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Abstract.  In this study, we try to compare different intensity measures for evaluating nonlinear response of 
bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. 
A complete detail of bridge modeling parameters and also its verification has been presented. Fragility 
function considers the relationship of intensities of the ground motion and probability of exceeding certain 
state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to 
strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in 
nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of 
bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for 
these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite 
element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge 
response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity 
measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge 
piers. 
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1. Introduction 

 
Seismic vulnerability and seismic performance of highway bridges have became an important 

subject especially after the 1971 San Fernando earthquake because of damages during the large 
excitations. In the straight bridges the superstructure centerline is perpendicular to the 
sub-structural elements and the responses of longitudinal and transverse directions have a little 
coupling. Fragility curves represent the relationship between the ground motion intensities and the 
probability of exceeding certain state of damage.  Fragility curves respect to their base and aims 
of their developing, following two important targets. First designers can use these curves to 
examine the effect of changing different design parameters on structure’s behavior and predict the 
extent of probable damages, and the second programmers can use the curves to increase their 
reliability in decision making and planning. 

 

Fragility curves can be divided into two categories: 
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(a) Empirical fragility curves which are drawn on the basis of information obtained in the 
previous earthquake damages. 

(b) Analytical fragility curves which are produced by numerical simulation of the seismic 
response of structures using dynamic analysis of structures. 

 
The most reliable analysis method is the full-time history analysis but mostly due its excessive 

complexity engineers and designers tend to prefer simpler methods such as nonlinear static 
analysis. 

Analytical Fragility curves are useful tools to predict the extent of damages. These curves 
calculate the behavior of the structure and damages as a function of earthquake parameters. 
Generating fragility curves and evaluating the performance using the analytical method requires 
the use of a series of earthquakes. Many studies have been conducted considering variety of 
scenarios. 

First approach: In some studies, a large number of natural or synthetic accelerograms are 
selected with regard to the structure and seismicity of the region and the analysis of probabilistic 
seismic is done in order to produce the needed models. In this method there’s a cloud of 
information that exists in Mw − R space. This method of producing fragility curves is called cloud 
approach. 

Second approach: In this approach a series of earthquakes are selected and analysis is 
achieved to extract the fragility curves, using a small set of earthquakes, magnitude of  
earthquake is scaled and increased step by step. This method is called Incremental Dynamic 
Analysis (IDA). 

One of the most advantages of Incremental Dynamic Analysis (IDA) is that, we can consider 
the behavior of the structure from initial elastic response until global dynamic instability will occur. 
The second advantages of this approach is that by considering a suit complete records, we can find 
the seismic fragility of the structure analytically with the consideration of different states of 
structure. 

Empirical fragility curves were developed for California bridges by Basöz and Kiremidjian in 
(1999). Yamazaki et al. (2000) and Shinozuka et al (2000a) tried to achieve a set of empirical 
fragility curves based on the actual damage date due to the Kobe earthquake. Mander and Basöz 
(1998) and Hwang and Huo (1998), generated analytical fragility curves of bridge from their 
seismic response against actual earthquake data. 

Shinozuka et al. (2000b) studied on the usage of a simplified nonlinear analysis method 
(nonlinear static procedure) to develop fragility of the structure, but they indicated that this method 
don’t show constant agreement with nonlinear time history analysis in terms of predicting all 
levels of damage. Many other scientists have been worked on developing probabilistic analysis in 
structural engineering in open literatures (Cimerallo et al. 2010, Mackie et al. 2010, Wright et a. 
2011, Padgett et al. 2010, Ramanathan 2012, Pan et al. 2010, Banerjee and Shinozuka 2008, Eads 
et al. 2013, Sung and Su 2011, Tavares et al. 2012, Deepu et al. 2014, Kameshwar and Padgett 
2014, Karim and Yamazaki 2003, Kaviani 2011, Monti and Nistico 2002, Monti et al. 2001). 

In this study, incremental dynamic analysis is used to develop seismic fragility functions of the 
bridge. Developing analytical fragility curves consist of simulation of ground motions, modeling 
of bridges, and developing fragility curves from response results of analysis. The response of the 
structure is obtained by applying incremental dynamic analysis which is the most accurate method. 

