
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 19, No. 4 (2015) 1011-1033 
DOI: http://dx.doi.org/10.12989/scs.2015.19.4.1011                                               1011 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Nonlinear flexural analysis of laminated composite flat panel 
under hygro-thermo-mechanical loading 

 

Vishesh R. Kar 1a, Trupti R. Mahapatra 2b and Subrata K. Panda 1 
 

1 Department of Mechanical Engineering, National Institute of Technology, Rourkela, India 
2 School of Mechanical Engineering, KIIT University, Bhubaneswar, India 

 
(Received November 13, 2014, Revised March 23, 2015, Accepted April 02, 2015) 

 
Abstract.   In this article, large amplitude bending behaviour of laminated composite flat panel under 
combined effect of moisture, temperature and mechanical loading is investigated. The laminated composite 
panel model has been developed mathematically by introducing the geometrical nonlinearity in Green- 
Lagrange sense in the framework of higher-order shear deformation theory. The present study includes the 
degraded composite material properties at elevated temperature and moisture concentration. In order to 
achieve any general case, all the nonlinear higher order terms have been included in the present formulation 
and the material property variations are introduced through the micromechanical model. The nonlinear 
governing equation is obtained using the variational principle and discretised using finite element steps. The 
convergence behaviour of the present numerical model has been checked. The present proposed model has 
been validated by comparing the responses with those available published results. Some new numerical 
examples have been solved to show the effect of various parameters on the bending behaviour of laminated 
composite flat panel under hygro-thermo-mechanical loading. 
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1. Introduction 

 
In the weight sensitive industries, composite materials are much compatible due to their 

uniqueness in specific mechanical properties. However, the behaviour of laminated composites 
may alter adversely when exposed to thermal and moisture conditions. It is well known that, the 
deflection behaviour of composites has a great importance in the design and analysis of structural 
components. When these structures are exposed to mechanical loading under sever environmental 
conditions, their strength and stiffness changes due to change in thermal and mechanical properties. 
It is well known that for large deformation regime the basic geometry of panel is distorted and 
nonlinearity in geometry is induced. This in turn affects the structural behaviour of laminated 
structures. 

In past, many researchers have already examined flexural behaviour of laminate structures 
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either by developing new theories or by modifying existing theories based on analytical and/or 
numerical method. A selective review on nonlinear flexural behaviour of laminated structures is 
discussed briefly in the following lines to make the article self-standing. Sai Ram and Sinha (1991) 
studied bending characteristics of laminated composite plate under hygrothermal loading using 
finite element method (FEM). Liu and Huang (1996) investigated nonlinear free vibration 
behaviour of laminated composite plates under dissimilar temperature load using von Karman type 
nonlinear kinematics in the framework of the first order shear deformation theory (FSDT). 
Upadhyay and Lyons (2000) examined hygrothermal effect on the nonlinear bending behaviour of 
fiber reinforced polymer matrix composites based on von Karman plate theory. A quadratic 
isoparametric FE formulation based on the FSDT are presented by Parhi et al. (2001) to show free 
vibration and transient response behaviour of multiple delaminated plates and shells under 
hygrothermal loading. Patel et al. (2002) analysed static and dynamic characteristics of thick 
laminated composite plates using modified higher order shear deformation theory (HSDT) by 
hygrothermal dependent material properties of composites. Huang et al. (2004) studied nonlinear 
vibration and dynamic behaviour of shear deformable laminated plate under hygrothermal loading 
in the framework of the HSDT by taking von Karman type nonlinear kinematics. Shen et al. (2004) 
presented analytical solutions of dynamic behaviour of laminated plates resting on a 
two-parameter (Pasternak-type) elastic foundation under hygrothermal environment. They have 
developed a micromechanical model by taking the effect of volume fractions of individual 
constituents in the framework of HSDT mid-plane kinematics. Naidu and Sinha (2005) 
investigated large deflection bending behaviour of composite cylindrical shell panels subjected to 
hygrothermal environments by using FSDT and Green-Lagrange nonlinear kinematics. Zhang and 
Kim (2006) developed two displacement-based 4-noded quadrilateral elements (20 and 24 degrees 
of freedom) to analyse linear and geometrical nonlinear behaviour of thin to moderately thick 
laminated composite plates based on the FSDT and von Karman geometric nonlinearity. Zhang 
and Yang (2006) developed 4-noded flat quadrilateral element having 24 degrees of freedom to 
analyse linear and nonlinear bending behaviour of laminated composite plates. They have 
developed the model based on the FSDT mid-plane kinematics using Timoshenko’s beam 
functions. Kundu et al. (2007) analysed numerically geometrical nonlinear bending behaviour of 
laminated composite shells in hygrothermal environment using finite element method (FEM) 
based on the FSDT mid-plane kinematics. Lo et al. (2010) developed a global–local HSDT to 
study the response of laminated plates exposed to hygrothermal environment. Hari Kishore et al. 
(2011) presented nonlinear static behaviour of the composite plates embedded with 
magnetostrictive materials based on the third order shear deformation theory by taking the 
geometric nonlinearity in von Karman sense. Baltacioglu et al. (2011) investigated nonlinear static 
deflections of rectangular laminated thick plates resting on elastic foundation using the discrete 
singular convolution method in the framework of the FSDT and von Karman large deformation 
equations. Zenkour (2012) examined hygrothermal bending of thick multilayered composite plates 
using a sinusoidal theory. Recently, Zenkour et al. (2014) have extended their work to study the 
static response of laminated plates resting on elastic foundations by assuming sinusoidal 
distribution of temperature and moisture. Sharma et al. (2013) presented the analytical solutions 
for flexural response of doubly curved laminated composite shells based on the FSDT mid plane 
kinematics. A micromechanical model to study the nonlinear vibration behaviour of laminated 
composite plates resting on elastic foundations has been presented by Kumar and Patil (2013). The 
formulation is based on the HSDT and von Karman nonlinear kinematics. Szekrenyes (2014) 
presented an analytical model for de-laminated orthotropic plates based on the Reddy’s third-order 
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shear deformable theory. 
In addition to the above, we note that a very few work have been reported by Shen (2002), 

