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Abstract.  A genetic algorithm-based minimum weight design method is presented for steel frames 
containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out 
optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections 
taken from American Institute of Steel Construction (AISC). The displacement and stress constraints 
obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are 
incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid 
beam-to-column and column-to-base plate connections are carried out first without considering concrete slab 
effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the 
case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. 
Results obtained from the examples show the applicability and robustness of the method. Moreover, it is 
proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter 
and more economical design for steel frames with semi-rigid connections and column bases. 
 
Keywords:    AISC-ASD; genetic algorithm; weight optimization; composite beams; semi-rigid 
connection 
 
 
1. Introduction 

 
Minimum weight design of steel structures by using algorithm methods is one of major 

research areas in structural engineering. Various algorithms such as Genetic Algorithm (GA), 
Harmony Search Algorithm (HS), Ant Colony Algorithm (ACA), Particle Swarm Optimizer 
(PSO), Artificial Bee Colony Algorithm (ABC), Tabu Search Algorithm (TS), Simulated 
Annealing (SA) Algorithm, Teaching-Learning-Based Optimization Algorithm (TLBO) methods 
have been developed and performed for steel structures with fully rigid or semi-rigid connections 
by many researchers in the recent years. Although the first studies in the literature are mostly on 
the fully rigid frames or truss systems, subsequent studies are usually on the frames with 
semi-rigid connections. 

Genetic Algorithm (GA) which is one of the above methods, was developed by Goldberg 
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(1989). Rajeev and Krishnamoorthy (1992) used genetic algorithms for discrete optimization of 
structures. Although they investigated some simple structural examples including truss systems, 
their study explaining genetic algorithm procedures in details is an important reference for several 
researchers. Daloglu and Armutcu (1998) used genetic algorithm for optimum design of plane 
steel frames according to TS 648 (Turkish Building Code for Steel Structures). Their work 
includes some examples of planar frames and illustrates the application of the method. Erbatur et 
al. (2000) optimized planar and of space structures such as a 25-bar space truss, a 72-bar 
transmission tower, a 112-bar steel dome, a 22-bar plane truss, a cantilever beam and an industrial 
building by using genetic algorithms. In the later years, many studies on optimum design of fully 
rigid frames have been carried out for multi-storey steel frames using different methods. One of 
them is the study of Esen and Ülker (2008). They studied optimization of multi storey space steel 
frames by taking into account both materially and geometrically properties non-linear behaviors 
via the ANSYS program. Togan (2012) focused on optimum design of planar steel frames using 
Teaching–Learning Based Optimization which is a nature-inspired search method developed 
recently. In the study, three-story frame design, ten-story frame design and 24-story frame design 
were researched according to the AISC-LRFD specification. Aydogdu and Saka (2012) used Ant 
Colony Optimization for optimum design of irregular steel space frames including element 
warping effect. In the study, the design constraints were presented in details and different 
examples such as five-storey, 10-storey and 20-storey space frames were successfully optimized. 
Kaveh and Talatahari (2012) investigated a hybrid CSS and PSO algorithm for optimal design of 
structures to solve different examples such as a 942-bar spatial truss, 10-story spatial frame and a 
60-elements grillage system. Dede and Ayvaz (2013) optimized a 10-bar truss system, a 25-bar 
space truss structure, a 72-bar truss structure and a 200-bar plane truss structure by using 
Teaching-Learning-Based Optimization Algorithm. 

One of the first studies on optimization of frames with semi-rigid connections was carried out 
by Simoes (1996). His study showed that a linear representation of the spring for frames with 
semi-rigid connections is quite adequate for the simple models. Filho et al. (2004) investigated the 
behavior of the frame material and connections described by linear elastic moment-rotation 
relationships, which are presented in the stiffness form. In their study, the moment-rotation 
relation of the connection is considered as linear elastic and a 20-storey steel frame was studied by 
linear static analysis. Choi and Kim (2006) focused on optimal design of semi-rigid steel frames 
using practical nonlinear inelastic analysis. Wang and Li (2007) researched stability analysis of 
semi-rigid composite frames. However, genetic algorithms or harmony search algorithms have 
been used for optimum design of nonlinear steel frames with semi-rigid connections (Kameshki 
and Saka 2001, Hayalioglu and Degertekin 2004a, b, Degertekin et al. 2009) and column bases 
(Hayalioglu and Degertekin 2005, 2010). Gorgun and Yılmaz (2012) studied geometrically 
nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations. 
In the study, they applied the nonlinear analysis method to three different planar steel structures. 
Hadidi and Rafiee (2014) used a harmony search based, improved Particle Swarm Optimization 
method for minimum cost design of semi-rigid steel frames. They optimized a nine-storey, 
single-bay frame, a ten-storey, four-bay frame and a twenty four-storey, three-bay frame systems 
to show the applicability of the method. 