The main objective of this research is to consider different spectral intensity measures and PGA 
and the response sensitivity to them and assess the vulnerability of a three-span simply supported 
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concrete girder highway bridges when subjected to medium to strong earthquakes. Efficiency and 
practically of the used intensity measures to achieve a proficient intensity measure of this type of 
bridges is also presented and compared. A detailed three dimensional model of the bridge has been 
presented and its seismic analytical fragility curves are developed based on the results of 
incremental dynamic analysis. A full nonlinear time history analysis are utilized to evaluate the 
seismic response of bridge components (bridge piers) and individual component fragility functions 
derived from the incremental dynamic analysis results are combined to evaluate the overall 
fragility of the bridge system. 
 
 
2. Bridge modeling and verification 

 
2.1 Modeling description 
 
The model used in this study is derived from a non-skewed model developed by Nielson (2005), 

the characteristics of which are based on data obtained from a survey of numerous bridge plans. 
The common type of the bridge throughout the Central and South-eastern United States is concrete 
slab on concrete girder highway bridges accounting for approximately 40% of all highway bridges 
in the region. A typical bridge configuration with standard details is derived through the data 
collection of concrete girder bridges (Nielson 2005). Figs. 1 and 2 show typical scheme of a Multi- 

 
 

 

Fig. 1 Bridge deck modeling (Extruded) 
 
 

 

Fig. 2 Three dimensional model of the bridge in SAP2000 (Without extruding) 
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(a) 
 

 

(b) 

Fig. 3 Concrete member reinforcing layout: (a) column; (b) deck detail 
 
 

Span Simply Supported Concrete (MSSS Concrete) girder bridge. Total length of the bridge is 
48.8 m and its three spans have 12.2-24.4 and 12.2 m length. The width of bridge is 15.01 m with 
eight AASHTO type prestressed girders. AASHTO Type I and III girders are used for the end and 
centre spans. Elastomeric pads are the bearing of this bridge. The pads for end spans are 406 mm 
long by 152 mm wide and 25.4 mm thick and for the centre span are 559 mm long by 203 mm 
wide and still 25.4 mm thick. The details of columns, bridge deck and piles are shown in Figs. 3 
and 4. The concrete strength at the design procedure is assumed to be 20.7 MPa while the yield 
strength of reinforcing steel is 414 MPa. More detailed specifications of these columns are in an 
investigation of existing bridge plans and also from the work done by Hwang et al. (2001). The 
pile caps are 2438 mm square and 1092 mm thick. The pile cap is connected with the columns 
using 914 mm long lap splices at the bases of the columns. The abutments used for this bridge are 
the pile-bent girder seat type abutments. 

The software used has different nonlinear link elements to model plastic elements, bearings and 
etc. For each deformation degree of freedom we can capture the nonlinear force deformation 
relationship with a nonlinear link element. The deck is modelled using shell elements. Bilinear 
plastic model are used to model the place of plastic hinges. The places of plastic hinges are at the 
bottom segments of the columns. The abutments are modelled using beam elements supported on 
springs. A rigid bar is used to connect the nodes between girders and bearings, bearings and cap 
beams, and cap beams and tops of the columns. Abutments and the column boundary conditions 
are fixed-free in the longitudinal direction and fixed-fixed in the transverse direction. In the 
longitudinal direction each columns acts as a vertical cantilever beam therefore the longitudinal 
motion of the bridge is the most critical response which could cause damage to bridge components. 
The plastic hinges in the typical bridges are form at bottom of the columns. 
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Fig. 4 Scheme of columns and pile foundation modeling in SAP2000 
 
 

The curvature for each column section ϕy can be obtained from Eq. (1) 
 

y
y

n
y M

M                                   (1) 

 

Mn is moment corresponding to a compressive strain of ε = 0.005, My is the moment at first 
yielding of a vertical reinforcing bar and ϕ′y is the curvature at first yielding of a vertical 
reinforcing bar. 

The length of the plastic hinge is obtained from 
 

)MPain  (044.0022.008.0 yblyblyp fdfdfLL                  (2) 

 
L = length from the point of contraflexture to the section 
dbl = diameter of a longitudinal reinforcing bar 
To define the nonlinear behaviour of the bilinear plastic link elements at the base of columns 

the moment-rotation relationship are used as input. 
The bearings are elastomeric pads and their behaviour are modelled with an elastic–perfectly 

plastic material. The bearings of center spans have an initial stiffness of 6.2 kN/mm and the end 
spans have an initial stiffness of 3.4 kN/mm. Lateral pile stiffnesses were assumed at 7 
kN/mm/pile (Nielson 2005) and the vertical stiffnesses were assumed to be 175 kN/mm/pile 
(Nielson 2005). 