Upadhyay et al. (2010) and Lal et al. (2011) on hygro-thermo-mechanical static analysis of 
laminated composite plate based on micro-mechanical approach to show the effect of volume 
fraction of each constituents. However, in all the cases the mathematical model have been 
developed using HSDT mid-plane kinematics in conjunction with von Karman nonlinearity. To 
the best of the authors’ knowledge, no work has been reported in literature on nonlinear bending 
analysis of laminated composite structure under hygro-thermo-mechanical loading by taking 
HSDT mid-plane kinematics with Green-Lagrange geometric nonlinearity. In this present work, 
the authors’ attempt to develop a general nonlinear FEM model for laminated composite plate 
under combined hygro-thermo-mechanical loading based on micro-mechanics model. Here, the 
composite material properties are considered to be dependent on temperature and moisture. In 
addition to this, all the nonlinear higher order terms have been incorporated in the mathematical 
model to capture the original flexure of the structure. The nonlinear system governing equations 
are obtained using variational approach and discretised using suitable FEM. A direct iterative 
method is employed to solve the system equation to obtain the bending responses. The efficacy 
and accuracy of the model has been evaluated by comparing the responses with available 
published results. The effects of various parameters on hygro-thermo-mechanical bending 
response of laminated composite flat panel are examined and discussed in details. 
 
 

 

Fig. 1 Geometry and stacking sequence of laminated plate 
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2. Theoretical development and finite element formulation 
 
A typical flat panel geometry has been considered for the present investigation as shown in Fig. 

1. The laminated plate is consists of N number of equally thick orthotropic layers of length a, 
width b and thickness h. The proposed mathematical model has been developed based on the 
HSDT displacement field (Reddy 2004) and any arbitrary point on the laminated flat panel with 
respect to the mid-plane along x, y and z directions is given by 

 

wwzzzvvzzzuu     ,   , 3
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where, ),,( wvu  indicate the displacements at any arbitrary point on the plate along the (x, y, z) 
respectively. Similarly, (u, v, w) represent the corresponding displacements of the points on the 
mid-plane, ϕ1 and ϕ2 are the rotations of normal to the mid-plane relating to y-axis and x-axis, 
respectively. This displacement field represents the transverse shear strains as quadratic function 
of thickness coordinate at any point within the shell and also account for the parabolic distribution 
of shear stress across the thickness represented by ψ1, ψ2, θ1 and θ2, which are the higher order 
terms of Taylor series expansion defined at the mid-plane. 

