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Abstract.   In this study, natural frequency analysis of a large deflected cantilever laminated composite 
beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated 
beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the 
beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external 
vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the 
loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing 
large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by 
using the Finite Element Method with a straight-beam element approach. The effects of orientation angle 
and vertical load on the natural frequency parameter for the first four modes are examined and the results 
obtained are given in graphics. It has been found that the effect of the load parameter, which forms the 
curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the 
load parameter. This certain value differs for each laminated curved beam and each vibration mode. 
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1. Introduction 

 
Laminated composite beams and plates have been widely used in naval, aircraft, lightweight 

structures, aerospace exploration, solar sail etc., where high strength and high stiffness to weight 
ratios are desired. In some instances, composite beams can be assembled under pre-stressed 
condition depending on the initial displacements without exceeding their elastic limits. For 
example, aircraft, civil and submarine structures are often designed to work under postbuckling 
conditions, because of weight considerations. Moreover, the beam can be used to model 
components of plated structures. Large deflection problem of composite beams evinces itself in the 
aforementioned areas and similar examples. The large deflection in these areas is defined as a 
non-linear elastic problem. 

Although not in a large number, a number of studies are reported in literature dealing with the 
large deflection analysis of isotropic and laminated composite beams. 

The large deflection of a cantilever beam loading consisting of a vertical load at the free end 
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has been investigated with elliptic integral solution by Bisshopp and Drucker (1945). Wang (1968, 
1969) has proposed an analysis for the non-linear bending of cantilever and simply supported 
beams of constant cross-section carrying uniformly concentrated and distributed loads. Holden 
(1972) has presented a numerical solution to the three problems of uniform beams of finite 
deflections using the Euler-Bernoulli theory. A matrix displacement approach has been developed 
for the analysis of beams and frames with large displacement by Yang (1973). Schmidt (1978) has 
developed a finite element formulation for determining the finite deflection of thin bars and 
applied it to the problem of a cantilever beam loaded by a point force at the free end. Rao and Rao 
(1986) have studied the large deflection of a cantilever beam subjected to a concentrated tip load 
which rotates in relation to the tip rotation of the beam. Ang et al. (1993) have developed a new 
and simple numerical method for obtaining the beam deflection curve of very flexible beams 
undergoing large deflections and reviewed two general methods called the elliptic integrals and 
reversion. Belendez et al. (2002, 2003) have experimentally and numerically analyzed the classical 
problem of the deflection of a cantilever beam, in case of both large and small deflections under 
the action of an external vertical concentrated load at the free end. Large deflection of cantilever 
beams made of Ludwick type material subjected to combined loading, consisting of a uniformly 
distributed load and one vertical load at the free end has been investigated by Lee (2002).  
Addessi et al. (2005) have investigated the natural frequencies and mode shapes of planar shear 
undeformable beams around their curved pre-stressed post-buckling configurations using the finite 
element and semi-analytical methods. Pulngern et al. (2005) have studied large amplitude 
vibrations of horizontal variable arc- length beams, considering the effect of large initial static sag 
deflections due to self-weight. In their paper, analytical and experimental studies have been 
conducted. Holland et al. (2008) have described the behavior of a slender, tapered, cantilever beam 
loaded through a cable attached to its free end and have computed large static deflections together 
with natural frequencies and mode shapes for small-amplitude vibrations around equilibrium. In 
their paper, the shooting method with an experimental study was used. A new integral approach to 
solve the large deflection of cantilever beam has been proposed by Chen (2010). The proposed 
method (2010) uses the integral of the bending moment and thus, can be applied to arbitrary loads 
and variable beam properties such as the cross sectional area or elasticity of the material. 
Nallathambi et al. (2010) have described a method to analyze the large deflections of curved 
prismatic cantilever beams with uniform curvature subjected to a follower load at the tip and 
fourth order Runge–Kutta method along with one parameter reverse shooting method was applied 
to the numerical solution to the problem. Ozturk (2011) has studied the in-plane free vibration 
analysis of a fixed– fixed pre-stressed curved beam obtained from a large deflected cantilever 
beam using the reversion and the finite element methods. Bayat et al. (2013) have used 
Hamiltonian Approach to analysis the nonlinear free vibration of simply-supported and for the 
clamped-clamped Euler-Bernoulli beams fixed at one end subjected to the axial loads. 

