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Abstract. The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical
shells subjected to combined loading of axial compression and external pressure. The governing equations
have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of
which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the
governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of
non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are
obtained. The results are verified by comparing the obtained values with those in the existing literature.
Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical
parameters on the values of the critical combined load have been studied.
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1. Introduction

Conical shells are one of the necessary structural components and commonly found in a variety
of engineering applications, such as the military, turbo-machinery and marine industries, e.g., piles
for holding jackets when driven into the sea bed, transition elements between two cylindrical
shells of different diameter, and the legs of off-shore drilling rigs. When used as piles for jackets
holding, they are, subjected to axial compression. However, when used as transition components,
they are also subjected to external pressure. Hence in the case of off-shore drilling rigs, they are
under combined loading (Ifayefunmi and Btachut 2013). This extensive application of conical
shells in marine engineering calls for efficient tools to analyze the mechanical behavior of these
structures. Stability of conical shells under combined loads is one of the most important failure
modes of these structures. Research on the buckling of homogeneous isotropic conical shells under
combined load has a long history. References to some of the earlier works can be found in the
studies of Sachenkov (1964), Weingarten and Seide (1965), Karpov and Karpova (1981), Struk
(1984) and Tani (1985).
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In recent years, some studies on the buckling of homogeneous isotropic and orthotropic conical
shells under combined loads are published. For instance, Blachut (2011) presented the buckling of
short, and relatively thick, mild steel conical shells subjected to the combined action of external
pressure and axial compression. Ajdari et al. (2012) presented the solution of the buckling of
composite truncated conical shells under combined external pressure and axial compression.
Blachut (2012) presented interactive plastic buckling of cones subjected to axial compression and
external pressure. Shadmehri et al. (2012) proposed to obtain the linear buckling response of
conical composite shells using a semi-analytical approach. Naderi et al. (2014) reported the
influence of fiber paths on the buckling load of tailored conical shells. Sofiyev (2014) presented
the buckling of homogeneous composite conical shells resting on elastic foundations under a
combined load.

Since 2010, new researches performed on the non-homogeneous or functionally graded (FG)
isotropic cylindrical and conical shells have mostly been focused on the buckling of shells
subjected to combined loads. Khazaeinejad et al. (2010) presented the buckling of functionally
graded cylindrical shells under combined external pressure and axial compression. Sofiyev (2010)
investigated the buckling of FG isotropic truncated conical shells subjected to combined axial
tension and hydrostatic pressure. Sofiyev et al. (2012) presented the stability of FG isotropic shells
subjected to combined loads with different edge conditions and resting on elastic foundations.
Van-Dung et al. (2013) presented instability of eccentrically stiffened FG isotropic truncated
conical shells under mechanical loads. Mohammadzadeh et al. (2013) studied the buckling of
2D-FG cylindrical shells under combined external pressure and axial compression. Wu et al. (2013)
investigated the buckling analysis of functionally graded material circular hollow cylinders under
combined axial compression and external pressure.

However, to the best of our knowledge, the buckling of non-homogeneous orthotropic conical
shells under combined loading has not been examined theoretically yet. The non-homogeneity of
the materials stems from the effects of humidity, surface and thermal polishing processes and
methods of production, which causes the mechanical properties of the materials to vary from point
to point (random, piecewise continuous or continuous functions of coordinates) (Babich and
Khoroshun 2001, Awrejcewicz and Krysko 2008, Sofiyev et al. 2009, Grigorenko and Grigorenko
2013). Furthermore, certain parts of structural elements have to operate under radiation and
elevated temperatures and which cause non-homogeneity in the material, i.e., the constants of the
material become functions of space variables (Lal and Kumar 2012). In addition, the FGMs is a
subgroup of non-homogeneous materials, also. They are non-homogeneous with regard to
mechanical and strength properties. Depending on the processing technique, they may exhibit
either isotropic or anisotropic material properties. For example, in studying the mechanics of the
former class of materials produced by spark plasma sintering (SPS), a non-homogeneous isotropic
model may be appropriate; and for the latter class of materials fabricated by plasma spraying or
physical vapor deposition (PVD), the non-homogeneous orthotropic model may suffice as a first
approximation (Kim and Paulino 2002, Ootao and Tanigawa 2007). A study that includes a
non-homogeneity would be interesting as it would shed light on the effects of non-homogeneity on
the buckling phenomenon of conical shells under combined loads. Thus in the present paper, the
stability analyses of non-homogeneous orthotropic shells under combined loads are carried out.
This is one of the dominant loading conditions for aerospace and marine structures. The content of
this paper is arranged as follows: first, the equations of stability of a non-homogeneous orthotropic
truncated conical shell subjected to the combined loading are derived based upon the modified
Donnell type thin shell theory. Young’s moduli and shear modulus of orthotropic materials vary as
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linear, quadratic and exponential functions in the thickness direction. Then solving the governing
equations using the Galerkin’s method, we obtain an expression for the critical combined load of
non-homogeneous orthotropic truncated conical and cylindrical shells. The results are compared
with corresponding studies presented by other authors. The effects of non-homogeneity, material
orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical
combined load examined in detail.