The following Green-Lagrange type nonlinear strain–displacement relations have been used to 
express the deformation behaviour (Panda and Mahapatra 2014). 
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Now, substituting Eq. (1) in Eq. (2) the strain displacement relation of the laminated flat panel 
is expressed as 
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Now, Eq. (3) can be rewritten as 
 

         NLNLLL HH 
2

1
  (4)

 

where, [H]L and [H]NL are the functions of thickness coordinate and represents linear and the 
nonlinear thickness coordinate matrices.  L  and  NL  are the functions of x and y and 
represent mid-plane linear and nonlinear strains, respectively. The superscripts 0-3 and 4-10 
accounts for the extension, bending, curvature and higher order strain terms in linear and nonlinear 
strain vectors, respectively. The detail terms of  L  and  NL , [H]L and [H]NL can be seen in 
Panda and Mahapatra (2014). 

In the present analysis, it is assumed that the deformation occurring due to unlike temperature 
and moisture change are not coupled. Hence, the constitutive matrix equation of generalized stress 
tensor for any general kth orthotropic composite lamina with any fibre orientation angle θ is given 
by 

     kijijij
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ij CTQ    (5)

 
where, {σij}

k = {σ1 σ2 σ6 σ5 σ4}
T and {εij}

k = {ε1 ε2 ε6 ε5 ε4}
T are the stress and strain vectors 

respectively for the kth layer.  kijQ  is the transferred reduced stiffness matrix for the kth layer, 

{αij}
k = {α1 α2 2α12}

T is the thermal expansion/contraction coefficient vector and {βij}
k = {β1 β2 

2β12}
T is the moisture expansion/contraction coefficient vector. Here, ΔT = T – T0 is the 

temperature difference, where T is applied and T0 is reference temperatures, respectively. Similarly, 
ΔC = C – C0 is the moisture difference between applied (C) and reference (C0) values of weight 
percentage of moisture. 

Now, Eq. (5) can be expanded as 
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In the present formulation, a micromechanical material model is employed to evaluate the 
mechanical and thermal properties of composite laminate. Since, the properties of the polymer 
based matrix material are predominantly affected by hygrothermal conditions the degradation of 
the composite material properties are estimated by degrading the matrix properties only. This is 
achieved through the “matrix mechanical property retention ratio” expressed as (Chamis and 
Sinclair 1982) 
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where, T = T0 + ΔT, Tgw and Tg0 are the glass transition temperature for hygrothermal and reference 
dry conditions respectively. The glass transition temperature under hygrothermal condition can be 

1015



 
 
 
 
 
 

Vishesh R. Kar, Trupti R. Mahapatra and Subrata K. Panda 

obtained as (Chamis 1987) 
 

0
2 )0.110.0005.0( ggw TCCT   (8)

 

Now, the hygro-thermo elastic constants are evaluated using the steps as in Upadhyay et al. 
(2010). 

 

 

11 1

22

2

12

12

12 12

1.0

1.0 1.0

1.0

1.0 1.0

f f m m m

m m f

f m m

m m
f

f

m m f

f m m

m m
f

f

f f m m

E E V F E V

F E V
E V F E

F E
V

E

F G V
G V F G

F G
V

G

V V  

  



   
      
  




         
  

  

 (9)

 

where, V is the volume fraction and the subscripts “f” and “m” are used for fiber and matrix 
materials, respectively. 

The modified coefficients of thermal and moisture expansion/contraction are also obtained by 
neglecting the moisture effect on fiber (βf = 0). For the same, the matrix hygrothermal property 
retention ratio is approximated as 
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The longitudinal and transverse coefficients of thermal and moisture expansions are conceded 
as Upadhyay et al. (2010) 
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Now, Eqs. (7)-(12), are used to evaluate the coefficients of transverse reduced stiffness matrix, 
thermal and hygroscopic expansion coefficients in Eq. (6). 

Here, a nine noded isoparametric quadrilateral Lagrangian element with nine degrees of 
freedom per node has been taken to discretize the present laminate model. The field displacement 
vector corresponding to any nodal point of the element can be expressed as 
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      
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where, [Ni] and {δi} are the interpolation function and displacement vector for the ith node, 
respectively and the details of interpolation functions can be seen in Cook et al. (2009). 

Now, the mid-plane strain vector can be written as 
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where, [Bi] is the strain displacement relation matrix. 
The strain energy of the panel can be expressed as 
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Using the expression of strain vectors and resultant stress from Eq. (4) and Eq. (5) and putting 
into Eq. (15) the strain energy can be expressed as 
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Substituting Eq. (4) into Eq. (16) the expression for strain energy becomes 
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where, {εL}i = [BL]i{δ
*} and {εNL}i = 

2

1
[BNL(δ)]i{δ

*} = 
2

1
[A(δ)] i[G]i{δ

*}. 