Many studies in the literature, as mentioned above, have been carried out for the optimum 
design of steel frames with semi-rigid connections and fewer studies on the steel frames with 
semi-rigid column bases. Moreover, concrete slab effects on the behavior of beams are not 
considered in analyses of these literature studies. So, in the present study, in order to compare 
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results, optimum design of steel frames with semi-rigid steel beam to column connections and 
column bases are researched for the cases with and without considering concrete slab effects in 
FEM analyses. For this purpose, three different examples are examined. Two of them are taken 
from literature. Results obtained from the optimum designs of the semi-rigid frames with 
composite beams proved that the consideration of the concrete slab contribution on the behavior of 
beams provides lighter frames with semi-rigid connections and column bases. 
 
 
2. Genetic algorithm 

 
Genetic Algorithm (GA) conducts natural biological steps such as reproduction, crossover, 

mutation, etc. GA analyses start with random initial population comprised of individuals which are 
coded as binary digits. The binary codes of each individual in population are decoded and 
corresponding profiles are selected from available section lists. According to selected profiles, 
frames corresponding each individual are analyzed with finite element method (FEM). Then, 
objective, penalized objective and fitness functions are determined by FEM analyses results 
obtained. According to these results of individuals in the population, the individuals are arranged 
and reproduction, double-point crossover and mutation operators are applied. Thus, the initial 
population is replaced by a new population. An iteration step consists of these procedures and 
iterations are repeated until the convergence is obtained. More detailed information about GA 
steps can be found in the literature (Daloglu and Armutcu 1998, Kameshki and Saka 2001, 
Hayalioglu and Degertekin 2004a, 2005). 

 
 

3. Analysis and connection details of planar frames with semi-rigid connections 
 

In fact, the behaviors of the connections are nonlinear along all moment-rotation curves (Filho 
et al. 2004). However, suitability of a linear representation of spring in the analyses of semi-rigid 
frames for simple models was indicated by Simoes (1996). Moreover, it is assumed by Filho et al. 
(2004) that a linear approach is generally enough for the analysis of frames and they studied a 
20-storey steel frame by using linear static analysis. 

According to first-order analysis, the local stiffness matrix of a planar member with semi-rigid 
end connections is defined by Eq. (1) (Simoes 1996, Filho et al. 2004). 
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kTTK t  (3)
 
where L, A and I is length, area of cross-section and moment of inertia of the member, respectively. 
E is elastic modulus, α1 and α2 are fixity factors defined by Eq. (2). The values of fixity factor 
change between 1 and 0 indicating fully rigid and pinned joints, respectively. S1 and S2 in Eq. (2) 
are rotational spring stiffness values of semi-rigid connections. After local matrix of each member 
in the frame is defined, global stiffness matrix expression is evaluated by Eq. (3). Finally, 
displacements and the nodes and stresses of each member in the planar frame are easily calculated 
by using finite elements methodology. 

 
 
 

Fig. 1 Moment-rotation curves of semi-rigid connections (Hayalioglu and Degertekin 2004a) 
 
 
 

 

Fig. 2 Semi-rigid beam-to-column steel connection types (Hayalioglu and Degertekin 2004a) 
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Fig. 3 Semi-rigid column-to-base details (Hayalioglu and Degertekin 2004a) 
 
 
Beam-to-column or column-to-base connections are usually assumed as fully rigid in some of 

the studies in literature (Daloglu and Armutcu 1998, Esen and Ulker 2008, Togan 2012, Aydogdu 
and Saka 2012). However, semi-rigid connections change between totally pinned and fully rigid 
according to connection types. Types of semi-rigid connections are very significant for bending 
moment (M) at the connections since that leads to some rotation. Moment-rotation curves and 
connection types are shown in Figs. 1 and 2 (Hayalioglu and Degertekin 2004a). 

