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Abstract.  The First Order Shear Deformation Theory (FOSDT) is considered to study the dynamic 

behavior of a bimorph beam. A delamination zone between the upper and the lower layer has been taken into 

consideration; the beam is discretised using the finite elements method (FEM). Several parameters are taken 

into consideration like structural damping, the geometry, the load nature and the configurations of the 

boundary conditions. Results show that the delamination between the upper and the lower layer affects 

considerably the actuation. 
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1. Introduction 

 
The actuation domain knows a great progress with the introduction of the piezoelectric 

materials; they allowed obtaining lightweight and precise actuators. More researches are devoted 

last years to the application of this actuators in several domains, essentially aeronautics, aerospace, 

automobile and more. The modeling of the structures made of beams knows a great diversity 

between the authors. 

Lui et al. (2012) presented a method to estimate the energy conversion efficiency of the 

rainbow shape piezoelectric transducer. The research results show that both the shape parameters 

and elastic modulus exert great influence on energy conversion efficiency and the results obtained 

from analytical equation are in a good agreement with those from FE results and experimental 

results. Zhou et al. (2007) have established an analytical sandwich beam model for piezoelectric 

bender elements, based on first-order shear deformation theory (FSDT), which assumes reasonable 

distribution functions for electric potential in piezoelectric layers, and introduces proper shear 

correction factor k to account for the nonlinear transverse shear strain. The accuracy of the 

presented model especially for lower vibration modes was proved by free vibration analysis of 
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simply-supported bender elements which presents an efficient analytical model for dynamic 

response analysis of piezoelectric bender elements. Donoso and Sigmund (2009) were interested in 

controlling the tip-deflection of a cantilever beam subjected to static and time-harmonic loading on 

its free end; the beam has a variable thickness and a variable width. Firstly, the profile of the 

thickness of a piezoelectric bimorph actuator is optimized, and secondly the profile of the width. 

They concluded that the different thickness values can take the same bending moment value 

indicating non-uniqueness of the results. Li et al. (2014) developed a model with a size-dependent 

functionally graded piezoelectric beam using a variational formulation. It is based on the modified 

strain gradient theory and Timoshenko beam theory. The material properties of functionally graded 

piezoelectric beam are assumed to vary through the thickness according to a power law. Nikkho 

(2014) studied an Euler–Bernoulli beam, with a number of piezoelectric patches bonded on the 

bottom and top surfaces, the constitutive equation of motion which is derived by employing 

Hamilton's principle are developed for the beam subjected to arbitrary boundary conditions. A 

classical linear optimal control algorithm with displacement–velocity and velocity–acceleration 

feedbacks is used. The beam is composed by several linear springs with high stiffness as 

intermediate supports. A moving load and a moving mass were supposed to be the external 

excitations. The results signified the remarkable increase of the load inertial effects as the span 

number increased. However, it was revealed that the maximum response for beams with more 

spans occurs in larger values of the moving force velocity. Mahieddine et al. (2010) presented a 

partially delaminated piezoelectric beam to investigate its behavior using Euler-Bernoulli beam 

theory; the computed frequencies with the model based on the formulation presented in their work 

are in good agreement with the exact results. This shows the validity of the assumptions adopted in 

their work. 

In this paper we take into account a piezoelectric bimorph beam made of a PVDF material, and 

we study its dynamic behavior considering a delamination zone between the upper and the lower 

layers. Its mathematical model has been established by the use of the FOSDT, the structural 

damping, the geometric configuration and the load nature. The numerical model developed will be 

compared with those of the literature to be validated. 

 

 

2. Theoretical study 
 

Let us consider a Timoshenko beam with the first order shear deformation theory (FOSDT), 

which gives the strains as a function of displacement of the neutral plane of the beam in Eq. (1). 

And neglecting the thermal effect, we can write the piezoelectric constitutive equations Eq. (2), 

(Liu et al. 2012, Zheng et al. 2002, Hai et al. 2009) 

 

 

 

Fig. 1 Series configuration 
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𝜀𝑥 = 𝑢,𝑥− 𝑧𝜓,𝑥
𝛾𝑥𝑧 = 𝑤,𝑥− 𝜓

  (1) 

 

and 

 

 
𝜎𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 − 𝑒𝑖𝑗𝑘 𝐸𝑘
𝐷𝑖 = 𝑒𝑖𝑘𝑙 𝜀𝑘𝑙 + 𝜀 𝑖𝑘𝐸𝑘

  (2) 

 
Where 𝜀𝑥 , 𝛾𝑥𝑧  are strains, 𝑢 is axial displacement, 𝜓 is the rotation and w is the vertical 

displacement of the neutral plane. 