2. Theoretical development

The configuration of a thin non-homogeneous orthotropic truncated conical shell and the
coordinate system are taken as shown in Fig. 1 that R; and R, indicate the radii of the cone at its
small and large ends, respectively, y denotes the semi-vertex angle of the cone, L is the truncated
cone length along its generator and S; is the distance of the smaller end of the truncated conical
shell from the vertex. We introduce the SO curvilinear coordinate system; S coincides with
generator, 6 is circumferential coordinate and { is perpendicular to the S-6 plane and its direction is
inwards normal of the truncated conical shell. w is the displacement of the reference surface in the
normal direction, positive towards the axis of the cone and assumed to be much smaller than the
thickness.

It is assumed that the conical shell material is a non-homogeneous orthotropic. The
non-homogeneity of orthotropic materials of the conical shell is assumed to arise due to the
variation of Young’s moduli and shear modulus along the thickness direction { (Sofiyev et al.
2009)

Eg = Eos¢(é:)a E,= Eoeco(é_), G= Go(”(f) (1)

Fig. 1 Geometry of composite truncated conical shell subjected to combined load
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where Eys and Eyy are the Young’s moduli in S and & directions, respectively, and Gy is the shear
modulus of the homogeneous orthotropic materials. Also, it is assumed that the Poisson’s ratios vgy
and vyg are constant and satisfying vosEos = vspEos. Here @(¢) is function of the non-homogeneity
defining the variations of the Young’s moduli and shear modulus, respectively.

In this study, two different variation laws for the non-homogeneity of orthotropic materials are
considered: (a) simple power-law; and (b) exponential distributions through the thickness of the
shells.

(a) The orthotropic material properties of the non-homogeneous shells are assumed to vary
through their thickness direction according to the simple power-law distribution (Babich
and Khoroshun 2001, Awrejcewicz and Krysko 2008, Sofiyev et al. 2009, Grigorenko and
Grigorenko 2013, Lal and Kumar 2012)

o($)=1+ul* )

where u is a non-homogeneity parameter, satisfying 0 < u < 1 and £ = 1, 2,... is the
power-law index.

(b) The orthotropic material properties of the non-homogeneous shells are assumed to vary
through their thickness direction according to the exponential-law distribution, also

P()=e"C09 3)

where # is a exponential factor and is a real number (Kim and Paulino 2002, Ootao and
Tanigawa 2007).

The truncated conical shell is subjected to simultaneous action of the axially compressive load
T and external normal pressure P, as shown in Fig. 1. Under this loading the membrane stress
resultant, at the critical state, may be expressed as (Agamirov 1990, Sofiyev 2014)

N{=-T, Ny=-PStany; No,=0 “4)

where N?, NJ and N2, are the membrane forces for the condition with zero initial moments.
These equations based on the membrane theory of shells degenerate to their more familiar
forms for cylindrical shells, when y is set equal to zero.
For thin non-homogeneous orthotropic shells, the stresses o,,0, and oy, are related to the
corresponding strains €g,&, and &g, by the stress-strain relationship (Reddy 2004, Sofiyev ef al.
2009)

Oy O, 0On 0| &
oy |=10n On 0 | ¢ Q)

Oso 0 0 O | €50

Where Oy, (i,j = 1, 2, 6) are quantities of non-homogeneous orthotropic materials and are

Eos("(?)

1-vgyVes

Eoe(P(E)
1-vgyVes

O, = , Oy = s O =05 =vg0 =V5p0Ons O = 2G0§0(5) (6)
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The strains are defined as linear functions of the thickness coordinate ¢

o*w
e
£ e
A P B O @
’ ¢ S* 06> S oS
€so €so
1 2w 16w
| S IS§576, S? o6, |
where 6, = Osiny and eg, ey, esy are the strains on the reference surface.
The definitions of the force and moment resultants are given as (Reddy 2004)
/2
[(NSaNaaNse)a(Ms’MaaMsa)]= _[(USao'a’UsaxlaC]dC ®)
—h/2
Let ¥ (S, 6) be the stress function for the stress resultants defined by (Agamirov 1990)
2 2 2
1 oY 10¥ N oY :_16‘1’+L6‘P ©)