Vibration analysis of laminated composite beams has been subject of intense research from past 
to present. A large number of studies related to vibration problems have been published. Since it is 
impossible to mention all the publications, a few exemplary studies can be listed as follows: Murty 
and Shimpi (1974), have derived the governing equations in the form of simultaneous ordinary 
differential equations for natural vibration analysis of isotropic laminated beams. Rikards et al. 
(1993), have investigated damped vibration of laminated composites by using the finite element 
analysis. Khdeir and Reddy (1994) have developed analytical solutions of refined beam theories 
for the free vibration behavior of cross-ply rectangular beams with arbitrary boundary conditions. 
Rao et al. (2001) have developed an analytical method for evaluating the natural frequencies of 

636



 
 
 
 
 
 

Vibration analysis of a pre-stressed laminated composite curved beam 

composite and sandwich beams using higher-order mixed theory. A higher order shear 
deformation beam theory has been developed by Hadji et al. (2014) for static and free vibration 
analysis of functionally graded beams and different higher order shear deformation theories and 
classical beam theories have been use.d in their analyses. 

As seen from the aforementioned references, existing studies on the large deflection of a beam 
problem are related to isotropic beams. Because of the importance of composite beams, although 
not too many, the large deflection behavior of composite beams has been the subject of many 
investigations. Chen and Sun (1985) have investigated the dynamic large deflection response of 
composite laminates subjected to impact loading using the finite element method. Effects of large 
deflection on the static and dynamic behaviors of unsymmetric cross-ply laminates in cylindrical 
bending have been investigated by Sun and Chin (1988) using von Karman large deflection theory. 
Bauchau and Hong (1988) have presented the nonlinear analysis of naturally curved and twisted 
beams undergoing arbitrarily large deflections and rotations using the finite element method. 
Stemple and Lee (1989) have developed a finite element formulation to take into account the 
warping effect of composite beams undergoing large deflection using the finite element method. 
Kant and Kommineni (1994) have studied the large amplitude free vibration analysis of cross-ply 
composite and sandwich laminates with a refined theory and C0 finite elements. Jeon et al. (1995) 
have investigated the static and dynamic behavior of composite box beams using a large deflection 
beam theory. The nonlinear finite element equations of motion were obtained from Hamilton’s 
principle and solved iteratively by the Newton-Raphson technique. The effects of hygrothermal 
conditions on the large deflection behavior of fiber-reinforced polymer matrix composite laminates 
have been studied by Upadhyay and Lyons (2000). Zhang et al. (2003) have developed a B-spline 
finite strip model to simulate large deflection and failure behaviour of laminated composite plates 
subjected to transverse loading. Agarwal et al. (2006) have studied the large deformation effects 
on static and dynamic responses in isotropic, composite and functionally graded material beams 
using the existing statically exact beam finite element based on the first order shear deformation 
theory. Kien (2013) has investigated the large displacement response of tapered cantilever beams 
made of axially functionally graded material using the finite element method. 

As can be seen from existing literature, many methods and techniques have been used for the 
large deflection isotropic and laminated composite beams analysis as presented in Table 1. 
Furthermore, a large number of studies related to vibration analysis of laminated composite curved 
beams have been published. For a detailed literature survey, the readers can refer to the survey 
papers (Tseng et al. 2000) and (Hajianmaleki and Qatu 2013). 

This study presents the in-plane free vibration analysis of a fixed-fixed pre-stressed laminated 
composite curved beam obtained from a large deflected cantilever laminated composite beam. The 
laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural 
modulus of the beam is used in the analysis. In order to obtain a pre-stressed laminated composite 
curved beam, an external vertical concentrated load at the free end of the cantilever laminated 
composite beam is applied, then the loading point of the deflected beam is fixed. For each 
laminated beam having a different orientation angle, the maximum load is taken as approximately 
75% of the maximum stress of the composite materials according to Tsai-Hill Failure Criterion 
(Jones 1999), since pre-stressed composite laminated curved beams will be loaded by additional 
forces depending on the operating conditions. A review of literature so far shows that there have 
not been any published papers on this study. There is one similar study (Ozturk 2011) belonging to 
the author in literature and this study (Ozturk 2011) is concerned with the isotropic pre-stressed 
curved beam. The non-linear deflection curve of the flexible beam undergoing large deflection is 
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Table 1 Historical representation of references for methods used in the large deflection isotropic and 
laminated composite beams analysis 