We note throughout this article that, the superscript t indicates the transpose of matrix, and the 

superscripts T, B indicate respectively the top and the bottom layer, the subscripts 𝑋,𝑥  and 𝑋,𝑧  

denotes the 𝑥 and 𝑧 derivation. Introducing Voigt’s notation the equations Eq. (2) become 

 

 
𝜎𝑝 = 𝑄𝑝𝑞 𝜀𝑞 − 𝑒𝑝𝑘𝐸𝑘
𝐷𝑖 = 𝑒𝑖𝑞𝜀𝑞 + 𝜀 𝑖𝑘𝐸𝑘

  (3) 

 

With 𝜎, 𝑄, 𝑒, 𝐸, 𝐷  and  𝜀   are respectively stress, elastic coefficients, piezoelectric coefficients, 

electric field, dielectric displacement and permittivity (see Fig. 1 for the coordinate system). In 

matrix form we can write 

 

 
 𝜎 =  𝑄  𝜀 −  𝑒 𝑡 𝐸 

 𝐷 =  𝑒  𝜀 +  𝜀   𝐸 
  (4) 

 
Taking into account the hypotheses related to the beam theory, namely: 

 

 The stress vector is  𝜎 =  𝜎𝑥 𝜏𝑥𝑧  𝑡  
 The strain vector is  𝜀 =  𝜀𝑥 𝛾𝑥𝑧  𝑡  
  𝑄 ,  𝜀    and  𝑒  For PVDF materials. 

  𝐸 =  0 0 𝐸𝑧  ;  𝐸𝑧 = −
𝜕𝜙

𝜕𝑧
= 𝜙,𝑧  

 The electrical field has only one direction. 𝜙 is the electrode voltage. 

  𝐷 =  0 0 𝐷𝑧  Dielectric displacement of beam. 

 The bimorph is in the anti-parallel or series configuration: as it is presented in Poizat and 

Benjeddou 2006, Smits et al. 1991 and Zemirline et al. 2013. (see Fig. 1). 

 

𝑃 is the polarization direction of each layer. So, using these assumptions with Eq. (4) we 

obtained the results mentioned below Mahieddine (2011). 

 

 𝑄 =

 
 
 
 
 
 
𝑄11 𝑄12 𝑄13 0 0 𝑄16

𝑄21 𝑄22 𝑄23 0 0 𝑄26

𝑄31 𝑄32 𝑄33 0 0 𝑄36

0 0 0 𝑄44 𝑄45 0
0 0 0 𝑄54 𝑄55 0
𝑄61 𝑄62 𝑄63 0 0 𝑄66 

 
 
 
 
 

;  𝑒 =

 
 
 
 
 
 

0 0 𝑒31

0 0 𝑒32

0 0 𝑒33

0 𝑒24 0
𝑒15 0 0
0 0 0  
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 𝜎𝑥 =  𝑄11 −

𝑄12
2

𝑄22
 𝜀𝑥 −  𝑒31 −

𝑄21

𝑄22
𝑒32 𝐸𝑧

𝜏𝑥𝑧 =  𝑄55 −
𝑄45

2

𝑄44
 𝛾𝑥𝑧

  

 

𝐷𝑥
𝐷𝑦
𝐷𝑧

 =  

0 0 0 0 𝑒15 0
0 0 0 𝑒25 0 0
𝑒31 𝑒32 𝑒33 0 0 0

 

 
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦 

 
 

 
 

+  
𝜀 11 𝜀 12 𝜀 13

𝜀 21 𝜀 22 𝜀 23

𝜀 31 𝜀 32 𝜀 33

  

𝐸𝑥
𝐸𝑦
𝐸𝑧

  

𝐷𝑧 =  𝜀 33 +
𝑒32

2

𝑄22
 𝐸𝑧 +  𝑒31 − 𝑒32

𝑄21

𝑄22
 𝜀𝑥  

 

