmode, and λ = mπ/L. The transverse load q is also expanded in Fourier 
series as 
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The coefficients Qm are given below for some typical loads. For the case of uniform distributed 

load, we have 
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Substituting the expressions of u0, wb, ws, φz from Eqs. (11) and (12) into the equilibrium 

equations of Eq. (9), the analytical solutions can be obtained from the following equations 
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4. Results and discussion 
 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theories in predicting the bending and free vibration responses of simply supported FG 
beams. The FG beam is taken to be made of aluminum and alumina with the following material 
properties: 

 
Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3. 
Metal (PM: Aluminium, Al): Em = 70 GPa; v = 0.3. 
 
And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 
alumina rich. 

For convenience, the following dimensionless form is used 
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4.1 Results for bending analysis 
 
Table 1 contains nondimensional deflection and stresses of FG beams under uniform load q0 for 

different values of power law index k and span-to-depth ratio L / h. The obtained results are 
compared with the analytical solutions given by Li et al. (2010), the results of Ould Larbi Latifa et 
al. (2013) and the results of Hadji et al. (2014). It can be observed that our results with  0z  

are in an excellent agreement to those predicted using the higher order shear deformation theory of 
Hadji et al. (2014), Ould Larbi et al. (2013) and Li et al. (2010) with  0z  for all values of 
power law index p and span-to-depth ratio L/h. However, the small difference found between the 
results is due to that the theories presented by Hadji et al. (2014), Ould Larbi et al. (2013) and Li 
et al. (2010) ignore the thickness stretching effect. 

 
 

Table 1 Nondimensional deflections and stresses of FG beams under uniform load 

k Method 
L/h = 5 L/h = 20 

w  u  x  xz  w  u  x  xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500
Ould Larbi et al. 

(2013) 
3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625

Hadji et al. (2014) 3.1654 0.9398 3.8019 0.7330 2.8962 0.2306 15.0129 0.7437

Present (εz ≠ 0) 3.1673 0.9233 3.9129 0.7883 2.8807 0.2290 15.4891 0.7890

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676
Ould Larbi et al. 

(2013) 
4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795

Hadji et al. (2014) 4.8285 1.6596 4.9923 0.7501 4.4644 0.4087 19.7002 0.7614

Present (εz ≠ 0) 4.8045 1.6091 5.1538 0.8053 4.4160 0.3998 20.3969 0.8057
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Table 1 Continued 

k Method 
L/h = 5 L/h = 20 

w  u  x  xz  w  u  x  xz  

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500
Ould Larbi et al. 

(2013) 
6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625

Hadji et al. (2014) 6.2594 2.3038 5.8835 0.7330 5.8049 0.5685 23.2051 0.7437

Present (εz ≠ 0) 6.1805 2.2115 6.0709 0.7883 5.6965 0.5498 24.0095 0.7890

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787
Ould Larbi et al. 

(2013) 
8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005

Hadji et al. (2014) 8.0677 3.1129 6.8824 0.6704 7.4421 0.7691 27.0989 0.6812

Present (εz ≠ 0) 7.9106 2.9629 7.0925 0.7274 7.2458 0.7366 27.9844 0.7287

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790
Ould Larbi et al. 

(2013) 
9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218

Hadji et al. (2014) 9.8281 3.7100 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013

Present (εz ≠ 0) 9.6933 3.5429 8.3581 0.6513 8.6182 0.8775 32.8183 0.6540

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436
Ould Larbi et al. 

(2013) 
10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788

Hadji et al. (2014) 10.9381 3.8863 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586

Present (εz ≠ 0) 10.8680 3.7462 9.9878 0.7064 9.5513 0.9262 39.2717 0.7091
 
 

 

Fig. 2 The variation of the axial displacement u  through-the-thickness of a FG beam (L = 2h) 
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Figs. 2-4 show the variations of axial displacement u , axial stress ,x  and transverse shear 
stress ,xz  respectively, through the depth of a very deep beam (L = 2h) under uniform load. In 
general, the present theory and the shear deformation beam models of Hadji et al. (2014) give 
almost identical results. 

 
 

 

Fig. 3 The variation of the axial stress x  through-the-thickness of a FG beam (L = 2h) 
 
 

 

Fig. 4 The variation of the transverse shear stress xz  through-the-thickness of a FG beam (L = 2h) 
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Fig. 5 Variation of the transverse displacement w  versus non-dimensional length of a FG beam (L = 5h) 
 
 
Fig. 5 illustrates the variation of the non-dimensional transversal displacement w  versus 

non-dimensional length for different power law index k. It can be seen also that the present beam 
theory gives almost identical results to Hadji et al. (2014). In addition, the results show that the 
increase of the power law index k leads to an increase of transversal displacement .w  

 
 

5. Conclusions 
 
A refined exponential shear deformation theory is proposed for bending analysis of functionally 

graded beams. The theory accounts for the stretching and shear deformation effects without 
requiring a shear correction factor. It is based on the assumption that the transverse displacements 
consist of bending, shear and thickness stretching parts. Based on the present refined exponential 
beam theory, the equilibrium equations are derived from the principle of virtual displacements. 
Numerical examples show that the proposed theory gives solutions which are almost identical with 
those obtained using other shear deformation theories. In future, this theoretical formulation can be 
extended to FRP plates (Draiche et al. 2014, Nedri et al. 2014) and nanostructures (Benzair et al. 
2008, Heireche et al. 2008, Amara et al. 2010, Berrabah et al. 2013, Tounsi et al. 2013b, c, d, 
2015, Semmah et al. 2014, Benguediab et al. 2014, Belkorissat et al. 2015, Larbi Chaht et al. 
2015). 
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