Elliptic integrals method: 
Bisshopp and Drucker 1945 
Rao and Rao 1986 
Ang et al. 1993 
Belendez et al. 2002 

Exact solution: 
Wang 1969 

Newton-Raphson method: 
Wang 1969 
Bauchau and Hong 1988 
Jeon et al. 1995 

Shooting method: 
Holden 1972 
Nallathambi et al. 2010 

Runge-Kutta method: 
Holden 1972 
Lee 2002 
Nallathambi et al. 2010 

Matrix displacement approach:
Yang 1973 

Finite element method: 
Schmidt 1978 
Chen and Sun 1985 
Bauchau and Hong 1988 
Stemple and Lee 1989 
Kant and Kommineni 1994 
Jeon et al. 1995 
Addessi et al. 2005 
Pulngern et al. 2005 
Agarwal et al. 2006 
Kien 2013 

Von Karman large  
deflection theory: 
Sun and Chin 1988 
Kant and Kommineni1994 
Upadhyay and Lyons 2000 

Reversion method: 
Ang et al. 1993 
Ozturk 2011 

Experimental: 
Belendez et al. 2002, 2003 
Pulngern et al. 2005 

Finite strip method: 
Zhang 2003 

ANSYS and MSC/NASTRAN 
programs: 
Belendez et al. 2003 
Ozturk 2011 

Semi-analytical method: 
Addessi et al. 2005 

Integral approach: 
Chen 2010 

Hamiltonian Approach: 
Bayat et al. 2013 

 
 

obtained by the reversion method. The curved laminated composite beam is modeled by using the 
Finite Element Method with a straight- beam element approach. The effects of orientation angle 
and vertical load on the natural frequency parameter for the first four modes are examined and the 
results obtained are given in graphics. 
 
 
2. Theoretical analysis 

 
An external vertical concentrated load is applied to the cantilever laminated composite beam at 

its free end as seen in Fig. 1(a), in order to obtain a fixed-fixed pre-stressed curved laminated 
composite beam from a cantilever beam, Fig. 1(b). The effective flexural modulus of the laminated 
beam is used in the analysis and the equation of the elastic curve, z(x), is obtained from large 
deflection analysis. Moreover, it is assumed that the deflection due to the beam’s weight is zero. 

 
2.1 The effective flexural moduli of the laminated composite beam 
 
The beam is considered to have the bending of symmetrically laminated beams according to the 
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classical laminated theory (CLT). For symmetric laminates, the equations for bending deflection 
are uncoupled from those of the longitudinal displacements. The classical laminated theory 
constitutive equation for symmetric laminates, in the absence of in-plane forces, is given by 
(Reddy 1997) 

11 12 16
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61 62 66

x x

y y

xy xy

M D D D

M D D D

D D DM






    
        
        

                         (1) 

 
for symmetric laminates where Mx, My are the bending moments per unit length and Mxy is the 
twisting moment per unit length, κx, κy, κxy are the midplane curvatures. As shown in Fig. 2, the 
laminates have the same thickness and x axis is the axis of symmetry. D is the bending stiffness 
matrix and its elements Dij are given by 
 

3 3
1

1

1
( )

3

N
k

ij ij k k
k

D Q z z


       i, j = 1, 2, 6 (2)

 
where N is the number of laminates, z is the coordinate variable of the kth laminate in the cross 
section, k

ijQ  are the stiffnesses, which are given by equation (A1) in the Appendix. It should be 
noted that, in case of antisymmetric lay-ups, D16 = D26 = 0. (Ozturk and Sabuncu 2005, Karaagac 
et al. 2013) 

 
 

(a) 
 

(b) 

Fig. 1 (a) Large deflection of a laminated cantilever beam; (b) A pre-stressed laminated curved 
beam obtained from large deflection of a cantilever with fixed-fixed end conditions 
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Fig. 2 Layer numbering used for a typical laminated beam 
 
 
By taking the inverse of Eq. (1) 
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                         (3) 

is obtained, where 
1*  ijij DD  

Eq. (3) is used to define the effective flexural moduli in terms of the bending compliance 
matrix as follows: First applying Mx ≠ 0, My = 0, Mxy = 0 and then substituting in Eq. (3) gives 
 

11x xD M                                  (4) 
 
by using Eq. (4) along with known moment M(x) expressions 
 

( )y xM x h M                                 (5) 

 
( )y x y xM x E I                                 (6) 

 
and taking Iy = hb3 / 12 for rectangular cross section, the effective flexural longitudinal modulus is 
 

3
11

12
efE

b D                                 (7) 

 
2.2 Large deflection analysis 
 
The curvature of the deflection curve of a beam under loading at any point depends only on the 

magnitude of the bending moment at that point under the assumption that the material of the beam 
remains linearly elastic. This relationship is (Ang et al. 1993, Silva 2006). 
 