So we admit that 
 

𝑄 11 =  𝑄11 −
𝑄12

2

𝑄22
  ;  𝑒 31 =  𝑒31 −

𝑄21

𝑄22
𝑒32  ; 𝑄 55 =  𝑄55 −

𝑄45
2

𝑄44
  ;  𝜀  33 =  𝜀 33 +

𝑒32
2

𝑄22
  

 

The deformation energy is given by 
 

𝑈 =
1

2
  𝜀𝜎 − 𝐷𝐸 𝑑𝑉
𝑉

=
1

2
   𝜀𝑥𝜎𝑥 + 𝛾𝑥𝑧 𝜏𝑥𝑧  − 𝐷𝑧𝐸𝑧 𝑑𝑉
𝑉

= 𝑈𝐸𝑙𝑎𝑠 + 𝑈𝑃𝑖𝑒𝑧𝑜 + 𝑈𝐷𝑖é𝑙𝑒𝑐  (5) 

 

Let ℎ𝑝𝑇 ,  ℎ𝑝𝐵  , 𝑏, 𝐿  and  𝑉 denote respectively the thicknesses of the top and bottom layers, 

the width, the length and the volume of the beam, we can found the following energies 
 

𝑈𝐸𝑙𝑎𝑠 =
1

2
  𝑢 𝑡 𝐵 𝑡 𝐻  𝐵  𝑢 𝑑𝑥 (6) 

 

𝑈𝑃𝑖𝑒𝑧𝑜 =
1

2
𝑏    𝜙,𝑧

𝐵  𝑢,𝑥+ 𝑧𝜓,𝑥  𝑒 31
𝐵 +  𝑢,𝑥+ 𝑧𝜓,𝑥  𝑒 31

𝐵 𝜙,𝑧
𝐵  𝑑𝑧

0

−ℎ𝑝𝐵

  

 −  𝜙,𝑧
𝑇  𝑢,𝑥+ 𝑧𝜓,𝑥  𝑒 31

𝑇 +  𝑢,𝑥+ 𝑧𝜓,𝑥  𝑒 31
𝑇 𝜙,𝑧

𝑇  𝑑𝑧
ℎ𝑝𝑇

0

 𝑑𝑥 

(7) 

 

𝑈𝐷𝑖𝑒𝑙𝑒 = −
1

2
𝑏   𝜙,𝑧

𝐵 𝜀 33
𝐵 𝜙,𝑧

𝐵 𝑑𝑧
0

−ℎ𝑝𝐵

+  𝜙,𝑧
𝑇 𝜀 33

𝑇 𝜙,𝑧
𝑇 𝑑𝑧

ℎ𝑝𝑇

0

 𝑑𝑥 (8) 

 

The kinetic energy is given by 
 

𝑇 =
1

2
 𝜌 𝑢 2 + 𝑣 2 + 𝑤 2 𝑑𝑉 

𝑇 =
𝑏

2
   𝜌𝑏𝑜𝑡  𝑢 𝑤 𝜓   𝑇   

𝑢 
𝑤 
𝜓 
 𝑑𝑧

0

−ℎ𝑝𝑇

 
𝐿

0

+   𝜌𝑡𝑜𝑝  𝑢 𝑤 𝜓   𝑇   
𝑢 
𝑤 
𝜓 
 𝑑𝑧

ℎ𝑝𝑇

0

 𝑑𝑥 

(9) 
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Where 𝜌, 𝜌𝑡𝑜𝑝 , and 𝜌𝑏𝑜𝑡  are respectively the density of the whole beam, the density of the top 

layer and the density of the bottom layer. And  𝑇  =  
1 0 𝑧

1 0
𝑆𝑦𝑚 𝑧2

  

After completing the calculations we have found the final form of the kinetic energy 

 

𝑇 =
𝑏

2
  𝑢 𝑤 𝜓   𝑇   

𝑢 
𝑤 
𝜓 
 𝑑𝑥

𝐿

0

 (10) 

 

 

3. Finite element formulation 
 

We take into consideration the beam shown in Fig. 3 which is composed of three zones. Two of 

them have two layers perfectly bonded and the other zone with two debonded layers. The 

structural and electric degrees of freedom are denoted in terms of the general degrees of 

freedom  𝑞 , of each zone in the following manner. 