 
2.2 Seismic response and verifications 
 
A single synthetic ground motion specific to Memphis, TN, from the suite of Rix ground 

motions (Rix and Fernandez-Leon 2004) is used to obtain the seismic response of the bridge. The 
duration of the earthquake record is 25.1 seconds with the magnitude of it is 7.5 R with epicentre 
distance of 20 km. Acceleration time history of Rix ground motion with a peak ground 
acceleration (PGA) of 0.65 g is shown in Fig. 5 and its response spectrum with 5% damping is  
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shown in Fig. 6. Time steps of 0.0025 seconds are chosen in the time history analysis. The ground 
motion is applied at the pile caps and abutments where the soil-structure interaction is simply 
accounted for with a set of springs. The modelling procedure is verified by comparing the results 
with Nielson model (Nielson 2005) as presented in Table 1. 

The first period of the bridge model is 0.59 in the longitudinal direction. The second mode is a 
transverse mode with a period of 0.48 seconds. For the nonlinear time history analysis we ignore 
the effects of soil-structure interaction, therefore the period of the bridge is 0.55s. 
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Fig. 5 Time history of ground motion used for illustration of seismic responses (Nielson 2005) 
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Fig. 6 Response spectrum (5% damping) of ground motion used for illustration of seismic (Nielson 2005)
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Table 1 Comparisons of the results of present study and reference (Nielson 2005) 

Comparative responses Nielson (2005) Present study Differences Verified results

First period 0.62 s 0.59 s 0.04 verified 

Second period 0.46 s 0.48 s 0.04 verified 

Maximum displacement of the deck 100 mm 96 mm 0.04 verified 

 
 

3. Seismic ground motion records 
 

A relationship is needed between the ground motion records as our input and structural damage 
as our output to have a comparison between them. 

It is very important how to select the models of the bridges and also the input ground motions. 
When a nonlinear time history is applied to a structure, all the nonlinearity of the members is take 
into account. It is obvious that the responses of the bridges are subsequently dependent on the 
characteristics of earthquake ground motions. Therefore the frequency content and intensity and 
the ground type have a great effect on the response of the bridges. A reasonable intensity measure 
and a structural damage can lead us to a good correlation. 

Many different intensity measure factors are used to describe the severity of the earthquake 
ground motion such as: PGA, peak ground velocity (PGV), peak ground displacement (PGD), time 
duration of strong motion (Td), spectrum intensity (SI) and etc. In this study, PGA, Sa (T1, 5%) 
and a range of Sa (0.05T1, 5%) to Sa (2.5T1, 5%) are used as intensity measure factors. 

 
 

Table 2 Characteristics of the earthquake ground motion histories (FEMA 2003) 

 Earthquake Recording station 

ID No. M PGA Year Name Name owner 

1 7.0 0.48 1992 Cape Mendocino Rio Dell Overpass USGS 

2 7.6 0.21 1999 Chi-Chi, Taiwan CHY101 CWB 

3 7.1 0.82 1999 Duzce,Turkey Bolu ERD 

4 6.5 0.45 1976 Friuli, Italy Tolmezzo ------------ 

5 7.1 0.35 1999 Hector Mine Hector SCSN 

6 6.5 0.34 1979 Imperial Valley Delt UNAMUCSD 

7 6.5 0.35 1979 Imperial Valley El Centro Array#1 USGS 

8 6.9 0.38 1995 Kobe, Japan Nishi-Akashi CUE 

9 6.9 0.51 1995 Kobe,Japan Shin-Osaka CUE 

10 7.5 0.24 1999 Kokaeli,Turkey Duzce ERD 

11 7.3 0.36 1992 Landers Yemo Fire Station CDMG 

12 7.3 0.24 1992 Landers Coolwater SCE 

13 6.9 0.42 1989 Loma Prieta Capitola CDMG 

17 6.7 0.44 1994 Northridge Canyon Country-WLC USC 

18 6.6 0.36 1971 San Ferando LA-Hollywood Stor CDMG 

19 6.5 0.51 1987 Superstition Hills El Centro Imp.Co CDMG 

20 6.5 0.52 1987 Superstition Hills Poe Road (temp) USGS 
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Table 2 shows some information of 20 earthquake ground motion records with different range 
of PGA form medium to strong motions which are used to perform incremental dynamic analysis 
(IDA). 