=— + T =5 > o~
SUs2007 soas’ Y ast’ Y sases,  S? o,

In view of Egs. (5), (7) and (9), and when solutions (8) are used, the moments and stresses may
be given in the following final explicit forms

o (rey aew), v @w (1w Low)]
Ms | 157807 "sas )T et Pas? M stee sos
1 0°Y 10¥ o*Y o*w 1 0w 1ow
Mo =)\ 57502 +E§J “2 557 —as(s—ﬁmJ (10
My, . 1 oY 1 o*¥ te 1 ow 1 &*w
¢ 1 dow 1
- |\ s?e0, sasoe,) P\ S*o6, Sasae,
o (e o) o o, (10w 1w ]
s 52002 sas) Pas: Past Mls20602 SoS
1 0*Y 1o¥ o*Y o*w 1 0*w 1ow
=\ by| = b= |t by = by by, | b — 11
“ 1717 s s as] 2557 R s 24(5*2 202 S aSJ ()
e | |p [ LOY 1% ) (1 ow 1 0w
- P\ s?06, sasos, ) \s?o6, Sasag,

where the following definitions apply
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_ 1 1 _ 1 1 _ 1 1 2

ey =anbyy +apby ¢y =ay by, +anby,, ¢y =ag by +apby +ayg,

¢, =alb, +a,b,, +a%,c,, =a b, +al.b,, c,,=a b, +a,b

14 =a11014 12024 12> €21 = d20yy 20215 €2p = A3 202>

¢ =alib, +al b, +a%, ¢,y =alb, +al,b,+a%, c, =alb

23 = dn0p3 2014 21> Cpq =030y 2013 22> €31 = AgeD315 (12)
_ 1 2 _ 0 _ 0 0 1 10

Cy =agsby, +age, by =ay I Ly, by =—ay I Ly, by =(apay —ajay)/ Ly,
0 1 1,0 _ 0 _ 0 0 1 1 0

by =(apay —anay)/ Ly,by =—ay I Ly, by =ay /Ly, by =(ayay —aya;)/ Ly,

0 1 10 _ 0 _ 1 0 _ 0,0 00
by =(ayay, —ayay)/ Ly,by =1/ag, by, =—ag/ags, Ly =ayay —apay,

in which
E hk+1 1/2_ _ _
alkl =5 j§k¢7(§)d§a alkz =V9sa1k1 Zagl =V55a§2,
1=VgpVes -1/2
1/2 1/2 (13)
E hkﬂ _ _ _ _ _ _
ahy == [74(Z)dZ, ab =26, [TFl)dg, k=0.1,2.
1=VspVes -1/2 -1/2

The modified Donnell type stability and strain compatibility equations of a non-homogeneous
orthotropic truncated conical shell under external pressures can be written as (Agamirov 1990)

0*M +£8MS +£62M59 1M, +iaMSQ +L62M9 L ooty
oS* S oS Sasoe, S oS ST 06, S* 0647 N

[

’w Nyg[10°w 0 1 0’ 10 (9
T N N P Y/ ) LA Ll Y
08* S (Soee°> oS S0S060, S* 06,
cot y 62w_ 2 d%eg, 2 Oegy d%e, L(’)zes gaﬁ_laﬁzo (15)

S os* Sosee, S* 06, oS* S*oee° SoS SoS

Expanding the force and moment resultants and substituting into Egs. (14) and (15), and
together with (4) and (9) yields

L(YY),w)
oY o*Y, o*Y oY, oty oty o’ o*¥
=\ bh—t+h— k=t k"t ks ——+k, L+ Lt kg —— |e**
[ Vot e et tar Ceet atesr o060 P 062 Je
o*w o*w Ow o*w o*w Pw o*w ow (16)
- -k +k -k -k +k -k + kg —
Yoot azeer Moz oo Pat Mo Par Yoz

2 2 2
2 \1211 +3%+2‘P1 S,e* coty —e** ST a_zv_a_w —S}e* Ptany d Zv+@ =0
oz oz Oz Z 170
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AL Ui OO, A Rl (R i ZOGA
N T T o T T B aa0r T 10 5007 T 002 T 1 54
. o*w o*w o*w o*w otw o*w o*w ow (17)

e’ — + + + - + + + ¢ —
q9 86’14 10 62266’12 qn 826912 42 6(912 q13 P q14 Py 415 02 16 Pe

o*w  ow
+| ———|[S,e“coty =0
(622 6ZJ 1€ 4

where z=1n(S/ S;) and ¥, = We =, and the following definitions apply

ki =cp, ky=cyp—cy —4cy, ky=5c; +3¢; =3¢y —¢yy, ky =2(cy —cy + 0y — ),
ks =cy, kg=cy —2¢3 + ¢y, kg =y —dey +30y, ky =2(cy —cy +0y), kg =cyy,
kg =€y + Coy + 2035, ki =cp3s ok =20eiy o +ey) ks =c5. kiy =43 + 0o — g,
ks =513 + 355 =31, = Cogs Kyg =2(c13 + Co3 — €1y —Cay ),
(18)
4y =byys Gy =by —by, —4byy, gy ==3by —byy +5by, +3byy, gy =2(by, +byy —byy —byy),
qs =2bsy + by +byy, qg=—4by =3b;, —by,, ¢, :2(b31 +by, +b”), 95 =by> 49 = by,
G0 =2by; — b3 —byy, qyy =3by, —4by, +by3, gy, =2(b32 — by, _b14)» 913 = by,
G4 =bi3 —byy +4by;, g5 =—3by3 +3by, —5byy +byy, Gy =2byy +2byy —2byy —2by,.