 

3.1 1st and 3rd zones. The layers are perfectly bonded 
 

 𝑢 𝑤 𝜓 𝑡 = 𝑁𝑏 𝑞  ;  𝑢𝑖 𝑢𝑗  𝑡 =  𝑁𝑢_𝑏  𝑞   ; 

 𝑤𝑖 𝑤𝑗  𝑡 =  𝑁𝑤_𝑏  𝑞  ;  𝜓𝑖 𝜓𝑗  𝑡 =  𝑁𝜓_𝑏  𝑞  
with 

𝑁𝑢_𝑏 , 𝑁𝑤_𝑏   𝑎𝑛𝑑 𝑁𝜓_𝑏  are a linear shape functions in the bonded zone. 

 

3.2 2nd zone. The layers are debonded (delaminated) 
 

 𝑢𝑇 𝑢𝐵 𝑤 𝜓 𝑡 = 𝑁𝑑 𝑞   ;   𝑢𝑖
𝑇 𝑢𝑗

𝑇 
𝑡

=  𝑁𝑢𝑑
𝑇   𝑞   ;   𝑢𝑖

𝐵 𝑢𝑗
𝐵 

𝑡
=  𝑁𝑢𝑑

𝐵   𝑞  

 𝑤𝑖 𝑤𝑗  𝑡 =  𝑁𝑤_𝑑  𝑞   ;   𝜓𝑖 𝜓𝑗  𝑡 =  𝑁𝜓_𝑑   𝑞  
with 

𝑁𝑢_𝑑 , 𝑁𝑤_𝑑   𝑎𝑛𝑑 𝑁𝜓_𝑑  are a linear shape functions in the debonded zone (See Mahieddine 2011, 

for more details). 

 

 

 

 

Fig. 2 Bimorph dimensions Fig. 3 Localization of delamination zone 
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𝜙𝐵 =  𝑁𝜙
𝐵  𝜙1 𝜙2 𝜙3 

𝑡   ;  𝜙𝑇 =  𝑁𝜙
𝑇  𝜙1 𝜙2 𝜙3 

𝑡  

 

𝜙𝐵  and 𝜙𝑇  are top and bottom voltages. 𝜙𝑖  ;  𝑖 = 1, 2, 3 Are the electrodes voltages (in the 

top, middle and bottom faces). 

We obtain the following elementary matrices: 

In the bonded zone (1st and 3rd zones) 
 

𝑈𝐸𝑙𝑎𝑠 =
1

2
 𝑞 𝑡 𝐾𝑢𝑢−𝑏  

𝑒 𝑞  (11) 

 

𝑈𝑃𝑖𝑒𝑧𝑜 =
1

2
 𝑞 𝑡 𝐾𝑢𝜙 _𝑏  

𝑒
 𝜙 +

1

2
 𝜙 𝑡 𝐾𝜙𝑢 _𝑏  

𝑒
 𝑞  (12) 

 

𝑈𝐷𝑖𝑒𝑙𝑒 =
1

2
 𝜙 𝑡 𝐾𝜙𝜙   𝜙  (13) 

 

𝑇 =
𝑏𝑙𝑒

4
 𝑞  𝑡 𝑀𝑏   𝑞   (14) 

 

 𝐾𝑢𝑢−𝑏  
𝑒 ≡  6 X 6  Matrix size,  𝐾𝑢𝜙 _𝑏  

𝑒
≡  6 X 3  Matrix size,  𝐾𝜙𝑢 _𝑏  

𝑒
≡  3 X 6  Matrix 

size. 

In the debonded zone (2nd zone) 
 

𝑈𝐸𝑙𝑎𝑠 =
1

2
 𝑞 𝑡 𝐾𝑢𝑢−𝑑  

𝑒 𝑞  (15) 

 

𝑈𝑃𝑖𝑒𝑧𝑜 =
1

2
 𝑞 𝑡 𝐾𝑢𝜙 _𝑑  

𝑒
 𝜙 +

1

2
 𝜙 𝑡 𝐾𝜙𝑢 _𝑑  

𝑒
 𝑞  (16) 

 

𝑈𝐷𝑖𝑒𝑙𝑒  : still the same 

𝑇 =
𝑏𝑙𝑒

4
 𝑞  𝑡 𝑀𝑑   𝑞   (17) 

 

 𝐾𝑢𝑢−𝑑  
𝑒 ≡  8 X 8  Matrix size,  𝐾𝑢𝜙 _𝑑  

𝑒
≡  8 X 3  Matrix size,  𝐾𝜙𝑢 _𝑑  

𝑒
≡  3 X 8  Matrix 

size. 