Fig. 7 shows the acceleration response spectra with 5% damping ratio of the selected recorded 
ground motions. The average diagram of the selected records is shown in bold line. 

Fig. 8 represents the different percentiles of acceleration response spectra with 5% damping 
ratio. From Fig. 8 is indicated that that the selected records contain medium to strong ground 
motions. Figs. 9 (a) and (b) are the PGA and PGV variations of the selected records. 
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Fig. 7 Response acceleration spectra of far field ground motions 
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Fig. 8 Percentiles of response acceleration spectra of a suit of 20 far field earthquake ground motion records
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Fig. 9 (a) Variation of PGA respect to the number of the records; (b) variation of PGV respect to 
the number of the records 

 
 

4. Incremental Dynamic Analysis (IDA) 
 
One of the methods which have been considered by the researchers in the field of performance- 

base earthquake engineering is incremental dynamic analysis (IDA). This method is able to 
prepare valuable information about the seismic demand and capacity, estimating the response of 
structure by increasing the intensity level of ground motion and predict the probability of reaching 
or exceeding specific damage states for a given level of peak earthquake intensities (represented 
here by PGA and Sa (Ti, 5%) for different periods). To apply the incremental dynamic analysis to 
the bridge, we should have a proper nonlinear structural model for our first step. Then a suite of 
records (at least 20) are compiled and scaled to different intensity levels with the increment of 0.1 
(FEMA 2003). For each record the dynamic analysis run and the results post-processed. Total 
nonlinear analyses are more than 500. We can generate IDA curves of the structural response with 
a damage measure and intensity measure. 

 

4.1 Fragility curves and intensity measures 
 

Fragility curves were formulated by the work presented by Cornell et al. (2002) condition upon 
an Intensity Measure (IM) by suing incremental dynamic analysis. The fragility curves are the 
relation between the seismic hazard and response of structures and modeled as lognormal 
distribution (Cornell et al. 2002) 

 












 


IMD

dSd
IMdDP


)ln()ln(

1                       (3) 

 

ϕ(●) = Standard normal cumulative distribution function 
SD = Median value of the structural demand in terms of a seismic intensity 
βD|IM = Logarithmic standard deviation, or dispersion, of the demand conditioned on the IM. 
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The relation between SD and IM estimated as 
 

b
D aIMS                                (4) 

 

With a linear regression we can obtain the coefficient of a and b and re-written the Eq. (5) as 
 

)ln()ln(.)ln( aIMbSD                             (5) 
 

The dispersion of the mean demand conditioned on the IM is 
 

2

)))ln()ln(.ln()(ln(~
2




 

N

aIMbdi
IMD                   (6) 

 
N = number of ground motions 
di = Peak demands 
 
4.2 Efficient intensity measure 
 
If an IM is efficient it should have a less dispersion about the median of the results of nonlinear 

time history analysis. βD|IM is the dispersion of the results around the median of the response in this 
study. The lower values of βD|IM leads to a more efficient intensity measure Padgett et al. (2008). 

 
4.3 Practical intensity measure 
 
Padgett et al. (2008) presented a new criteria for selecting an optimal intensity measure in 

bridges. They introduce the practically of an intensity measure which is the relation between the 
dependency of the structural response and seismic hazard. They identified the practically as a 
coefficient of the regression parameter b in Eq. (5). The higher value of b leads to a more practical 
intensity measure in comparison together. 

 
4.4 Proficient intensity measure 
 
Padgett et al. (2008) composite the measure of efficiency and practically as new criteria of 

selecting an optimal intensity measure as follow formulation 
 

 
















 




b

b

ad
IM

IMdDP
IMD

)ln()ln(
)ln(

1                    (7) 

 

A lower values of modified dispersion is a more proficient IM 
 

b
IMD                                (8) 

 

A complete procedure of developing analytical fragility curves is shown in the following 
algorithm in Fig. 10. 
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4.5 Limit states of the nonlinear time history analysis 
 

A suitable engineering demand parameter (EDP) of bridge which has a great correlation to the 
intensity measure (IM) leads to less dispersion in the results. In the conventional highway bridges 
the piers columns are the most critical component in the bridges and they always have a nonlinear 
behavior under strong ground motions (Yi et al. 2007). 

FEMA-356 has defined three important limit states for concrete reinforcement columns such 
as: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). Table 3 represent the 
Numerical Acceptance Criteria for Nonlinear Procedures — Reinforced Concrete Columns. 