The Egs. (16) and (17) are the basic equations describing the required buckling response of NH
orthotropic conical shells subjected to combined loading of external pressure and axial
compression.

3. Solution of basic equations
It is assumed that the non-homogeneous orthotropic conical shell is subject to the simply-

supported boundary conditions. According to study of Agamirov (1990), the deflection of axially
and laterally combine-loaded conical shells can be expressed as follows

w= fe sin(f,2)sin( 5,6, (19)
where f'is the unknown amplitude, f; = mz/ zy and S, = n/ siny, in which zo = In(1 + L/S;) and m
and »n are number of half-waves along a generatrix and an integer representing the circumferential
wave number of the buckled conical shell, respectively.

Taking into account (19), the compatibility Eq. (17) is solved exactly to yield the stress
function ¥, satisfying the boundary conditions, as

W, = fldie " sin(B2) + Aye~ cos(Bz) + Ay cos(z) + A, sin(B,2) sin(£,6,) (20)

where the following definitions apply
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ZX, + Y2 X\Z, — 2,V
A:1; 122, A2=122 121
X+ X+ 1)
A = By (ﬂ1yo — X )Sl coty A = B (ﬂ1x0 + )’o)Sl coty
3= , Ay =
X5+ X5+ V5
in which
Xo = _q3ﬂ12 + %ﬂlzﬂzz - %ﬂzz + Q1ﬂ14 + %ﬂ;a Yo = %513 —q4p + %ﬁlﬂzze
X =qsBL B + (3% —-649,—q; )ﬂl2 + (‘]6 —4q7—Ys )ﬂz2 + q1ﬁ14+ %ﬂ; t4, -9, +q3—4q,,
(22)
= (‘16 —2g;5 )ﬂlﬂzz + (2‘]3 —q4 +4q, _3‘]2):31 + (‘12 —4q, )ﬂﬁs
s=aol82 - 1F + B2 Brlan 8 40 -] 2 =(an—a B (52 - 2 1)
Introduction of Egs. (19) and (20) into Eq. (16) and applying the Galerkin method, yields
zo27siny
IL(‘I’I ,w)e” sin(f,z)sin(5,6,)dzd 6, =0, (23)
0 0

(a) The truncated conical shell is subjected to an axial compressive load only, i.e., NJ=-T,
Nj =N3,=0. In this case, after integrating Eq. (23), for the dimensionless critical axial
compressive load of the non-homogeneous orthotropic conical shell, yields

re-_ SGH 0 (24)
SEBT(B7 +2)(e™™ —1) Eygh

where Q is parameter and defined as

A, (B, + Bks 2Bk, — BBk, )+ Ak B+ Biks + B B2k — 22Ky

0=+ (45, - 4,55, coty - Zﬂ;A‘* (6, = Bk, + Biks + B2 Bk —282ks)

- Z'B%(ﬁlakz + ﬁlﬁzzk7 - 2Pk, )+ zﬁ(l‘llﬁf + 4,8 )S1 coty

A, (1813k2 + ﬂ12k3 —2Bk, — 1811822k7 )+ 4, (k1ﬂ14 + ﬂ;ks + ﬂl2ﬂ22k6 - 2,822k8)

+ (Alﬂl ~4,p¢ )Sl coty — 4, (ﬂ13 + B = B3 Xk4 —ky + ks )ﬂl + ki B7 B (3220 - 1)

— (Bt + B2 B+ (B2 + 14 BE =282 Jes By + BBk | XB+1)

+ (k“ +ky )1813 + ko3 + k9182451 + 1813ﬂz2k10 - 2k9ﬂzzﬂl

B, (e4z0 _ 1)
8B +4)

B, (6320 _ 1)
4B +9

(25)

(4,82 + 4,87 + 44, +44,8,) S coty
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(b) The truncated conical shell is subjected to uniform lateral pressure only, i.e., N§ =0,
Ny =-PStany; N, =0. In this case, after integrating Eq. (23), for the dimensionless
critical lateral pressure of the non-homogeneous orthotropic conical shell, the following

equation is obtained
L. 5(25+4p7)coty 0 26)
S BQ@EE +3)E ~1) Eyg

(c) The truncated conical shell subjected to uniform hydrostatic pressure only, i.e.,
NJ=-0.5PStan y, N) =—PStan y; N3, =0. In this case, after integrating Eq. (23), for
the dimensionless critical hydrostatic pressure of the non-homogeneous orthotropic
conical shell, the following equation is obtained

o 10(25+ 48} ) coty 0
O SIBRRPE+ALE + 1) —1) Eyg

27

(d) The following equation is used for the critical combined axial compressive load and lateral
pressure of the non-homogeneous orthotropic conical shell