 

4. Equation of motion 

 

When assembling all the obtained elementary matrices taking into account the Hamilton 

principle we obtain the equation of motion which is written in the following matrix form Xiangjian 

et al. 2012, and Hai et al. 2009. 

 

 𝑀  𝑞   +  𝐶  𝑞   +  𝐾  𝑞  =  𝐹  (18) 

 

 𝑀 =  
 𝑀𝑢𝑢   0 

 0  0 
  ;   𝐾 =  

 𝐾𝑢𝑢   𝐾𝑢𝜙  

 𝐾𝜙𝑢   𝐾𝜙𝜙  
  ;   𝐶 =  

 𝐶𝑢𝑢   0 

 0  0 
  ;   𝑞  =  

 𝑞 

 𝜙 
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 𝐶𝑢𝑢  = 𝛼 𝑀𝑢𝑢  + 𝛽 𝐾𝑢𝑢   
 𝑀𝑢𝑢   : Is the global mass matrix.                𝐾𝑢𝑢   : Is the global stiffness matrix. 
 𝐶𝑢𝑢   : Is the global damping matrix.              𝐹 : Is the external load vector. 

𝛼 & 𝛽 : Are the Rayleigh coefficients, which describe the damping attitude of the structure. 

 

 

5. Results and discussions 

 

To solve the obtained equations of motion for the bimorph, we consider the Newmark method 

and we use the Matlab code. After the confrontation of the results obtained for a bimorph made of 

two piezo-layers with those obtained by Perel and Palazotto 2002, we obtain Table 1, which shows 

the results compared with two configurations. The first one, the two layers have the same 

thickness. In the second one, the two layers have 0.007 m in the bottom layer and 0.003 m in the 

top layer. Taking into account the following PVDF properties, and the geometric dimensions of 

the clamped-free beam. 

 

𝐸1 = 𝐸2 = 2e9 N/m² ; 𝐺12 = 7.75e8 N/m² ; 𝜈 = 0.29 ; 𝑑31 = 2.2e − 11 C/N ; 

 

𝜀 11 = 𝜀 22 = 𝜀 33 = 1.62e − 11 F/m 

 

𝐿 = 0.4 m, 𝑏 = 0.05 m  and  
 ℎ𝑝𝑇 = ℎ𝑝𝐵 = 0.005 m.

 ℎ𝑝𝑇 = 0.003 & ℎ𝑝𝐵 = 0.007 m.
  

 

We present the following tables of comparisons. In case of a perfectly bonded clamped-free 

beam Table 1. In case of delaminated clamped-free beam Table 2. The errors seen in Table 1 

indicate that our results are close to the analytical ones of Perel and Palazotto 2002, which don’t 

take in consideration the shear deformation effect, for the low frequencies. 

Table 2 presents the frequencies of several beams which have a delamination zone (DZ) with 

several lengths and positions, we observe that the natural frequency of the beam decreases if the 

beam presents a delamination zone (DZ). The natural frequencies computed of several beams with 

 

 
Table 1 Comparison between the present work and Perel and Palazotto 2002: The 8 first frequencies of two 

beams, the first beam made of two equal layers, and the second with different layer thicknesses 

 

Frequency 

(Hz) 

Analytical 

Perel 

Perfectly 

Bonded 
Error 

 

Analytical 

Perel 

Perfectly 

Bonded 
Error 

h
T
o
p

 =
 h

B
o
t 

=
 0

.0
0
5

 (
m

) 1st Freq 10.641 10.641 0.00% 

h
T
o
p

 =
 0

.0
0
3
 &

 h
B

o
t 

=
 0

.0
0
7
 

(m
) 

10.641 10.668 -0.25% 

2nd Freq 66.749 66.639 0.16% 66.749 66.657 0.14% 

3rd Freq 186.711 186.380 0.18% 186.711 185.767 0.51% 

4th Freq 365.914 364.629 0.35% 365.914 361.581 1.18% 

5th Freq 604.927 601.474 0.57% 604.927 592.609 2.04% 

6th Freq 903.702 658.809 27.10% 903.702 658.809 27.10% 

7thFreq 1262.117 896.158 29.00% 1262.117 876.174 30.58% 

8th Freq 1680.400 1247.811 25.74% 1680.400 1209.281 28.04% 
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Table 2 Presentation of the 8 first frequencies of two delaminated beams, the first beam made of two equal 

layers, and the second with different layer thicknessesd 

 