 
 

 
Fig. 10 Methodology of generating analytical fragility curves 

 
 

Table 3 Numerical Acceptance Criteria for Nonlinear Procedures— Reinforced Concrete Columns 

Conditions 
Acceptance criteria 

LO LS CP LS CP 

Columns controlled by flexure 

cg fA

p


 Trans 

Reinf 
cw fdb

v


 

     

≤ 0.1 C ≤ 3 0.005 0.015 0.02 0.02 0.03 

≤ 0.1 C ≥ 6 0.005 0.012 0.016 0.016 0.024 

≥ 0.4 C ≤ 3 0.003 0.012 0.015 0.018 0.025 

≥ 0.4 C ≥ 6 0.003 0.01 0.012 0.013 0.02 

≤ 0.1 NC ≤ 3 0.005 0.005 0.006 0.01 0.015 

≤ 0.1 NC ≥ 6 0.005 0.004 0.005 0.008 0.012 

≥ 0.4 NC ≤ 3 0.002 0.002 0.003 0.006 0.01 

≥ 0.4 NC ≥ 6 0.002 0.002 0.002 0.005 0.008 
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5. Results and discussions 
 
In this section we consider different intensity measures related to their sensitivity on the period 

of the bridge and we consider the efficiency and practically of them and finally the proficiency. 
Figs. 11 and 12 are shown the Incremental dynamic analysis curves for PGA and Sa (T1, 5%) as 
intensity measures. All the analysis was done till collapse prevention of the bridge is appeared. It 
has been observed from the figures that the bridge behavior is started from the elastic range till the 
inelastic range by increasing the steps of the nonlinear time history analysis. The IDA curves are 
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derived for column drift ratio as engineering demand parameter (EDP) to have a better 
understanding from the behavior of the critical component of the bridges. 
We have done more than 500 nonlinear time history analysis and the data are used in log-normal 
distribution and we have obtained the dispersion from βD|IM in Eq.(5) which is presented the 
efficiency of the intensity measures. The results of dispersion for different values of Sa (Ti, 5%) 
respect to different structural period are shown in Table 4. From this comparison we have figured 
out that the Sa (1.1T1, 5%) and Sa (1.2T1, 5%) are more efficient than the other spectral intensity 
measures, because of their lower βD|IM values. 

 
 
 
 

Table 4 Comparisons of regression values of PGA and Sa (T1, 5%) and dispersion values 