Tlax RL
4+ —
T PL

ler ler

=1 (28)

where T} and P‘ are dimensionless axial compressive load and dimensionless lateral
pressure, respectively and the following definitions apply

"= , Rf=—t (29)

Case (1) high values of axial compression combined with relatively low lateral pressure (Shen
2001, Sofiyev 2014), i.e., T} = B,P*. If T, = B,P" is considering in Eq. (28), the expression
for dimensionless critical axial compressive load and lateral pressure of the non-homogeneous
orthotropic truncated conical shell is rewritten as

]"aX})%‘
Ri[; — lzr ler (30)
lgljatr + 71?f

where B, =T,/ P" is the load-proportional parameter and is a positive number.

Case (2) high values of external pressure combined with relatively low axial load (Shen 2001),
ie, B*=B,[}. If P} =B,I} is considering in Eq. (28), the expression for dimensionless
critical combined axial compressive load and lateral pressure of the non-homogeneous orthotropic
truncated conical shell is rewritten as

cb Y]Z:Plfr
L = o e (€29
B +B,T%

ler ler
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where B, = P /T is the load-proportional parameter and is a positive number.
As y — 0, the truncated conical shell is transformed into a cylindrical shell, i.e.,

y=/180000 >0, S, o0, S siny=R, ﬂlsinyzgzmz,

(32)
L L a L
zg=In|1+—|=r—, e =l-a—, a>0, L=L, R =R,=R
1 1 S

If (32) is taken into account in Eqgs. (24), (26), (27), (30) and (31) corresponding expressions
for the non-homogeneous orthotropic cylindrical shell are found, as a special case.

As u =0 (or 5 = 0); Eos = Eog = Eo; vsy = ves = W, the appropriate expressions for the
homogeneous isotropic conical shell are found, as a special case.

As 1 =0 (or # = 0), the appropriate expressions for homogeneous orthotropic conical shells are
found, as a special case.

4. Numerical analysis and discussions
In this section, numerical results are presented and compared with existing data.
4.1 Comparisons
In order to test the validity of this research is carried out two comparisons. In the first example,

the values of the dimensionless critical hydrostatic pressure of homogeneous isotropic cylindrical
and truncated conical shells are compared in Table 1 with the results of Baruch et al. (1967) for

Table 1 Comparison the values of the critical hydrostatic pressure of homogeneous isotropic cylindrical and
truncated conical shells with those of Baruch ez al. (1967)

Bl x10%; (n.)

ler

y L/R, Baruch et al. (1967) Present study
0° 21.06(11) 21.238(11)
10° 0.5 19.40(11) 19.373(11)
30° ' 14.55(11) 14.397(11)
50° 8.813(11) 8.6403(11)
0° 9.838(8) 9.77997(8)
10° ) 8.569(9) 8.5339(9)
30° 5.843(9) 5.6651(9)
50° 3.285(9) 3.0976(9)
0° 4.744(6) 4.7461(6)
10° 5 3.740(7) 3.6878(7)
30° 2.237(8) 2.0770(8)

50° 1.164(8) 1.0105(8)
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Table 2 Comparison of dimensionless critical loads homogeneous orthotropic cylindrical shells under
combined lateral pressure and axial compression

Plcr X 103
Eos/ Eog B
Shen (2001) Present study
5 0 0.1465 (3) 0.1473(3)
0.1 0.1462 (3) 0.1472(3)
10 0 0.1644 (3) 0.1699(3)
0.1 0.1641 (3) 0.1698(3)

different semi-vertex angle y and L/ R;. The other computing data are £, =2 x 10'"Pa, vy =0.3, h =
0.01 m and R, = 1 m. For the first comparison, the expression (27) is used. By taking 4 =0 (or # =
0), Eos = Eop = Eo and vgy = vgs = v, into the expression (27), the appropriate expression a
dimensionless hydrostatic pressure for the homogeneous isotropic truncated conical shell is found,
as a special case. In brackets indicate the circumferential wave numbers (n.,) corresponding to the
minimum values of a critical hydrostatic pressure and y — 0° corresponds to the cylindrical shell.
It can be seen that the present results are in good agreement with results of Baruch et al. (1967)

In addition, the dimensionless critical loads B: and P’ for homogeneous orthotropic
cylindrical shells under combined loading case (1) are compared in Table 2 with results of Shen
(2001), for different values of stiffness ratio Eys/ Eopp shown. In the second comparison, the
expression (30) is used. By taking y — 0° and x = 0 (or # = 0) into the expressions (26) and (30),
the appropriate expressions for the dimensionless critical lateral and critical combined loads of the
homogeneous orthotropic cylindrical shell is found, as a special case. B; = 0 indicates the loading
case of uniform lateral pressure. The computing data adopted here are: Eys = 206.844 GPa, Gy =
0.6 Egg, vsp=0.25 and 7 =0.01 m, R/h =20, L;/R =5 (see, Shen 2001). Values in parentheses are
the wave numbers (n,.,) corresponding to the critical loads. It can also be seen that the present
results agree well with the results of Shen (2001).