Frequency 

(Hz) 

Lengths of bimorph (Bonded zone ; Debonded zone ; Bonded zone) 

L/6;L/3;L/

2 

L/3;L/3;L/

3 

L/2;L/3;L/

6 

L/4;L/2;L/

4 

L/3;L/3;L/

3 

5L/12;L/6;5L/1

2 

5L/6;L/12;5L/

6 

h
T
o

p
 =

 h
B

o
t 

=
 0

.0
0

5
 (

m
) 1st Freq 10.335 10.405 10.507 9.879 10.405 10.631 10.659 

2nd Freq 58.185 65.794 63.457 62.229 65.794 66.600 66.624 

3rd Freq 172.031 137.199 168.490 116.868 137.199 173.317 184.128 

4th Freq 269.253 307.962 254.186 241.801 307.962 358.560 361.341 

5th Freq 461.311 455.455 451.332 419.408 455.455 505.061 576.929 

6th Freq 658.809 658.809 658.809 636.862 658.809 658.809 658.808 

7thFreq 675.767 660.865 672.209 658.809 660.865 836.792 874.605 

8th Freq 945.928 944.828 943.638 819.045 944.828 1017.649 1147.988 

h
T
o

p
 =

 0
.0

0
3
 &

 h
B

o
t 

=
 

0
.0

0
7

 (
m

) 

1st Freq 10.473 10.515 10.574 10.195 10.515 10.646 10.660 

2nd Freq 61.299 66.140 64.759 64.010 66.140 66.598 66.599 

3rd Freq 177.707 152.595 175.857 133.599 152.595 178.292 184.620 

4th Freq 293.056 328.833 281.947 274.799 328.833 359.243 360.737 

5th Freq 500.645 484.929 493.396 467.751 484.929 535.405 581.848 

6th Freq 658.699 658.682 658.745 658.377 658.682 659.020 659.131 

7thFreq 723.963 716.773 721.295 696.510 716.773 851.598 872.018 

8th Freq 1023.617 1023.368 1023.022 902.976 1023.368 1065.752 1168.141 

 

 

 

Fig. 4 The first 8th natural frequencies of three beams with different DZ lengths, hTOP = hBOT 

 

 

different (DZ) positions are equal when the (DZ) position is symmetric to the middle of the beam’s 

length. See Figs. 4-5. 

As a result of the confrontation between the present work and those of the literature we can 

admit that the results of the present work are in good agreement with those of literature. 
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Dynamic behavior of piezoelectric bimorph beams with a delamination zone 

Now we consider the same beam with the following two configurations of boundary conditions, 

a clamped-free and a clamped-clamped configuration. We apply a uniformly distributed load on 

the beam, with considering two thicknesses, the first ℎ𝑇𝑜𝑝 = ℎ𝐵𝑜𝑡 = 5𝑒 − 3 m, and the second 

ℎ𝑇𝑜𝑝 = 3𝑒 − 3 ;  ℎ𝐵𝑜𝑡 = 7𝑒 − 3 m. The axial displacement is given by the following figures. 

 

 

 

Fig. 5 The first 8th natural frequencies of three beams with different DZ lengths, hTOP ≠ hBOT 
 

 

 

Fig. 6 Axial displacement evolution under uniformly applied charge hTOP = hBOT on a simply 

supported beam 
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Fig. 7 Axial displacement evolution under uniformly applied charge hTOP ≠ hBOT on a simply 

supported beam 

 

 

 

Fig. 8 Axial displacement evolution under uniformly applied charge hTOP ≠ hBOT on a clamped- 

clamped beam 

768



 

 

 

 

 

 

Dynamic behavior of piezoelectric bimorph beams with a delamination zone 

 

 

Fig. 9 Axial displacement evolution under uniformly applied charge hTOP = hBOT on a clamped- 

clamped beam 

 

 

However, the vertical displacement is given by 

 

 

Fig. 10 The evolution of the vertical displacement of two beams (perfectly bonded and debonded) 

hTOP = hBOT 
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Fig. 11 The evolution of the vertical displacement of a perfectly bonded beam hTOP ≠ hBOT 

 

 

In Figs. 6, 7, 8 and 9, the evolution of the axial displacement is treated. We can observe that the 

thickness of the upper and the lower layer affects the axial displacement. A field of an axial 

displacement related to the delamination zone appears. This field rises when the thickness of the 

layer increases. Besides, the boundary conditions affect this field when the beam is clamped in its 

both sides. Positive and negative values can be seen with the same magnitudes in this displacement 

field. 