[BL] is the product form of the differential operator and nodal interpolation function in the 
linear strain terms. [A] is function of the displacements and [G] is the product form of differential 
operator and shape function in the nonlinear strain terms. The expressions of [A] and [G] arising 
due to the Green-Lagrange nonlinearity in the nonlinear stiffness matrices are given in the 
appendix. 
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The work done due to the external applied distributed transverse static load “q” can be 
expressed as 

 T

A

W qdA   (18)

 

where, the intensity of transverse static load is expressed in terms of the applied uniform lateral 
pressure as 
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3. System governing equation and solution approach 
 

The governing equation of nonlinear bending for laminated composite flat panel is obtained by 
minimizing the total energy expression. This result in 

 

0   (20)
where, Π = (U − W) 

Using, Eqs. (17) and (18) in Eq. (20) and applying finite element approximation, the system 
governing expression can be obtained as 

 

   { }K q  or      L NLK K q   (21)
 

where, [KL] and [KNL] are the global linear and nonlinear stiffness matrices. The nonlinear stiffness 
matrix depends on the displacement vector linearly and quadratically, respectively. 

Now, Eq. (21) is solved using a direct iterative method and solutions scheme are depicted in 
Fig. 2. 

 
 

4. Results and discussion 
 
A nonlinear finite element computer code have been developed in MATLAB 7.10.0 and based 

on the present formulation in order to obtain the hygro-thermo-mechanical linear/nonlinear 
bending responses of laminated composite flat panel. As a first step, the validation behaviour of 
the present model has been established. Subsequently, different parametric studies are also been 
carried out and their significance have been discussed in details. For computation, the material 
properties of the composite material are considered to be dependent on hygrothermal conditions. 
Their values corresponding to reference temperature 21°C and moisture concentration 0% are 
given below as in Upadhyay et al. (2010) and remain unchanged for each case if not specified 
otherwise. 

 

Ef1 = 220 GPa, Ef2 = 13.79 GPa, Em = 3.45 GPa, Gf2 = 8.97 GPa, υf12 = 0.2, υm = 0.35, 
αf1 = − 0.99 × 10-6/°C, αf2 = 10.08 × 10-6/°C, αm = 72 × 10-6/°C, βm = 0.33, Tg0 = 216°C 
 

The boundary conditions used for analysis are given below: 
 

(a) All edges simply support (SSSS): 
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v = w = Φ2 = Ψ2 = θ2 = 0  at  x = 0, a  and  u = w = Φ1 = Ψ1 = θ1 = 0  at  y = 0, b. 
 

(b) All edges clamped (CCCC): 
u = v = w = Φ1 = Φ2 = Ψ1 = Ψ2 = θ1 = θ2 = 0  for both  x = 0, a and y = 0, b. 

 

(c) All edges hinged (HHHH): 
u = v = w = Φ2 = Ψ2 = θ2 = 0  at  x = 0, a  and  u = v = w = Φ1 = Ψ1 = θ1 = 0 
at  y = 0, b. 

 

Unless defined otherwise, the transversely applied load parameter (Q = 100, 200, 300, 400 and 
500) and the linear/nonlinear transverse central deflections are non-dimensionalized using the 

relations Q = (q / E2)*(a/h)4 and ,max

h

w
wcentral  respectively. 

 

 

Fig. 2 Solution steps for system governing equation 
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4.1 Convergence study 
 
In this section, the convergence behaviour of the present model is performed by analysing the 

bending responses of simply supported, symmetric cross-ply ([0/90]S) and anti-symmetric 
angle-ply ([± 45]2) laminated square plates (a/h = 10, Vf = 0.6) under unlike environmental 
conditions (ΔT = 0°C, ΔC = 0% and ΔT = 300°C, ΔC = 3%). The geometrical and material 
properties of the laminates have been taken same as Shen (2002). The present responses are 
plotted with various mesh refinements as shown in Fig. 3. The corresponding nonlinear bending 
responses of Shen (2002) are also mentioned in the figure for comparison purpose. It is clearly 
understood that, good convergence rate is achieved for both the linear and nonlinear central 
deflections obtained using present model (the HSDT and Green-Lagrange nonlinearity) under 
different hygrothermal environments. It is also noted that, the present nonlinear response values 
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Fig. 3 Convergence behaviour of laminated composite flat panel 
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are in good agreement with Shen (2002) corresponding to (6×6) mesh size. Based on the 
convergence study, a (6×6) mesh has been used throughout the present analysis. 