In the present work, two of six different semi-rigid beam-to-column connection types are 
applied in frame analysis with or without considering concrete slab effects on behavior of the floor 
beams. These two types and their adopted rotational stiffness values are 2.26 × 108 kNmm/rad for 
end plate without column stiffeners, and 3.39 × 108 kNmm/rad for end plate with column stiffeners, 
(Hayalioglu and Degertekin 2004a). These rotational stiffness values used in the analyses depend 
on the fixed connection size parameters. The parameters tp = 1.746 cm and db = 2.54 cm are 
considered in the present study as in the study of Hayalioglu and Degertekin (2004a). The 
rotational stiffness value 2.26 × 108 kNmm/rad can be also used for Top and Seat Angles 
connection type when the fixed connection size parameters are assumed as t = 2.54 cm, db = 2.858 
cm (Hayalioglu and Degertekin 2005). Moreover, the same semi-rigid column-to-base details used 
by Hayalioglu and Degertekin (2004a) are applied in this study, Fig. 3. 

 
 

4. Formulation of optimum design 
 
Minimum weight of planar frames is considered as objective function in discrete optimum 

design problem. The objective, penalized objective and fitness functions are shown as below 
(Daloglu and Armutcu 1998) 
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where W is the weight of the frame, Ak is cross-sectional area of group k, ρi and Li are density and 
length of member i, ng is total numbers of groups, nk is the total numbers of members in group k. 
gi is the constraints, ci is constraint violations, P is a penalty constant, φ(x) is penalized objective 
function, Fi is fitness function. 

In this study, maximum lateral displacement constraints and stress constraints of AISC 
Allowable Stress Design (ASD) and geometric constraints for column-to-column and beam-to- 
column are considered as follows, Hayalioglu and Degertekin (2004a), 

The stress constraints taken from AISC–ASD (1989) are shown in Eqs. (9) and (10). 
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where nc is total number of members subjected to both axial compression and bending stresses, fa 
is computed axial stress, Fa is allowable axial stress under axial compression force alone, and is 
calculated depending on elastic or inelastic bucking of the member according to slenderness ratio 
depending on effective length factor (K), fbx is computed bending stresses due to bending of the 
member about its major (x), Fbx is allowable compressive bending stresses about major, Cmx is a 
factor which taken as 0.85 for unbraced frame members, F′ex is Euler stresses, Fy is yield stress of 
steel. The effective length factor K for unbraced frames is determined as follows (Dumonteil 1992) 
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where GA and GB are the relative stiffness factors at Ath and Bth ends of columns. 
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where Ic is moment of inertia of column section corresponding to plane of buckling, Lc is unbraced 
length of column, Ig is moment of inertia of beam corresponding to plane of bending, Lg is 
unbraced length of beam, S is rotational spring stiffness of corresponding end, αuf is a coefficient 
which shows the connection condition and it is equal to 1 for rigid connections. It is calculated by 
Eq. (14) (Dhillon and O’Malley 1999, Hayalioglu and Degertekin 2004a), when the beams are not 
rigidly connected to columns. k in the related equation is corresponding spring stiffness, and 
expressed as M/θr. However, in this study, adopted rotational stiffness of connection, S, is used 
instead of k in Eq. (14). 

The displacement constraints are shown in Eq. (15) 
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where δjl is displacement of jth degree of freedom under load case l, δju is upper bound, m is 
number of restricted displacements, nl is total number of loading cases. 

Column-to-column geometric constraints (size constraints) are expressed in Eq. (16) 
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where Dun is depth of upper floor column, Dln is depth of lower floor column. 

Beam-to-column geometric constraints are shown in Eq. (17) 
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where nbf  is number of joints where beams are connected to the flange of column, bfbk,i and bfck,i 
are flange widths of beam and column, respectively. 

 
 

5. Composite beams 
 
Concrete slabs on steel beams are taken into account in the analysis. Effective width of 

concrete slab as shown in Fig. 4 is determined as follows (Salmon and Johnson 1980). As seen in 
Fig. 4, while slab extending is only on one side for exterior beam, it is on both sides for interior 
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Fig. 4 Effective width of composite beam 
 
 

beam (Salmon and Johnson 1980). The contribution of the concrete on interior beams is greater 
than the contribution on exterior beams. In space frames, the contribution of concrete should be 
considered for exterior or interior beams separately. However, in planar frame models, the 
contributions of concrete on the all beams can be assumed as these on exterior beams or interior 
beams. In this study, the contributions can be considered as these on exterior beams. 
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where bE is effective width of concrete slab, L is span length of steel beam, bf is flange width of 
steel beam, bo is interval between two beams, ts is thickness of concrete slab. The effective width 
of concrete slab is transformed by Eq. (20) 
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where Ec is elastic modulus of concrete and Es is elastic modulus of steel. Composite beam section 
properties such as center of gravity of the cross section, moment of inertia about major and minor 
axes…etc., are determined for the analyses of whole structure. 