In Figs. 10 and 11, when the beam presents a debonded zone, the vertical displacement is 

affected too, it seems clearly that the rise of the vertical displacement is due to the delamination 

zone, the thickness changes of the top (or bottom layer) don’t affect the vertical displacement, as 

long as the thickness of the whole beam stay the same. 

In the harmonic case, which means the applied charge is a voltage applied on the top and the 

bottom electrodes, called 𝑉𝑇𝑜𝑝  and 𝑉𝐵𝑜𝑡  that have a harmonic form like: 𝑉𝑇𝑜𝑝 = 𝑉𝑐𝑜𝑠(8𝑡). 

𝑉𝐵𝑜𝑡 = 𝑉𝑐𝑜𝑠(8𝑡 + 𝜑); 𝜑 is the dephasing (or the phase angle) between the upper and lower 

voltages. Similar to the work of Arafa et al 2009. Who applied a trapezoidal signal with a 
π

2
 phase 

angle on the upper and lower layers. 

In Fig. 12, 13 and 14, a beam with delamination zone produces more actuation in its tip than a 

perfectly bonded beam. The effect of the structural damping coefficient is felt, a beam with a 

higher structural damping coefficient produces less actuation than a beam with lower coefficient. 

The same observation in Figs. 10 and 11 related to the distribution of thicknesses between the two 

layers is noted. 

Figs. 15, 16, 17, 18 and 19 symmetric trajectories are produced relatively to the thickness 

distribution, (if the thickness ratio is inverted between the upper and lower layer, the produced 

trajectory shape is reversed). The delamination affects the trajectory shape, and increases the 

actuation in the vertical direction. The length of the beam doesn’t affect the shape, it only affects 

the values of the trajectory, and the same observation is noticed about the structural damping 
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Dynamic behavior of piezoelectric bimorph beams with a delamination zone 

coefficient. The dephasing changes (or the phase angle changes) between the upper and lower 

applied voltages give new trajectories. So, we can change the dephasing value to obtain specific 

actuations. 
 

 

 

Fig. 12 The vertical displacement under an applied electric voltage for two beams (perfectly 

bonded and debonded) 
 

 

 

Fig. 13 The vertical displacement under an applied electric voltage for two beams with different 

structural damping coefficient hTOP ≠ hBOT 
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Fig. 14 The vertical displacement under an applied electric voltage for two beams with different 

structural damping coefficient hTOP = hBOT 

 

 

The effect of the delamination on the trajectory of the tip beam is treated below. 

 

 

Fig. 15 The trajectory of tip beam changes under the effect delamination hTOP = 0,03 & hBOT = 0,07 m 
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Fig. 16 The trajectory of tip beam changes under the effect delamination hTOP = 0,07 & hBOT = 0,03 m 

 

 

 

 

Fig. 17 The effect of shear stress on the trajectory of the tip beam 
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Fig. 18 The effect of phase angel on the trajectory of the tip beam 

 

 

 

Fig. 19 The effect of the structural damping coefficient on the trajectory of the tip beam 
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Dynamic behavior of piezoelectric bimorph beams with a delamination zone 

6. Conclusions 
 

We have studied the dynamic behavior of a bimorph beam made of two piezoelectric layers. 

The effect of delamination zone between the upper and the lower layer is presented with taking 

into account the effect of: the shear deformation (the FOSDT), the thickness variation, the size, the 

location of the delamination zone, the structural damping, the nature of the load (stationary or 

harmonic) and the phase angle (between the upper and the lower layer). A finite element method 

was used for modeling the problem. We have chosen the NEWMARK method to solve the set of 

equations for the beam motion. For this purpose, the Matlab software is used to carry out the full 

calculations. In order to validate our model, the results are confronted with those of literature. 

Results show that the boundary conditions and the thickness of the piezoelectric layers affect the 

axial displacement field related to the delamination zone. The vertical displacement is affected by 

the delamination zone, and the actuation in the free tip increases. The structural damping and the 

length of the beam affect only the values (without affecting the shape) of the trajectory of the free 

end of the beam. 
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