 
4.2 Comparison study 
 
In order to extend the validity and the accuracy of the present formulation, the results obtained 

using the present model corresponding to different environmental conditions, are checked with 
Chebyshev series based analytical solutions of Upadhyay et al. (2010) and perturbation based 
analytical solution of Shen (2002). The results for simply supported anti-symmetric angle-ply 
([45/-45]2) laminated flat panel (a/h = 10, a/b = 1, Vf = 0.6) under various hygro-thermo-mechanical 
loading are plotted in Fig. 4. It is evident that the present FEM results are in good agreement with 
the analytical results of the references. The nominal difference in results is due to the fact that the 
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Fig. 4 Comparison study of nonlinear bending of laminated composite flat panel 
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present mathematical model is developed based on the HSDT mid-plane kinematics and 
Green-Lagrange nonlinearity including all the nonlinear higher order terms in the formulation, 
whereas the stated references used HSDT mid-plane kinematics and von Karman nonlinearity. 
However, it is worthy to mention that the present nonlinear responses are showing closer 
conformation for higher mechanical and hygrothermal load values in comparison to lower load 
cases. This demonstrates the significance and necessity of the present mathematical model. 
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Fig. 5 Effect of lamination scheme and hygrothermal conditions on the nonlinear centre deflection 
of laminated composite flat panel 
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4.3 Additional examples 
 
In order to evaluate the effect of hygrothermal conditions, geometrical and material parameters 

and boundary conditions on the nonlinear hygro-thermo-mechanical bending responses of 
laminated composite flat panels, some new examples are solved. Each illustration is worked out 
for anti-symmetric cross-ply ([0/90]2) and anti-symmetric angle-ply [± 45]2 laminated plates 
having volume fraction Vf = 0.6. In addition to that four sets of unlike environmental conditions 
(ΔT = 0°C and ΔC = 0%, ΔT = 100°C and ΔC = 1%, ΔT = 200°C and ΔC = 2%, ΔT = 300°C and 
ΔC = 3%) are considered in each case. Results are plotted and discussed in details. 
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Fig. 6 Effect of thickness ratio (a/h) on nonlinear central deflection of laminated composite flat panel 
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Fig. 7 Effect of aspect ratio (a/b) on nonlinear central deflection of laminated composite flat panel 
 
 
 
4.3.1 Effect of lamination scheme 
It is true that the lamination schemes are one of the key factors in strength design of fiber 

reinforced composite structure. Hence, in this example the effect of lamination scheme under 
elevated hygrothermal environment is investigated and presented in Fig. 5. The figure shows the 
nonlinear central deflection of fully clamped square laminated composite plate (a/h = 20) for four 
different lamination schemes (symmetric/anti-symmetric cross-ply/angle-ply) under hygrothermal 
load. It is observed from the results that the symmetric laminations are less affected under 
hygrothermal loads in comparison to anti-symmetric cases. It is also noted that the deflections are 
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lower for symmetric cross-ply cases than the anti-symmetric cross-ply plate whereas a reverse 
trend is observed for angle-ply laminations under higher hygrothermal loads. Nonlinear central 
deflections are decreasing with increasing in hygrothermal load irrespective of lamination schemes. 
However, sudden increase in deflection values are noticed beyond the glass transition temperature 
i.e., ΔT = 300°C and ΔC = 3%. 
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Fig. 8 Effect of modular ratio (E1/E2) on nonlinear deflection of laminated composite flat panel 
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Fig. 9 Effect of support conditions on nonlinear deflection of laminated composite flat panel 
 
 
4.3.2 Effect of thickness ratio 
The stiffness of laminated plate depends greatly on the thickness ratio, which in turn affect the 

bending responses. Fig. 6 presents the effect of thickness ratio (a/h = 10, 40 and 100) on 
nondimensional central deflection for clamped square anti-symmetric cross-ply and angle ply 
laminated composite flat panel subjected to hygro-thermo-mechanical loading. It is observed that 
the nonlinear central deflections decrease with increase in thickness ratio. However, it is noted that 
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the thick shells are showing hardening type of behaviour at higher hygrothermal loads, whereas 
the thin shells are showing softening type of behaviour for every hygrothermal load considered in 
this analysis. 