1 d ( )

d

M s

s EI



                                (8) 

 
where 1/ρ is the curvature of the beam. Angle  may be related to Cartesian coordinates of the 
deflection curve, yielding 
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2
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           (9) 

 
The relation between the bending moment M and the cartesian coordinates (Fig. l) of the 

deflection curve is defined by the differential equation for the linear elastic plane bending (Silva 
2006) 

2

2
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d
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d
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d

z
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
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                           (10) 

 
Eq. (10) is used in the large deflection analysis and is quite complex. As mentioned above, 

there are several methods given in literature for the solution of this equation; exact solution (Wang 
1969), elliptic integrals (Bisshopp and Drucker 1945, Rao and Rao 1986, Ang et al. 1993, 
Belendez et al. 2002), the Newton-Raphson method (Wang 1969, Bauchau and Hong 1988, Jeon 
et al. 1995), the reversion method (Ang et al. 1993, Ozturk 2011), the Runge-Kutta method 
(Holden 1972, Lee 2002, Nallathambi et al. 2010) and the integral approach (Chen 2010) etc. In 
Ref. (Ang et al. 1993), the large elastic curve function, z(x), has been obtained from the solution of 
Eq. (10) by using the reversion method and it is given as 
 

33 7
2 6 2 5 3 4

5 11
10 2 9 3 8 4 7 5 6

1 12
( ) 2

2 3 2 2 7 5

3 40 80 16
10 ...

8 2 11 9 7 3

P x P x
z x lx lx l x l x

EI EI

P x
lx l x l x l x l x

EI

                
    
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   

        (11) 

 
On the other hand, the projected beam length l is still an unknown. For obtaining the curved 

length, the projected length l can be calculated from the knowledge of the beam length L using the 
following formula (Ang et al. 1993) 

2

0

d
1 d

d

l z
L x

x
    
                              (12) 

 
Where the term dz/dx in Eq. (12) is derived from Eq. (11). It is noted that Eq. (12) has only one 

unknown l and can be numerically solved by using an iterative approach starting with an initial 
estimate of l close to L. After substituting l in Eq. (11), a function representing the elastic curve 
can be obtained (Ozturk 2011). 

 
2.3 The finite element model 
 
A finite element model is developed to represent the laminated composite pre-stressed curved 
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Fig. 3 Finite element model 
 
 

beam element with straight-beam elements approach (Thomas and Wilson 1973, Yang et al. 1991, 
Ozturk 2011). The use of straight beam element approach is convenient since the radius of the 
curvature of the pre-stressed curved beam is large. The local coordinates of the straight beam 
element are transformed to global coordinates by using its angle of rotation obtained from the 
elastic curve function equation. 

As shown in Fig. 3, an elemental finite element has six (u1, v1, v′1, u2, v2, v′2) degrees of freedom. 
They are called bending displacements (v1, v2), axial displacements (u1, u2) and slopes (v′1, v′2), 
where prime (′) denotes differentiation with respect to the axial coordinate x. The displacement 

)(xv  due to bending is approximated by cubic polynomials, while the axial displacement )(xu can 
be expressed by linear functions of the beam segment and can be written as (Ozturk 2011) 
 

2 3
1 2 3 4( )v x a a x a x a x    ,     1 2( )u x b b x   (13)

 
The generalized displacement vector with respect to local reference coordinates can be 

expressed as 

 1 1 1 2 2 2u v v u v v eq                         (14) 

 
As seen in Fig. 4, the relation between local and global reference coordinates can be written as 

 
e eq Tq                                 (15) 

 
where T is the transformation matrix, which is given by Eq. (A2) in the Appendix. 