 
 

6. Design examples 
 
Three different planar frames with semi-rigid beam to column steel connections and column 

bases are carried out for two cases with and without considering concrete slab effects in FEM 
analyses. First two examples were previously studied by Hayalioglu and Degertekin (2004a). In 
the present study, concrete slab effect on behavior of beams is also considered in optimum design 
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of semi-rigid frames, and composite beams are placed as seen in Fig. 4. Thickness of concrete slab 
is taken to be 10 cm and the modulus of elasticity, E, is 30 GPa. Optimum cross sections for both 
cases are selected from a specified list including 128 W sections taken from American Institute of 
Steel Construction (AISC). The maximum lateral displacements (top storey sway) is limited to 
H/250, where H is total height of frame (Hayalioglu and Degertekin 2004a). Adopted rotational 
stiffness for all column bases in first two examples is 1.13 × 108 kNmm/rad and it is 2.26 × 108 
kNmm/rad for third example (Hayalioglu and Degertekin 2005). Also, material properties of steel 
in all three examples are Es = 200 GPa, yield stress fy = 248.2 MPa, material density ρ = 7.85 
ton/m3. 

 
 

Fig. 5 Five-storey, two-bay frame 
 
 

Table 1 Optimum cross sections of fully rigid frame 

Group no 

Hayalioglu and Degertekin (2004a) 
(without composite beams) 

Present study 

Fully rigid 

Fully rigid 

Without 
composite beams 

With 
composite beams

1 14×68 18×55 21×68 21×68 

2 16×67 18×65 16×100 24×76 

3 8×31 14×61 16×45 14×48 

4 14×61 14×43 1×x50 14×48 

5 8×31 14×43 12×26 14×48 

6 10×33 8×31 8×24 8×24 

7 18×55 18×50 24×55 18×60 

8 16×50 14×43 24×55 18×40 

9 21×50 21×50 18×35 16×26 

Total weight (kg) 8668 8888 9255 8704 

Top storey sway (cm) 3.53 3.68 2.17 1.83 
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Table 2 Optimum cross sections of semi rigid frame 

Group no 

Hayalioglu and Degertekin (2004a)
(without composite beams) 

Present study 

Semi rigid Semi rigid 

End plate 
without 
column 

stiffeners 

End plate 
with 

column 
stiffeners 

End plate 
without column stiffeners 

End plate 
with column stiffeners 

Without 
composite 

beams 

With 
composite 

beams 

Without 
composite 

beams 

With 
composite 

beams 

1 21×62 21×62 21×68 21×68 16×67 16×67 

2 21×62 21×68 24×94 24×76 21×101 21×83 

3 16×67 21×62 12×45 16×50 14×48 14×38 

4 21×62 14×61 16×57 14×48 16×50 21×68 

5 12×53 14×61 8×28 10×22 8×24 12×26 

6 14×61 10×54 8×31 10×22 14×30 21×68 

7 18×60 21×62 21×62 18×71 24×68 18×60 

8 12×50 21×62 16×57 18×46 21×50 21×50 

9 8×40 14×53 18×35 16×31 18×35 16×26 

Total 
weight (kg) 

9831 10432 9646 9178 9616 9124 

Top storey 
sway (cm) 

4.48 3.30 3.28 2.56 2.75 2.21 

 
 
6.1 Example 1: Five-storey, two-bay frame 
 
A five-storey, two-bay frame is grouped and loaded as seen in Fig. 5. The semi-rigid frame 

with regular beams was non-linearly analyzed by Hayalioglu and Degertekin (2004a) using genetic 
algorithm with and without P-Δ effects. In the present work, stress constraints of AISC-ASD, 
maximum lateral displacement constraints, column-to-column and beam-to-column size 
constraints used by Hayalioglu and Degertekin (2004a) are imposed on the semi rigid frame. 
Maximum top storey drift is restricted to 7.2 cm. Optimum design of full and semi rigid frames are 
performed for cases of the frame with and without composite beams. Minimum weights, 
maximum top story drifts, steel sections of optimum designs for full and semi rigid steel frames 
are presented in Tables 1 and 2, respectively. The results obtained by Hayalioglu and Degertekin 
(2004a) are also shown in the tables for comparison. Figs. 6(a), 7(a) and 8(a) show the variation of 
total steel weight with iterations for both cases and Figs. 6(b), 7(b) and 8(b) show the values of 
effective length factor (K) of the columns of full and semi rigid steel frame for both cases. 