4.2 Critical combined loads of NH orthotropic cylindrical and truncated conical shells

The buckling analysis has been presented for non-homogenous orthotropic truncated conical
shells subjected to combined loading of external pressure and axial compression. Numerous
examples were solved to illustrate their application to the performance of NH orthotropic
cylindrical and truncated conical shells. Numerical computations for the critical loads (lateral,
hydrostatic and combined loads) of homogeneous (H) and non-homogenous (NH) orthotropic
cylindrical and truncated conical shells have been carried out using expressions (24), (26), (27),
(30) and (31) and the results are presented in Figs. 2-5 and Table 3. The calculations were
performed for the following types of orthotropic materials (except of Table 3). The homogeneous
orthotropic material properties are taken to be (Glass/epoxy): Eos = 5.37791 x 10" Pa, Eyy =
1.79264 x 10" Pa, Gy = 8.9632 x 10° Pa, vsy = 0.25 and (Graphite/epoxy): Eos = 1.724 x 10" Pa,
Eop = 7.79 x 10° Pa, vgy = 0.35. In all subsequent calculations, the Young’s muduli and shear
modulus of orthotropic materials vary as linear, quadratic or exponential functions. The variation
coefficients are taken into account as 4 = 1 or # = 1. The material properties of the shells are
homogenous, as ¢ = 0 or # = 0. The following expression is used for percents: [(NH — H)/H] x
100%. The negative sign in front of the percents show that the values of critical loads in
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non-homogeneity case are smaller than in homogeneity case.

Fig. 2 shows the variation of critical combined loads for H and NH graphite/epoxy and
glass/epoxy truncated conical shells against the load-proportional parameter B, i.e., under
combined loading case (1). Then Fig. 3 shows the variation of the values of critical combined
loads for H and NH graphite/epoxy and glass/epoxy truncated conical shells versus the
load-proportional parameter B,, i.e., under combined loading case (2). The truncated conical shell
characteristics are taken to be R;/# =100; L / R; =2, y =45°. It is seen that from Figs. 2 and 3, the
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Fig. 2 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy
truncated conical shells versus the load-proportional parameter B,
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Fig. 3 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy
truncated conical shells versus the load-proportional parameter B,
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values of critical combined loads for H and NH graphite/epoxy and glass/epoxy truncated conical
shells decrease, as load-proportional parameters B, or B, increase. The influence of the variation of
By on the values of critical combined loads for the glass/epoxy conical shell is higher than the
graphite/epoxy conical shell. The effect of changes of B,, on the values of critical combined loads
for both orthotropic conical shells is almost the same. The values of critical combined loads for H
and NH glass/epoxy conical shells are higher than the H and NH graphite/epoxy conical shells for
different load proportional parameters B; and B,. The influences of load-proportional parameters
on the values of the critical combined loads are important in the large values of B, and B,.

The distribution of the values of critical loads for H and NH graphite/epoxy and glass/epoxy
conical shells versus the stiffness ratio Eys/ Eoy with the linear, quadratic and exponential profiles
are tabulated in Table 3. The conical shell characteristics and material properties adopted here are
Ri/h =150; L/R, =2 and Eos = 2 x 10" (Pa), Eoy = Eos/i, i = 10; 25; 40, vsy = 0.2; po = 7800
kg/m’. The truncated conical shell under combined loading case (1), with load-proportional
parameter B; = 500. The number in brackets (n.) indicate the circumferential wave numbers
corresponding to minimum values of critical loads. The values of critical lateral and hydrostatic
pressures and combined load (axial compression and lateral pressure) for H and NH orthotropic
conical shells decrease, while corresponding circumferential wave numbers increase, as the
stiffness ratio Eys/ Ey increases. The values of critical combined loads for H and NH orthotropic
conical shells are lower than the critical lateral or hydrostatic pressures. The effect of
non-homogeneity on the values of critical combined loads for orthotropic conical shells changed
irregularly, as the stiffness ratio Eyg/ Egy increases from 10 to 40 by step 15. For example, the
effect of heterogeneity on the values of critical combined loads for orthotropic conical shells with
linear quadratic and exponential profiles are (6.49%, 5.0%, 6.9%) (-12.99% -15.0% -13.79%) and
(63.64%, 62.5%, 62.07%), respectively, as the stiffness ratio Eys/ Egp =10, 25 and 40, respectively.