IM a b βD|IM 
b

IMD   

PGA(g) 0.009 0.893 2.5866 2.8966 

Sa (0.05T1, 5%) 0.017 0.913 1.1142 1.2204 

Sa (0.1T1, 5%) 0.014 0.833 1.2208 1.4655 

Sa (0.2T1, 5%) 0.011 0.731 1.6950 2.3187 

Sa (0.3T1, 5%) 0.009 0.730 1.8398 2.5203 

Sa (0.4T1, 5%) 0.008 0.807 1.6750 2.0756 

Sa (0.5T1, 5%) 0.008 0.821 1.5082 1.8370 

Sa (0.6T1, 5%) 0.009 0.859 1.5149 1.7635 

Sa (0.7T1, 5%) 0.009 0.848 1.2725 1.5006 

Sa (0.8T1, 5%) 0.009 0.837 1.2772 1.5260 

Sa (0.9T1, 5%) 0.009 0.867 1.2877 1.4852 

Sa (T1, 5%) 0.010 0.952 1.1559 1.2142 

Sa (1.1T1, 5%) 0.011 0.981 0.6822 0.6954 

Sa (1.2 T1, 5%) 0.012 0.969 0.6543 0.6753 

Sa (1.3T1, 5%) 0.012 0.954 0.8142 0.8534 

Sa (1.4T1, 5%) 0.014 0.985 0.8855 0.8989 

Sa (1.5T1, 5%) 0.014 0.939 0.7188 0.7655 

Sa (1.6T1, 5%) 0.014 0.920 0.8977 0.9757 

Sa (1.7T1, 5%) 0.016 0.909 1.0085 1.1094 

Sa (1.8T1, 5%) 0.018 0.866 1.0390 1.1998 

Sa (1.9T1, 5%) 0.018 0.830 1.1218 1.3516 

Sa (2T1, 5%) 0.019 0.798 1.2372 1.5504 

Sa (2.1T1, 5%) 0.034 0.742 2.6823 3.6150 

Sa (2.2T1, 5%) 0.018 0.691 1.4438 2.0894 

Sa (2.3T1, 5%) 0.018 0.673 1.5729 2.3372 

Sa (2.4T1, 5%) 0.019 0.671 1.6475 2.4553 

Sa (2.5T1, 5%) 0.019 0.686 1.6780 2.4460 
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To consider the practically of an intensity measure we should find the correlation between the 
intensity measures and the engineering demand parameters (EDP) in the log-normal space. 
Collecting all the data of nonlinear time history analysis, the coefficients (a and b) of the linear 
regression analysis have been evaluated. 

Regression R squared and b show the correlations between the IM and EDP in logarithmic 
space: the value of b, shows the practically of the intensity measures (Padgett et al. 2008). Finally, 
the “Proficient” composite intensity measure (βD|IM / b)is evaluated: alower value of the modified 
dispersion is correlated to a more proficient IM. 
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Fig. 14 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.05T1, 
5%) (as IM) of earthquake motions 

Fig. 15 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.1T1, 
5%) (as IM) of earthquake motions 
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From the comparison of the proficiency of the different intensity measure, we have obtained 
that Sa (1.2T1, 5%) is more proficient than the other spectral intensity measures,and that we have a 
critical range of the intensity measures which results are more sensitive. This range is Sa (T1, 5%) 
to Sa (1.7T1, 5%). It means that if we use spectral intensity measures we should find the critical 
range of the intensity measure which would prepare less dispersion and more practical and 
proficient in the results. 

Figs. 13 to 39 show the results of linear regression of different intensity measures. 
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Fig. 16 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.2, 
5%) (as IM) of earthquake motionsd 

Fig. 17 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.3T1, 
5%) (as IM) of earthquake motions 
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Fig. 18 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.4T1, 
5%) (as IM) of earthquake motions 

Fig. 19 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.5T1, 
5%) (as IM) of earthquake motions 

251



 
 
 
 
 
 

M. Bayat, F. Daneshjoo and N. Nisticò 

To full fill our probabilistic task we developed fragility curves of the bridge for different  
performance level (IO, LS, and CP) (FEMA 2003). The analytical fragility curves show the failure 
probability of the bridge for a certain values intensity measure. It is strongly suggested to consider  
other important intensity measures to find the suitable IM which has the less dispersion. To better 
understand the distribution of data we have presented the 16%, 50% and 84% percentile of PGA 
for our IDA curves. A high gap between these percentiles shows that the dispersion of data is also 
high. 

Fragility curves for PGA and different spectral intensity measures are developed in Figs. 41 to 
68 to show that the dispersion of the results has a great effect on the estimation of the failure 
probability of the bridge: the dispersion decrease allows more trustable fragility curves. 
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Fig. 20 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.6T1, 
5%) (as IM) of earthquake motions 

Fig. 21 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.7T1, 
5%) (as IM) of earthquake motions 
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Fig. 22 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.8T1, 
5%) (as IM) of earthquake motions 

Fig. 23 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (0.9T1, 
5%) (as IM) of earthquake motions 
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Fig. 24 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (T1, 
5%) (as IM) of earthquake motions 

Fig. 25 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.1T1, 
5%) (as IM) of earthquake motions 
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Fig. 26 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.2T1, 
5%) (as IM) of earthquake motions 

Fig. 27 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.3T1, 
5%) (as IM) of earthquake motions 
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Fig. 28 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.4T1, 
5%) (as IM) of earthquake motions 

Fig. 29 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.5T1, 
5%) (as IM) of earthquake motions 
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Fig. 30 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of P Sa 
(1.6T1, 5%) (as IM) of earthquake motions

Fig. 31 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.7T1, 
5%) (as IM) of earthquake motions 
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 Linear regression
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Fig. 32 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.8T1, 
5%) (as IM) of earthquake motions 

Fig. 33 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (1.9T1, 
5%) (as IM) of earthquake motions 
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Fig. 34 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2 T1, 
5%) (as IM) of earthquake motions 

Fig. 35 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2.1T1, 
5%) (as IM) of earthquake motions 
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Fig. 36 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2.2T1, 
5%) (as IM) of earthquake motions 

Fig. 37 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2.3T1, 
5%) (as IM) of earthquake motions 
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Fig. 38 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2.4T1, 
5%) (as IM) of earthquake motions 