Energy equations should be expressed for the Euler beam element with an elemental length d. 
The elastic potential energy Ue is given as 
 

2 22

2
0 0

1 d 1 d
d d

2 d 2 d

d d

e

v u
U EI x EA x

x x
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  

                      (16) 

 
Eq. (16) can be written in matrix form 
 
 

Fig. 4 Transformation from local ),( zx to global (x, z) coordinates 
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1

2eU  e e eq k q                               (17) 

 
The kinetic energy of the beam element is 

 

 
0

1
+ d

2

d
2 2

eT A u v x                               (18) 

 
Eq. (18) can be written in matrix form as 

 
1

2eT  e e eq m q                               (19) 

 
The laminated composite curved beam, which is obtained from the large deflection theory has 

initial stress because of the vertical load. The initial stress for the finite element model is called the 
initial stress matrix (Yang 1973, Ozturk 2011), and obtained from Eq. (20) as 
 

2

0

1 d
d

2 d

d

e

v
V S x

x
   
                              (20) 

 
where S is an initial axial force acting in the local x  direction. As seen in Fig. 5, the axial force S 
for each initial stress matrix is obtained as 
 

cos sinx zS F F                              (21) 
 
where Fx and Fz are the nodal forces. These forces can be obtained from statics so that the vertical 
load P, at x = L is equal to Fz. (Yang 1973, Ozturk 2011) 

If Eq. (20) is written in matrix form 
1

2eV  e e eq s q                                (22) 

 
In this way, the elastic stiffness matrix ,ek  mass matrix em  and initial stress matrix ,es  are 
obtained for a finite element. If these matrices are transformed in terms of reference coordinates, 

 
 

Fig. 5 Axial force in a beam element 
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they are obtained as 
 

T
e ek = T k T ,     T

e em = T m T ,   and   T
e es = T s T  (23)

 
The dynamic response of a beam for a conservative system can be formulated by means of 

Lagrange’s equation of motion in the matrix form as 
 

 + + = 0e e e e eM q K S q                           (24) 
 
 

3. Results and discussion 
 

In this study, in-plane free vibration of a fixed-fixed pre-stressed laminated composite curved 
beam, which is obtained from a large deflected cantilever laminated composite beam is 
investigated. The effective flexural modulus, Eq. (7) of the laminated beam is used in the analysis 
such as E = Eef. The angle-ply laminated beams have six different configurations, which for 
simplicity, are denoted by C1, C2, C3, C4, C5 and C6. The explanation of these laminated beams 
is as follows 

 
C1 = [0 0 0 0], C2 = [90 90 90 90], C3 = [0 90 90 0], 
C4 = [90 0 0 90], C5 = [0 45 -45 0], C6 = [0 60 -60 0] 
 

where C3 and C4 are called cross-ply laminates, C5 and C6 are called angle-ply laminates. The 
composite material properties and the beam geometry are given in Table 2. 

In order to derive the elastic curve function equation z(x) obtained from the reversion method 
which has only one unknown denoted as l, Eq. (11) and Eq. (12) can be solved numerically 
together using the computer code developed by MATLAB software. An iterative approach starting 
with an initial estimate of l close to L is used for the solution and the error in the iterative approach 

 
 

Table 2 Material properties and geometry of the beams 

The properties of the glass-fiber epoxy unidirectional ply at 60% fiber volume fraction (Gay et al. 2003) 

Property Symbol Quantity 

Longitudinal elastic modulus (GPa) E1 45 

Transverse elastic modulus (GPa) E2 12 

Longitudinal tensile fracture (MPa) Xt 1250 

Transverse tensile fracture (MPa) Yt 35 

In plane shear strength (MPa) Si 63 

Poisson’s ratio vc 0.3 

Mass density (kg/m3) ρc 2080 

Geometric properties of the beam 

Cross-section 
h 2 mm 

b 30 mm 

Beam length 750 mm 
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Table 3 Convergence analysis of the straight beam element used in analysis of the composite curved beam 
for C1 and  = 58 

Natural frequency 
parameters 

Number of elements 

4 8 12 16 20 30 

1 17.362 17.303 17.269 17.247 17.231 17.209 

2 35.787 35.544 35.563 35.582 35.594 35.609 

3 71.938 60.520 60.305 60.282 60.281 60.243 

4 115.11 91.184 90.428 90.321 90.309 90.291 

5 190.13 129.66 127.63 127.20 127.08 127.02 

 
 
is taken as 10-7. As a result of this process, a function representing the elastic curve can be 
obtained by substituting l into Eq. (11). This numerical process is repeated for all pre-stressed 
laminated composite curved beams formed by applying different loads. 