 
4.3.3 Effect of aspect ratio 
The variation of non-dimensional central deflection of anti-symmetric cross-ply/angle-ply 
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Fig. 10 Effect of volume fraction on the nonlinear centre deflection of laminated composite flat panel 
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laminated composite flat panel (a/h = 20) for four different aspect ratios (a/b = 1, 1.5, 2 and 2.5) 
under hygro-thermo-mechanical loading is presented in Fig. 7. It is observed that, the 
nondimensional nonlinear central deflections decrease with increase in aspect ratios. This is 
because of the fact that as the aspect ratio increases the load per unit area decreases; hence the 
responses are within the expected line. However, higher values of deflections are conceded at ΔT = 
300°C, ΔC = 3% for each aspect ratios. This is due to the fact the stiffness of the structure abruptly 
reduced due to moisture absorption at higher temperature and the flexural strength of the laminated 
structure decreases, subsequently. 

 
4.3.4 Effect of modular ratio 
The flexural behaviour of laminated structures is predominantly affected due to its 

orthotropicity. Fig. 8 shows the effect of modular ratio on the nonlinear static behaviour of 
laminated composite flat panel under hygro-thermo-mechanical loading. For this investigation, 
anti-symmetric cross-ply/angle-ply clamped laminated square (a/b = 1) plate (a/h = 50) is 
considered for three different modular ratios (E1/E2 = 10, 20 and 40). It is observed from the figure 
that the panel is showing softening type of behaviour with increase in modular ratio. However, the 
deflections of anti-symmetric cross-ply laminations are lower than the anti-symmetric angle-ply 
laminated plates. 

 
4.3.5 Effect of support condition 
Fig. 9 presents the nondimensional central deflection of anti-symmetric cross-ply/angle-ply 

laminated square (a/b = 1) plates (a/h = 60) for four different support conditions (SSSS, CCCC, 
SCSC and HHHH) under hygro-thermo-mechanical loading. It is observed that the non- 
dimensional central deflections are lowest for clamped and highest for simply-supported case. This 
is due to the fact that as the number of constraints decreases, the stiffness of the structure decreases 
and the deflection value increases monotonically. It is interesting to note that, both types of 
laminated plates are showing softening type of behaviour under all support conditions except for 
the hinged case. 

 
4.3.6 Effect of fiber volume fraction 
The effect of fiber volume fraction on the nonlinear bending behaviour of simply supported 

thin (a/h = 80) anti-symmetric cross-ply/angle-ply laminated square (a/b = 1) plate is examined for 
four sets of hygrothermal loading and presented in Fig. 10. The results show that with increase in 
fiber volume fraction the nonlinear transverse central deflection parameter decreases. This is 
expected as the stiffness of the flat panel increase with increase in fiber volume fraction. 

 
 

5. Conclusions 
 
The nonlinear bending behaviour of laminated composite flat panels under hygro- 

thermo-mechanical loading have been analysed by taking the geometrical nonlinearity in Green- 
Lagrange sense in the framework of the HSDT mid plane kinematics. The formulation is unique in 
the sense that the effective material properties of the composite lamina are computed through a 
micromechanical model. In addition to that all the nonlinear higher order terms are considered in 
the present nonlinear model to capture realistic response. The system governing equations are 
obtained using variational principle and discretised using suitable FEM. The convergence and 

1028



 
 
 
 
 
 

Nonlinear flexural analysis of laminated composite flat panel... 

validation of the present model has been established. Finally the efficacy and applicability of the 
developed nonlinear model has been checked by illustrating few parametric studies. Based on this 
the following useful conclusions are drawn. 

 

 Hygrothermal dependent thermal and mechanical properties greatly affect the flexural 
behaviour of laminated flat panel and in small strain and large deformation problems. 
Green-Lagrange type of nonlinearity is more practical in comparison to von Karman type 
analysis. 

 The nonlinear bending response of laminated composite flat panel is influenced 
considerably with increase in hygrothermal load. The effect is predominant at higher 
temperature, particularly when the applied temperature is more than the glass transition 
temperature. 

 The nonlinear transverse central deflection of laminated composite flat panel under 
hygro-thermo-mechanical loading decrease with increase in thickness ratio, aspect ratio, 
modular ratio and fiber volume fraction. Hence, suitable assortment of these parameters is to 
be done for optimal design of the laminated structures. 

 It is interesting to note that as the number of restraints increases, the nonlinear central 
deflection decreases under hygro-thermo-mechanical loading. 