As shown in Tables 1 and 2, optimum design results of this study are very close to the results 
obtained by Hayalioglu and Degertekin (2004a) for frames without composite beams. Top story 
sway or maximum displacements are far less than upper limit. Therefore, it can be said that stress 
and size constraints play active role in optimum designs of full and semi rigid frames. As shown in 
the tables and the figures of fully rigid frame, minimum weight obtained for the fully rigid steel 
frame without composite beams is 8704 kg which is about 5% lighter compare to frames with 
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(a) Variation of total steel weight (b) Effective length factor (K) of columns 

Fig. 6 Fully rigid steel frame with and without composite beams 
 
 

(a) Variation of total steel weight (b) Effective length factor (K) of columns 

Fig. 7 Semi rigid steel frame with end plate without column Stiffeners connection with and 
without composite beams 

 
 

(a) Variation of total steel weight (b) Effective length factor (K) of columns 

Fig. 8 Semi rigid steel frame with end plate with column stiffeners connection with and without 
composite beams 

 
 

regular beams or without composite beams. This is also valid in optimum designs of semi-rigid 
frames (End Plate without Column Stiffeners and End Plate with Column Stiffeners connections) 
shown in Table 2. The weight, 8704 kg, is also about 9-10% lighter than the minimum weights 
9646 kg and 9616 kg obtained from optimum designs of both semi rigid frames. Besides it can 
clearly be observed from Figs. 6(b), 7(b) and 8(b) that the effective length factor K for columns 
depends on fixity factors based on rotational spring stiffness of semi rigid connections. So a 
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reduction in rotational spring stiffness and hence in the fixity factors results with an increase in K. 
This situation leads to an increase in the buckling lengths of columns and the selection of larger 
cross-section profiles for columns. Also, these figures and tables show that consideration of 
concrete slab effects on the behavior of beams significantly reduces the effective length factor of 
columns and maximum top story sways. 

 
6.2 Example 2: Ten-storey, single-bay frame 
 
A ten-storey, single-bay frame is grouped and loaded as seen in Fig. 9. This semi-rigid frame 

without composite beams was non-linearly researched by Hayalioglu and Degertekin (2004a) for 
different section lists with and without P-Δ effects. The constraints applied in this example are the 
same as those of the previous example. The maximum top storey drift is restricted to 12.0 cm. 
Fully rigid frames and semi rigid frames with End Plate without Column Stiffeners and End Plate 
with Column Stiffeners connections are performed for cases of regular and composite beams. 
Minimum weights of optimum designs for full and semi rigid steel frames are presented in Table 3 
for comparison with the results of Hayalioglu and Degertekin (2004a). Maximum top story drifts 
and steel sections of optimum designs for full and semi rigid steel frames are presented in Table 4. 
Figs. 10(a), 11(a) and 12(a) show the variation of total weight with iterations for both cases and 
Figs. 10(b), 11(b) and 12(b) show the values of effective length factor (K) of columns of full and 
semi rigid steel frames for both cases. 

 
 

Fig. 9 Ten-storey, single-bay frame 
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Table 3 Minimum weights (kg) of optimum designs 

The frames according to connection types

This study Hayalioglu and 
Degertekin 2004a 

(Without composite beams)
Without 

composite beams
With 

composite beams

Full rigid steel frames 13951 12988 12119 14067 

Semi rigid 
steel frames 

End plate without 
column stiffeners connection

15016 14091 12691 15422 

End plate with column 
stiffeners connection 

14245 13584 15053 15756 

 
 