Fig. 39 Simulated maximum column drift ratio (as 
EDP) of bridge as a function of Sa (2.5T1, 
5%) (as IM) of earthquake motions 
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Fig. 40 The summary of the IDA curves into their 16%, 50% and 84% fractal curves of PGA 
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Fig. 41 Fragility curves of the bridge pier respect to PGA 
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Fig. 42 Fragility curves of the bridge pier respect 
to Sa (0.05 T1, 5%) 

Fig. 43 Fragility curves of the bridge pier respect 
to Sa (0.1 T1, 5%) 
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Fig. 44 Fragility curves of the bridge pier respect 
to Sa (0.2T1, 5%) 

Fig. 45 Fragility curves of the bridge pier respect 
to Sa (0.3 T1, 5%) 
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Fig. 46 Fragility curves of the bridge pier respect 
to Sa (0.4 T1, 5%) 

Fig. 47 Fragility curves of the bridge pier respect 
to Sa (0. 5 T1, 5%) 
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Fig. 48 Fragility curves of the bridge pier respect 
to Sa (0.6 T1, 5%) 

Fig. 49 Fragility curves of the bridge pier respect 
to Sa (0.7 T1, 5%) 
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Fig. 50 Fragility curves of the bridge pier respect 
to Sa (0.8 T1, 5%) 

Fig. 51 Fragility curves of the bridge pier respect 
to Sa (0.9 T1, 5%) 
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Fig. 52 Fragility curves of the bridge pier respect 
to Sa (T1, 5%) 

Fig. 53 Fragility curves of the bridge pier respect 
to Sa (1.1 T1, 5%) 
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Fig. 54 lity curves of the bridge pier respect to Sa 
(1.2 T1, 5%) 

Fig. 55 Fragility curves of the bridge pier respect 
to Sa (1.3 T1, 5%) 
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Fig. 56 Fragility curves of the bridge pier respect 
to Sa (1.4 T1, 5%) 

Fig. 57 Fragility curves of the bridge pier respect 
to Sa (1.5 T1, 5%) 
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Fig. 58 Fragility curves of the bridge pier respect 
to Sa (1.6 T1, 5%) 

Fig. 59 Fragility curves of the bridge pier respect 
to Sa (1.7 T1, 5%) 
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Fig. 60 Fragility curves of the bridge pier respect 
to Sa (1.8 T1, 5%) 

Fig. 61 Fragility curves of the bridge pier respect 
to Sa (1.9 T1, 5%) 
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Fig. 62 Fragility curves of the bridge pier respect 
to Sa (2 T1, 5%) 

Fig. 63 Fragility curves of the bridge pier respect 
to Sa (2.1 T1, 5%) 
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Fig. 64 Fragility curves of the bridge pier respect 
to Sa (2.2 T1, 5%) 

Fig. 65 Fragility curves of the bridge pier respect 
to Sa (2.3 T1, 5%) 
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Fig. 66 Fragility curves of the bridge pier respect 
to Sa (2.4 T1, 5%) 

Fig. 67 Fragility curves of the bridge pier respect 
to Sa (2.5 T1, 5%) 

 
 

6. Conclusions 
 
In this paper, a detailed three dimensional bridge is defined and verified completely and it has 

been tried to achieve its analytical seismic fragility curves of straight three span concrete girder 
bridges. A total 20 suit records were selected and the incremental dynamic analysis was applied to 
the bridge. The results show that the selection of the records has a great effect on the response of 
the structures. The signification of the selecting an appropriate intensity measures and the response 
sensitivity was studied by considering a different range of Sa from Sa (0.05T1, 5%) to Sa (2.5T1, 
5%). Their efficiency and practically of them were studied completely and compared. A critical 
range of Sa (Ti, 5%) was obtained by sensitive analysis on nonlinear time history data. The results 
show that that Sa (1.1T1, 5%) and Sa (1.2T1, 5%) are efficient enough and some spectral intensity 
measure are more practical than PGA but finally the Sa (1.2T1, 5%) is more proficient and it is 
followed by Sa (1.1T1, 5%) and Sa (1.5T1, 5%) than the other intensity measures related to the 
sensitive analysis. It has been indicated that through the sensitive analysis on the period of the 
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structure, selecting an appropriate range of Sa (Ti, 5%), can reduce the dispersion a lot and lead us 
to a more accurate fragility curve. 
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