The distribution of the values of critical combined loads for H and NH graphite/epoxy and
glass/epoxy conical shells versus the semi-vertex angle y with the linear, quadratic and exponential
profiles are given in Fig. 4. Here, y — 0° corresponds to a cylindrical shell. The conical shell has
the following geometric parameters: R;/h = 150 and L/R; = 2. The shells under combined loading
case (1), with load-proportional parameter B; = 500. The values of critical combined loads for H
and NH graphite/epoxy and glass/epoxy conical shells decrease, as the semi-vertex angle y
increases. As the values of critical combined loads for NH orthotropic shells with linear,

Table 3 Variation of critical loads for H and NH graphite/epoxy and glass/epoxy conical shells versus the
Eys/ Eqy with the linear, quadratic and exponential profiles

RUX10°  RLx10°  RIx10°  REx10°  BLx10°  RIx10°
Eos/ Eg Homogeneous NH linear
10 0.081(12) 0.083(12) 0.077(12) 0.075(12) 0.077(12) 0.072(12)
25 0.042(13) 0.043(13) 0.04(13) 0.039(13) 0.040(13) 0.038(13)
40 0.030(13) 0.031(14) 0.029(13) 0.028(14) 0.029(14) 0.027(14)
Eos/ Eg NH quadratic NH exponential
10 0.092(12) 0.094(12) 0.087(11) 0.030(12) 0.030(12) 0.028(12)
25 0.048(13) 0.049(13) 0.046(13) 0.015(13) 0.016(13) 0.015(13)

40 0.034(13)  0.035(13) 0.033(13) 0.011(14) 0.011(14) 0.011(13)
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quadratic and exponential profiles are compared with each other, the largest influence is observed
in an exponential case. As the values of the critical combined loads for NH orthotropic cylindrical
shells (y — 0) with linear, quadratic and exponential profiles are compared with homogeneous
orthotropic cylindrical shells, the influence of non-homogeneity on the values of critical combined
loads for graphite/epoxy (or glass/epoxy) cylindrical shells are 6.92%, (-13.84%), 62.89% (or
5.72%, -12.56%, 61.21%), respectively. As the values of critical combined loads for NH
orthotropic conical shells with linear, quadratic and exponential profiles are compared with the
homogeneous orthotropic conical shells, the effect of non-homogeneity on the values of critical
combined loads for graphite/epoxy (or glass/epoxy) conical shells is significant and slightly
change, as y increases from 15° to 60° by step 15°. It is apparent from the Fig. 4 that the values of
critical combined loads for H and NH orthotropic cylindrical shells are higher than the
corresponding values of critical combined loads for H and NH orthotropic conical shells. The
values of critical combined loads of H and NH glass/epoxy conical shells are higher than the H
and NH graphite/epoxy conical shells, whereas, the influence of non-homogeneity on the values of
critical combined load of graphite/epoxy shell is higher than the corresponding effect for the
glass/epoxy shell.

Fig. 5 shows the effect of shell geometric parameter (L /R;) on the values of critical combined
loads of graphite/epoxy and glass/epoxy truncated conical shells under combined loading case (1),
with the load-proportional parameter B; = 500. In computations, the following conical shell
parameters are used: R;/h = 150 and y = 45°. With increasing of the ratio L/R,, the values of
critical combined loads for graphite / epoxy and glass / epoxy truncated conical shells decrease. It
is observed that the effect of non-homogeneity is significant, while this effect is changed with
increasing of L/R;. Comparing the values of critical combined loads of NH orthotropic conical
shell with those of homogeneous orthotropic conical shell: (a) the effects of linear, quadratic and
exponential profiles on the values of critical combined load for the graphite/epoxy conical shell are
(6.52%; -13.77%, 63.04%), (4.76%; -14.29%, 61.9%) and (12.5%; -12.5, 62.5%), whereas, for
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Fig. 4 Variation of critical combined loads for H and NH graphite/epoxy and glass/epoxy conical
shells versus the semi-vertex angle y with different non-homogeneity profiles



Buckling of non-homogeneous orthotropic conical shells subjected to combined load 15

0.60
\
\
0.45 AN Graphite/Epoxy Glass/Epoxy
RN
RN — e
AN . .
'; \\\ \ ——=—— NH Linear — —o— — NH Linear
S
2y 030 \\\\ AN ——a— NH Quadratic — —— — NH Quadratic
~—
N
Ay \\\\\ —>—— NH Exponential — —= — NH Exponential

L/Ri

Fig. 5 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy
conical shells versus L/ R, with different non-homogeneity profiles

the glass/epoxy conical shell are (6%; -13.33%, 58%), (5.88%; -12.94%, 60%) and (6.25%; -15.63,
59.38%), respectively for L/R; =1, 3 and 5.