Table 4 Optimum designs for full and semi rigid steel frames 

Group no 

Full rigid 

Semi rigid 

End plate without column 
stiffeners connection 

End plate with column 
stiffeners connection 

Without 
composite 

beams 

With 
composite 

beams 

Without 
composite 

beams 

With 
composite 

beams 

Without 
composite 

beams 

With 
composite 

beams 

1 24×117 30×108 24×117 24×117 21×101 21×101 

2 24×117 16×100 21×101 21×101 21×101 16×100 

3 24×68 16×77 21×101 21×68 18×76 16×89 

4 16×57 16×67 16×67 16×67 18×60 16×67 

5 12×40 14×30 16×67 16×67 16×36 14×30 

6 27×94 21×83 24×76 24×84 30×108 21×93 

7 21×68 24×68 18×76 21×68 18×76 24×76 

8 24×55 18×46 24×68 18×60 21×57 21×44 

9 16×26 10×22 16×26 12×19 14×30 10×22 

Top storey 
way (cm) 

5.57 4.76 8.46 6.80 7.55 6.48 

 
 

(a) Variation of total weight (b) Effective length factor (K) of columns 

Fig. 10 Fully rigid steel frame with and without composite beams 
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(a) Variation of total weight (b) Effective length factor (K) of columns 

Fig. 11 Semi rigid steel frame with End Plate without Column Stiffeners connection with and 
without composite beams 

 
 
 

(a) (b) 

Fig. 12 Semi rigid steel frame with end plate with column stiffeners connection with and without 
composite beams 

 
 
As it is observed from Table 3 that minimum weights obtained from this study are very close to 

ones obtained by Hayalioglu and Degertekin (2004a) for the frames with regular beams. Maximum 
displacement of all three optimum designs is 8.46 cm which is far below the limit. It indicates that 
stress and size constraints are important determinants of optimal designs for full and semi rigid 
frames. Also, if the semi-rigid frames is connected to full rigid column bases instead of semi rigid 
column bases used in the present study, the value of maximum top storey displacement of the 
semi-rigid frame decreases from 8.46 cm to 7.63 cm. It is observed from Table 3 that minimum 
weights of all three optimum designs for the case of frame with composite beams are about 5-6% 
lighter than the case without composite beams. Also, minimum weights obtained for fully rigid 
steel frames without composite beams is 7.6% and 2.1% lighter than those of semi-rigid frames 
with end plate without column Stiffeners connections and End Plate with Column Stiffeners 
connections, respectively. It is apparently seen from Figs. 10(b), 11(b) and 12(b) that a decrease in 
rotational spring stiffness and so fixity factor of semi rigid connection increases the effective 
length factor (K) and so the buckling lengths of columns. This situation leads to the selection of 
larger cross-section profiles for columns and so the heavier designs. It is also observed from Table 
4 that selected sections of beams in the optimum designs of frame with composite beams are 
commonly smaller than those of frames without composite beams. 
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Fig. 13 Twenty-storey, three-bay frame 
 
 
6.3 Example 3: Twenty-storey, three-bay frame 
 
A twenty-storey, three-bay frame is grouped and loaded as seen in Fig. 13. The maximum top 

storey drift is restricted to 24.0 cm (H/250). The full and semi rigid frames are performed for the 
cases of frame with and without composite beams. Minimum weights, maximum top story drifts, 
steel sections of optimum designs are presented in Table 5. The constraints applied in this example 
are the same as those of the previous examples. Figs. 14(a), 15(a) and 16(a) show the variation of 
the total weight with iterations for both cases and Figs. 14(b), 15(b) and 16(b) show the values of 
the effective length factor (K) of the columns of fully and semi rigid steel frame for both cases. 
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As shown in Table 5, maximum top storey displacements are significantly less than upper limit. 
So, stress and size constraints are important determinants of optimal designs for full and semi rigid 

 
 

Table 5 Optimum designs for full and semi rigid steel frames 

Group no 

Full rigid 
Semi rigid 

End plate without column 
stiffeners connection 

End plate with column 
stiffeners connection 

Without 
composite 

beams 

With 
composite 

beams 

Without 
composite 

beams 

With 
composite 

beams 

Without 
composite 

beams 

With 
composite 

beams 

1 27×194 30×173 30×211 24×162 27×161 36×194 

2 14×257 14×257 30×211 14×370 30×211 24×207 

3 24×146 24×117 30×191 21×122 27×161 30×132 

4 14×193 14×193 30×191 14×193 30×211 18×175 

5 21×132 21×101 30×148 18×86 27×94 24×117 

6 14×132 14×132 14×132 14×132 14×176 18×119 

7 18×71 16×67 21×73 14×48 16×67 14×53 

8 12×106 12×106 12×106 12×79 14×132 18×65 

9 14×30 16×36 16×67 8×24 16×36 8×21 

10 10×33 12×19 8×31 12×30 12×30 8×21 

11 24×68 21×83 27×94 24×94 30×108 30×108 

12 21×68 21×68 24×76 24×68 21×68 24×76 

13 16×67 21×57 21×83 24×68 21×68 24×76 

14 18×71 18×50 21×62 21×44 14×53 21×44 

15 14×30 12×19 12×35 16×26 12×30 14×26 

Total weight 
(kg) 