A numerical comparison including the natural frequency analysis to verify the reliability and 
validity of the present model, which used the effective flexural modulus and the straight beam 
element approaches, are performed in references (Ozturk and Sabuncu 2005, Ozturk 2011). 
Therefore, these comparisons are not shown in this study again. In addition, Table 3 shows the 
convergence of the straight beam element used in analysis of the composite curved beam for C1. 
As seen from the Table, using number of 12 elements gives good results and satisfactory 
convergence. In this study, the curved beam is discretized with 30 finite elements. 

The effects of vertical non-dimensional load parameter on the natural frequency parameter  
given in Eq. (25) and mode shapes for the first four modes are investigated. The maximum load is 
taken as approximately 75% of the maximum stress of the composite materials according to 
Tsai-Hill Failure Criterion (Jones 1999) for each laminated beam having different orientation 
angle, because pre-stressed curved beams will be loaded by additional forces depending on the 
operating conditions. Therefore, the non-dimensional load parameter  given in Eq. (25) is 
considered in the range of different values for each laminated beam as follows: 0-58 (C1), 0-1.64 
(C2), 0-3.28 (C3), 0-1.64 (C4), 0-5.73 (C5) and 0-4.16 (C6). 
 

4

2

=
AL

E I

     and   
2

=
2PL

E I
  (25)

 
Figs. 6 and 7 show the deformations of cantilever laminated composite beams (C1, C2, C3, C4, 

C5 and C6) subjected to a vertical end load P varying according to the non-dimensional load 
parameter . In accordance with the obtained numerical results, the vertical deflection at the beam 
end,  y increases linearly until about the load parameter value of 4, 0.8, 1.5, 0.8, 1 and 2 for C1, 
C2, C3, C4, C5 and C6, respectively. It increases nonlinearly after these values. On the other hand, 
while the horizontal deflection at the beam end,  x increases nonlinearly until about the load 
parameter value of 37, 0.8, 2.2, 0.8, 2.5 and 2.5 for C1, C2, C3, C4, C5 and C6, respectively,  x 

increases linearly beyond these load parameter values. As seen in Fig. 6(a), the deformation of C1 
is greater than the other laminated composite beams, since C1 has a higher maximum stress 
capacity according to Tsai-Hill Failure Criterion (Jones 1999). 
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(a) 
 

 

(b) 
 

 

(c) 

Fig. 6 Deformations of cantilever laminated beams (C1, C2 and C3) subjected to a vertical end load 
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(a) 
 

 

(b) 
 

 

(c) 

Fig. 7 Deformations of cantilever laminated beams (C4, C5 and C6) subjected to a vertical end load 
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After the cantilever laminated beam is deflected by vertical loading using large deflection 
theory, the large deflected cantilever laminated beam is fixed at the loading point (at the free end) 
as seen in Fig. 1(b). Thus, the pre-stressed laminated curved beam is obtained. Figs. 8-13 present 
the effect of non-dimensional load parameter on the first five natural frequency parameters of the 
fixed-fixed pre-stressed laminated curved beams. In addition, increases in the natural frequency 
parameters of the laminated curved beams with respect to the non-dimensional load parameter of 0 
and max are given Table 4 which is obtained from Figs. 8-13. From these figures and Table 4, it 
can be said that the first five natural frequency parameters of laminated curved beams having six 
different orientation angles increase in the order as C1, C3, C5, C6, C4 and C2. If the 
non-dimensional load parameter, which is applied to the cantilever laminated beam to obtain the 
laminated curved beam, increases, the first natural frequency parameter 1 also increases until 

 
 

 

Fig. 8 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C1 

 
 

 

Fig. 9 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C2 
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Fig. 10 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C3 

 
 

 