5. Conclusions

In this study, the buckling of non-homogeneous orthotropic truncated conical shells under
combined axial compression and lateral pressure is investigated. The governing equations have
been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties
of which vary continuously in the thickness direction. By applying the Galerkin’s method to the
governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of
non-homogeneous orthotropic truncated conical shells are obtained.

The numerical results support the following conclusions:

(a) The values of critical combined loads for H and NH graphite/epoxy and glass/epoxy
truncated conical shells decrease, as load-proportional parameters B; or B, increase.

(b) The influence of the variation of B, on the values of critical combined loads for H and NH
glass/epoxy conical shells is higher than H and NH graphite/epoxy conical shells,
respectively, while the effect of changes of B, is almost the same.

(c) The values of critical combined loads for H and NH glass/epoxy conical shells are higher
than the H and NH graphite/epoxy conical shells for different load proportional parameters
B and B,.

(d) The values of critical lateral and hydrostatic pressures and combined load (axial
compression and lateral pressure) for H and NH orthotropic conical shells decrease, while
corresponding circumferential wave numbers increase, as Eys/ Eyg increases.
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() The effect of non-homogeneity on the values of critical combined loads for orthotropic
conical shells changed irregularly, as the stiffness ratio Eys/ Eqg increases .

(f) The values of critical combined loads for H and NH graphite/epoxy and glass/epoxy
conical shells decrease, as the semi-vertex angle y and L/ R, increase.

(g) The effect of non-homogeneity on the values of critical combined loads for graphite/epoxy
(or glass/epoxy) conical shells is significant and slightly change, as y increases, while this
effect is significant and changed with increasing of L/ R;.

(h) The values of critical combined loads of H and NH glass/epoxy conical shells are higher
than the H and NH graphite/epoxy conical shells, whereas, the influence of non-
homogeneity on the values of critical combined load of graphite/epoxy shell is higher than
the corresponding effect for the glass/epoxy shell.

(1) The largest influence of non-homogeneity on the critical combined load is observed in an
exponential case.

(j) The values of critical combined loads for H and NH orthotropic conical shells are lower
than the critical lateral or hydrostatic pressures.
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Nomenclature

A[ (l: 1923 3’ 4)
ajj, Cij, bU (l] = 1, 2, 6)
Bl’ BZ
Ey

Eos, Eog

Es, Ey

€s, €0, €s0
r
G
Go
H
k=1,2,..

kg (G=1,2,.,16)

L (le W)

M, My, Mgy

NH
Ng, Ny, Ngy

0 0 0
N.V’th’ NSH

A.H. Sofiyev and N. Kuruoglu

Parameters
Coefficients depending on the material properties and shell characteristics
Load-proportional parameters

Young’s moduli of homogeneous isotropic material

Young’s moduli of homogeneous orthotropic material in S and € directions,
respectively

Young’s moduli of non-homogeneous orthotropic material in S and 6
directions, respectively

Strains on the reference surface

Unknown amplitude

Shear modulus of the non-homogeneous orthotropic materials
Shear modulus of the homogeneous orthotropic materials
Shortening of the “homogeneous”

Power-law index

Coefficients depending on the material properties and shell characteristics
Length of truncated cone

Differential operator

Moment resultants

Number of half-waves along a generatrix

Shortening of the “non-homogeneous”

Force resultants

Membrane forces for the condition with zero initial moments
Circumferential wave number

External normal pressure

Dimensionless lateral pressure

Dimensionless hydrostatic pressure

Dimensionless critical combined load for low lateral pressure
Dimensionless critical hydrostatic pressure

Dimensionless critical lateral pressure
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0y (i,j=1,2,6)
R, R,
S
SOC
S
T
T
T
L
w
z
20
B, Ba
Y

€s, €0, €50

n
0

0,
u
Vo
Vso, Vos
0s, 09, 050
o(&)
¢
X, Vi, zi(i=0,1,2)
Q
Y (S, 0)
¥

Quantities of non-homogeneous orthotropic materials

Radii of the truncated cone at its small and large ends

Axis in the direction of the generator of the cone

Curvilinear coordinate system

Distance of the smaller end of the truncated conical shell from the vertex
Axial compressive load

Dimensionless axial compressive load

Dimensionless critical axial compressive load

Dimensionless critical combined load for low axial load

Displacement of the reference surface in the normal direction
Independent variable

Parameter depending on shell characteristics

Parameters

Semi-vertex angle of the cone

Strains

Exponential factor

Axis in the circumferential direction

Variable depending on 6

Non-homogeneity parameter

Poisson’s ratio of homogeneous isotropic material

Poisson’s ratios of homogeneous orthotropic material

Stresses

Non-homogeneity function

Axis perpendicular to the S-6 plane

Parameters depending on the material properties and shell characteristics
Parameter depending on the material properties and shell characteristics
Stress function

Function depending on Airy stress function