94120 88070 10251 93590 97210 92090 

Top storey 
sway (cm) 

9.61 6.52 9.79 9.13 9.86 7.10 

 
 

(a) Variation of total weight (b) Effective length factor (K) of columns 

Fig. 14 Fully rigid steel frame with and without composite beams 
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(a) Variation of total weight (b) Effective length factor (K) of columns 

Fig. 15 Semi rigid steel frame with end plate without column stiffeners connection with and 
without composite beams 

 
 
 

(a) Variation of total weight (b) Effective length factor (K) of columns 

Fig. 16 Semi rigid steel frame with end plate with column stiffeners connection with and without 
composite beams 

 
 
 
 

frames as in the previous examples. It can apparently observed from the comparison of Figs. 14(b), 
15(b) and 16(b) that the effective length factor K for columns depends on the fixity factors based 
on rotational spring stiffness of connection types, and an increase in the rotational spring stiffness 
provides fixity factors to get closer to 1 (fully rigid). Moreover, this situation results with a 
reduction in K. So, minimum weight (94120 kg) for fully rigid steel frame without composite 
beams is about 8% and 3% lighter than the optimum designs of semi rigid (End Plate without 
Column Stiffeners connections and End Plate with Column Stiffeners connections) for the case of 
the frame without composite beams. 

As regards the figures above (Figs. 14(b), 15(b) and 16(b)), in the optimal design of frame with 
composite beams, considering concrete slab effects in finite element analyses significantly reduces 
the effective length factor of columns and so the buckling lengths decrease. Furthermore, selected 
sections of the beams are usually smaller and minimum weights for all full and semi rigid frames 
are reduced by about 5-8%. Furthermore, considering concrete slab effects in finite element 
analyses substantially reduces the values of maximum. 

 

1051



 
 
 
 
 
 

Musa Artar and Ayşe T. Daloğlu 

7. Conclusions 
 
Main purpose of the present work is to consider concrete slab effects on behavior of steel floor 

beams and optimum design of semi rigid multistorey frames with composite beams. The stress 
constraints of AISC-ASD, maximum lateral displacement constraints and geometric constraints 
are imposed on full and semi rigid frames. Genetic Algorithm incorporating reproduction, 
crossover and mutation operators are selected as the method for minimum weight design of steel 
structural systems involving discrete design variables. All procedures are repeated for the optimum 
designs of full and semi rigid frames. Two of the examples taken from literature are resized for the 
cases of the frame with and without composite beams. Another multistorey frame is studied as 
third examples. Results obtained from analyses are presented in tabular and graphical formats. 
Most important conclusions drawn from the study are briefly summarized below: 

 
● While first example is carried out with 200 iterations, third example is solved with 2000 

iterations. 
● A decrease in the rotational spring stiffness or fixity factor of frames increases the values of 

effective length factor K, and so the buckling lengths of columns. In the first example, while 
maximum K value for fully rigid frame without composite beams is about 1.9, this value for 
semi rigid frame reaches to 2.2. This situation is also valid for the other examples. In the 
third example, this value increases from about 4 to 5. Therefore the optimum design weights 
increase. In the second example, while design weight of for fully rigid frame without 
composite beams is 13951 kg, this weight is 15016 kg for the semi rigid frame. 

● In the optimum designs of frames with composite beams, consideration of concrete slab 
effects in finite element analyses significantly reduces the effective length factor of columns 
and maximum top storey displacements. In the first example, while the maximum K values 
for fully rigid frame decrease from about 1.9 to 1.7 for the fully rigid frame and from about 
2.2 to 2.0 for the semi rigid frame. This situation is also valid for the second and third 
examples. Therefore optimum weight of the steel frames decreased by about 5-8% when the 
effect of concrete slab on behavior of beams is considered in all three frame examples 
studied. Furthermore, selected sections of the beams are usually smaller. 
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