 Nonlinearity due to moisture absorption at high temperature is severe for anti-symmetric 
angle-ply in comparison to symmetric laminations. 
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Appendix 
 
Individual terms of the matrix [A] as appeared in the Eq. (17) 
 
  ,1_1
A xu

, 
  ,1_ 3
A xv

, 
  ,1_ 5
A xw

, 
  ,2 _ 2
A yu

, 
  ,2 _ 4
A yv

, 
  ,2_ 6
A yw

 

  ,3_1
A yu

, 
  ,3_ 2
A xu

, 
  ,3_ 3
A yv

, 
  ,3_ 4
A xv

, 
  ,3_ 5
A yw

, 
  ,3_ 6
A xw

 

  14 _1
A 

, 
  24 _ 3
A 

, 
  ,4_ 22
A xu

, 
  ,4_ 23
A xv

, 
  15_ 2
A 

, 
  25 _ 4
A 

,  

  ,5_ 22
A yu

,
  ,5_ 23
A yv

,
  1,6 _1
A x

,
  2,6_3
A x

,
  ,6 _ 7
A xu   ,6 _ 9

A xv
,
  1,7 _ 2
A y

 

  2,7 _ 4
A y

,
  ,7 _8
A yu   ,7 _10

A yv
,
  1,8_1
A y

,
  1,8_ 2
A x

,
  2,8_3
A y

,
  2,8_ 4
A x

, 

  ,8_ 7
A yu

,
  ,8_8
A xu

, 
  ,8_ 9
A yv

,  
  ,8_10
A xv

, 
  19_1
A 2

, 
  29 _ 3
A 2

, 

  19 _ 7
A 

,
  29 _ 9
A 

,
  1,9 _ 22
A x

,
  2,9 _ 23
A x

,
  ,9_ 24
A 2 xu

,
  ,9_ 25
A 2 xv

 

  110_ 2
A 2   210_ 4

A 2
,
  110 _ 8
A 

,
  210_10
A 

,
  1,10_ 22
A y

, 

  ,10 _ 24
A 2 yu

,
  ,10 _ 25
A 2 yv

,
  1,11_1
A x

,
  2,11_ 3
A x

,
  1,11_ 7
A x

,
  2,11_ 9
A x

 

  ,11_11
A xu

,
  ,11_13
A xv

,
  1,12_ 2
A y

,
  2,12_ 4
A y

,
  1,12 _ 8
A y

,
  2,12_10
A y

 

  ,12 _12
A yu

,
  ,12 _14
A yv

,
  1,13_1
A y

,
  1,13_ 2
A x

,
  2,13_ 3
A y

,
  2,13_ 4
A x

 

  1,13_ 7
A y

,
  1,13_ 8
A x

,
  2,13_ 9
A y

,
  2,13_10
A x

,
  ,13_11
A yu

,
  ,13_12
A xu

 

  ,13_13
A yv

,
  ,13_14
A xv

,
  114_1
A 3

,
  214 _ 3
A 3

,
  114_ 7
A 2

,
  214_9
A 2

 

  114 _11
A 

,
  214_13
A 

,
  1,14 _ 22
A x

,
  2,14 _ 23
A x

,
  1,14 _ 24
A 2 x

,
  2,14_ 25
A 2 x

 

  ,14 _ 26
A 3 xu

, 
  ,14 _ 27
A 3 xv

,
  115_ 2
A 3

,
  215_ 4
A 3

,
  115_8
A 2

,
  215 _10
A 2

, 

  115_12
A 

,
  215_14
A 

,
  1,15 _ 22
A y

,
  2,15 _ 23
A y

,
  1,15_ 24
A 2 y

,
  2,15_ 25
A 2 y

 

  ,15 _ 26
A 3 yu

,
  ,15 _ 27
A 3 yv

,
  1,16 _1
A x

,
  2,16 _ 3
A x

,
  1,16 _ 7
A x

,
  2,16_ 9
A x

 

  1,16 _11
A x

,
  2,16_13
A x

, 
  ,16 _15
A xu

,
  ,16 _17
A xv

, 
  1,17 _ 2
A y

,
  2,17 _ 4
A y

, 

  1,17 _8
A y

,
  2,17 _10
A y

,
  1,17 _12
A y

,
  2,17 _14
A y

,
  ,17 _16
A yu

,
  ,17 _18
A yv

, 

  1,18 _1
A y

,
  1,18 _ 2
A x

,
  2,18_ 3
A y

,
  2,18_ 4
A x

, 
  1,18_ 7
A y

,
  1,18_ 8
A x

, 

  2,18_ 9
A y

,
  2,18 _10
A x

,
  1,18_11
A y

,
  1,18_12
A x

,
  2,18_13
A y

,
  2,18_14
A x

 