Fig. 11 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C4 

 
 

about 0.5, 0.15, 0.4, 0.15, 0.4 and 0.4 for C1, C2, C3, C4, C5 and C6, respectively. Beyond these 
values, although the initial stress raises the stiffness of the laminated curved beams depending on 
the load parameter increment, 1 has a very small increment for all the laminated composite 
curved beams. As seen in Fig. 8, the second natural frequency parameter 2 of C1 increases slowly, 
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The variation of the other natural frequencies 3, 4 and 5 also show the similarity with the 
variation of the second natural frequency parameter for different values. It can be noticed from 
Figs. 8-13 that there is a relationship, which is valid for all laminated curved beams, between the 
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Fig. 12 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C5 

 
 

 

Fig. 13 Effect of load parameter on the first five natural frequency parameters of a fixed-fixed 
pre-stressed laminated curved beam, C6 

 
 
variations of the first five natural frequency parameters. This relationship is that when the increase 
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second natural parameter, 2 changes from slow to rapid. This phenomenon also occurs between 
the other frequency parameters such as 2-3, 3-4 and 4-5. 

It is observed from Table 4 that the percentage increments in the first five natural frequency 
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except for that of 1 and 2 of C1. In addition, while the maximum percentage increment in the 
natural frequency parameter occurs in 1, the minimum percentage increment in the natural 
frequency parameter occurs in 5. 

Figs. 14-20 show the first four modes of fixed-fixed pre-stressed laminated curved beam 
obtained from large deflected cantilever laminated beam with respect to load parameters for C1, 
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Table 4 Increases in the natural frequency parameters of the fixed-fixed pre-stressed laminated curved beams 
with respect to the non-dimensional load p arameter of 0 and max 

C1 [0 0 0 0] C2 [90 90 90 90] C3 [0 90 90 0] 

Natural 
frequency 
parameters 

Load parameter Increment 
(%) 

Load parameter Increment 
(%) 

Load parameter Increment 
(%) 

0 βmax = 58 0 βmax = 1.64 0 βmax = 3.28 

1 6.90 17.21 149.42 3.56 9.09 155.32 6.34 16.17 155.09

2 19.00 35.61 87.42 9.82 17.91 82.46 17.47 31.85 82.31 

3 37.28 60.29 61.72 19.24 30.92 60.71 34.26 55.00 60.54 

4 61.61 90.33 46.62 31.81 46.19 45.21 56.63 82.03 44.85 

5 92.00 126.90 37.93 47.52 65.31 37.44 84.60 115.80 36.88 

C4 [90 0 0 90] C5 [0 45 -45 0] C6 [0 60 -60 0] 

Natural 
frequency 
parameters 

Load parameter Increment 
(%) 

Load parameter Increment 
(%) 

Load parameter Increment 
(%) 

0 βmax = 1.64 0 βmax = 5.73 0 βmax = 4.16 

1 3.73 9.53 155.35 6.28 16.02 155.30 6.26 15.97 155.32

2 10.28 18.76 82.49 17.30 31.58 82.54 17.24 31.45 82.42 

3 20.16 32.40 60.71 33.91 54.49 60.69 33.80 54.31 60.68 

4 33.33 48.40 45.21 56.06 81.45 45.29 55.88 81.11 45.15 

5 49.79 68.40 37.38 83.74 115.10 37.45 83.48 114.60 37.28 

 
 

 

Fig. 14 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C1) in 
transverse vibration. (The figure is zoomed in β axes) 
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Fig. 15 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C1) in 
transverse vibration 

 
 

 

Fig. 16 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C2) in 
transverse vibration 
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C2, C3, C4, C5 and C6. All of the amplitudes of the mode shapes for all load parameters are 
normalized with respect to the maximum amplitude. When the load parameter increases, the mode 
shapes change from the mode shape of a straight beam to the mode shape of a curved beam after 
certain load parameter values. As seen in Figs. 14 and 15, it is noticed that the first mode shape 
(the lines shown in red) of C1 has no node until the value of  = 0.25, as from this value, one node 
begins to occur until the value of max and this node in the first mode shape becomes more obvious 
and its intersection point with the horizontal axes moves. Beyond this load parameter value, 
noteworthy variation for the first mode shapes is not seen as shown in Fig. 14. However, the other 
mode shapes do not show any modal variation between  = 0 and  = 0.25 values. For the 
laminated curved beam C1, a similar phenomenon occurs for the natural frequency parameters of 
2, 3 and 4 for different  values as seen in Figs. 14 and 15, which are 0.55, 0.95 and 1.5, 
respectively. 