  ,18_15
A yu

,
  ,18_16
A xu

,
  ,18_17
A yv

,
  ,18 _18
A xv

,
  119 _ 7
A 3

,
  219 _ 9
A 3
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  119_11
A 2

, 
  219 _13
A 2

,
  119 _15
A 

,
  219_17
A 

,
  1,19_ 22
A x

,
  2,19_ 23
A x

, 

  1,19_ 24
A 2 x

, 
  2,19 _ 25
A 2 x

, 
  1,19 _ 26
A 3 x

,
  2,19 _ 27
A 3 x

,
  120 _ 8
A 3

, 

  220_10
A 3

,
  120 _12
A 2

,
  220 _14
A 2

,
  120_16
A 

,
  220_18
A 

, 
  1,20_ 22
A y

, 

  2,20 _ 23
A y

, 
  1,20 _ 24
A 2 y

, 
  2,20 _ 25
A 2 y

, 
  1,20 _ 26
A 3 y

, 
  2,20_ 27
A 3 y

, 

  1,21_ 7
A x

,
  2,21_ 9
A x

,
  1,21_11
A x

,
  2,21_13
A x

, 
  1,21_15
A x

,
  2,21_17
A x

, 

  1,22 _8
A y

,
  2,22_10
A y

,
  1,22 _12
A y

,
  2,22 _14
A y

, 
  1,22_16
A y

,
  2,22 _18
A y

 , 

  1,23_ 7
A y

,
  1,23_ 8
A x

,
  2,23_ 9
A y

,
  2,23_10
A x

,
  1,23_11
A y

, 

  1,23_12
A x

,
  2,23_13
A y

,
  2,23_13
A y

,
  2,23_14
A x

,
  1,23_15
A y

, 

  1,23_16
A x

,
  2,23_17
A y

,
  2,23_18
A x

,
  124 _11
A 3

,
  224_13
A 3

,
  124 _15
A 2

,

  224 _17
A 2

,
  1,24 _ 24
A 2 x

,
  2,24_ 25
A 2 x

,
  1,24_ 26
A 3 x

,
  2,24 _ 27
A 3 x

,

  125_12
A 3

,
  225_14
A 3

, 
  125_16
A 2

, 
  225 _18
A 2

, 
  1,25_ 24
A 2 y

, 

  2,25_ 25
A 2 y

, 
  1,25_ 26
A 3 y

, 
  2,25 _ 27

3 yA 
, 

  1,26 _11 xA 
, 

  2,26_13 xA 
, 

  1,26_15 xA 
,
  2,26 _17 xA 

,
  1,27 _12
A y

, 
  2,27 _14
A y

,
  1,27 _16
A y

, 
  2,27 _18
A y

, 

  1,28_11
A y

, 
  1,28_12
A x

,  
  2,28_13
A y

, 
  2,28_14
A x

, 
  1,28_15
A y

, 

  1,28_16
A x

,
  2,28_17
A y

,
  2,28 _18
A x

, 
  129 _15
A 3

, 
  229 _17
A 3

, 

  1,29 _ 26
A 3 x

, 
  2,29_ 27
A 3 x

,
  130_16
A 3

, 
  230_18
A 3

, 
  1,30 _ 26
A 3 y

, 

  2,30_ 27
A 3 y

, 
  1,31_15
A x

, 
  2,31_17
A x

, 
  1,32_16
A y

, 
  2,32 _18
A y

, 

  1,33_15
A y

, 
  1,33_16
A x

, 
  2,33_17
A y

, 
  2,33_18
A x

.   
 
Individual terms of the [G] matrix 
 

 1_1
G

x



 ,

 2_1
G

y



 , 

 3_ 2
G

x



 , 

 4_ 2
G

y



 ,

 5_ 3
G

x



 ,

 6_3
G

y



 ,

 7 _ 4
G

x



 , 

 8_ 4
G

y



 ,

 9 _ 5
G

x



 ,

 10 _ 5
G

y



 ,

 11_ 6
G

x



 ,

 12 _ 6
G

y



 ,

 13 _ 7
G

x



  
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 14 _ 7
G

y



 ,

 15 _ 8
G

x



 ,

 16 _ 8
G

y



 , 

 18 _ 9
G

y



 , 

 19 _1
G 1

, 
 20 _ 2
G 1

, 

 21_ 3
G 1

, 
 22 _ 4
G 1

, 
 23_ 5
G 1

, 
 24 _ 6
G 1

, 
 25_ 7
G 1

, 
 26 _ 8
G 1

, 
 27 _ 9
G 1

. 
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