As seen in Figs. 16-20, a similar change in the mode shapes of C1 also occur for the other 
laminated curved beams, C2, C3, C4 , C5 and C6. This change in the first four mode shapes is 
seen when the non-dimensional load parameter  is “0.08, 0.16, 0.28 and 0.4 for C2”, “0.213, 
0.497, 0.782 and 1.209 for C3”, “0.08, 0.16, 0.28 and 0.44 for C4”, “0.21, 0.49, 0.77 and 1.19 for 
C5” and “0.24, 0.48, 0.8 and 1.2 for C6”, respectively. Moreover, the values of  at the change of 
the mode shapes of different laminated curved beams are arranged in the ascending order as: C1, 
C3, C5, C6, C4 and C2. 

It can be noticed from the free vibration analysis shown in Figs. 8-20 that the natural frequency 
parameters and mode shapes change very little after certain load parameter values. The reason for 

 
 

 

Fig. 17 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C3) in 
transverse vibration 
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Fig. 18 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C4) in 
transverse vibration 

 
 

 

Fig. 19 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C5) in 
transverse vibration 
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Fig. 20 First four mode shapes of a fixed-fixed pre-stressed laminated curved beam (C6) in 
transverse vibration 

 
 
 
 

this is that mass and elastic stiffness with initial stress matrix of the laminated curved beam 
counteract each other due to the deformation shape of the laminated beam. 

 
 

4. Conclusions 
 
In-plane free vibration of a fixed-fixed pre-stressed laminated curved beam which is obtained 

from a large deflected cantilever laminated beam having six different orientation angles is 
presented in this study. In order to obtain the fixed-fixed curved laminated beam, an external 
vertical concentrated load at the free end is applied to a cantilever laminated beam and then the 
loading point of the deflected beam is fixed. The natural frequencies increase with respect to the 
effective flexural modulus which increases in the order as C1, C3, C5, C6, C4 and C2. It has been 
found that the effect of the non-dimensional load parameter, which forms the curved laminated 
beam, on the natural frequency parameter of C1, C2, C3, C4, C5 and C6 almost disappears after a 
certain value of the non-dimensional load parameter for each vibration mode. Furthermore, 
although the percentage increment in the natural frequency parameter of all laminated curved 
beams (C1, C2, C3, C4, C5 and C6) between min and max values decreases towards higher 
frequencies, the interval of the non-dimensional load parameter value which is more influential on 
the natural frequency parameter, shifts to higher values for high frequency mode. 
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Nomenclature 
 

A  cross-sectional area 

b  width of the beam 

d  finite element length 

E  modulus of elasticity 

Eef  effective flexural modulus 

h  height of the beam 

I  moment of inertia of the cross-sectional area of the beam about the axis of bending 

L  length of the beam 

l  projected beam length 

M(s)  deflecting moment occurring at a point along the beam 

Mx, My  bending moments per unit length 

Mxy  twisting moment per unit length 

P  vertical load at x = L 

s  distance measured along the curve 

S  initial axial force 

u1  axial displacement at the left hand side of the finite element in the x  direction 

u2  axial displacement at the right hand side of the finite element in the x  direction 

v1  bending displacement at the left hand side of the finite element in the z  direction 
v2  bending displacement at the right hand side of the finite element in the z  direction 
v′1  bending slope at the left hand side of the finite element 

v′2  bending slope at the right hand side of the finite element 

x, z  global reference coordinates 
zx,   local reference coordinates 

 
D  bending stiffness matrix 

ek   elastic stiffness matrix with respect to local reference coordinates 

ek   elastic stiffness matrix with respect to global reference coordinates 

Ke  global elastic stiffness matrix 

em   mass matrix with respect to local reference coordinates 

em   mass matrix with respect to global reference coordinates 

Me  global mass matrix 

se  initial stiffness matrix with respect to global reference coordinates 

es   initial stiffness matrix with respect to local reference coordinates 

Se  global initial stiffness matrix 

qe  generalized displacement vector with respect to global reference coordinates 

eq   generalized displacement vector with respect to local reference coordinates 

T  transformation matrix 

θ  angle of rotation of the beam deflection curve 
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ρ  curvature of the beam 

ϕ  fiber orientation angle 

β  load parameter 

λ  natural frequency parameter 

θ0  angle of rotation of the beam deflection curve at x = l 

 x,  z  displacement components in the x and z directions, respectively 
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