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Abstract.  The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical 
shells subjected to combined loading of axial compression and external pressure. The governing equations 
have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of 
which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the 
governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of 
non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are 
obtained. The results are verified by comparing the obtained values with those in the existing literature. 
Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical 
parameters on the values of the critical combined load have been studied. 
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1. Introduction 

 
Conical shells are one of the necessary structural components and commonly found in a variety 

of engineering applications, such as the military, turbo-machinery and marine industries, e.g., piles 
for holding jackets when driven into the sea bed, transition elements between two cylindrical 
shells of different diameter, and the legs of off-shore drilling rigs. When used as piles for jackets 
holding, they are, subjected to axial compression. However, when used as transition components, 
they are also subjected to external pressure. Hence in the case of off-shore drilling rigs, they are 
under combined loading (Ifayefunmi and Błachut 2013). This extensive application of conical 
shells in marine engineering calls for efficient tools to analyze the mechanical behavior of these 
structures. Stability of conical shells under combined loads is one of the most important failure 
modes of these structures. Research on the buckling of homogeneous isotropic conical shells under 
combined load has a long history. References to some of the earlier works can be found in the 
studies of Sachenkov (1964), Weingarten and Seide (1965), Karpov and Karpova (1981), Struk 
(1984) and Tani (1985). 
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In recent years, some studies on the buckling of homogeneous isotropic and orthotropic conical 
shells under combined loads are published. For instance, Blachut (2011) presented the buckling of 
short, and relatively thick, mild steel conical shells subjected to the combined action of external 
pressure and axial compression. Ajdari et al. (2012) presented the solution of the buckling of 
composite truncated conical shells under combined external pressure and axial compression. 
Blachut (2012) presented interactive plastic buckling of cones subjected to axial compression and 
external pressure. Shadmehri et al. (2012) proposed to obtain the linear buckling response of 
conical composite shells using a semi-analytical approach. Naderi et al. (2014) reported the 
influence of fiber paths on the buckling load of tailored conical shells. Sofiyev (2014) presented 
the buckling of homogeneous composite conical shells resting on elastic foundations under a 
combined load. 

Since 2010, new researches performed on the non-homogeneous or functionally graded (FG) 
isotropic cylindrical and conical shells have mostly been focused on the buckling of shells 
subjected to combined loads. Khazaeinejad et al. (2010) presented the buckling of functionally 
graded cylindrical shells under combined external pressure and axial compression. Sofiyev (2010) 
investigated the buckling of FG isotropic truncated conical shells subjected to combined axial 
tension and hydrostatic pressure. Sofiyev et al. (2012) presented the stability of FG isotropic shells 
subjected to combined loads with different edge conditions and resting on elastic foundations. 
Van-Dung et al. (2013) presented instability of eccentrically stiffened FG isotropic truncated 
conical shells under mechanical loads. Mohammadzadeh et al. (2013) studied the buckling of 
2D-FG cylindrical shells under combined external pressure and axial compression. Wu et al. (2013) 
investigated the buckling analysis of functionally graded material circular hollow cylinders under 
combined axial compression and external pressure. 

However, to the best of our knowledge, the buckling of non-homogeneous orthotropic conical 
shells under combined loading has not been examined theoretically yet. The non-homogeneity of 
the materials stems from the effects of humidity, surface and thermal polishing processes and 
methods of production, which causes the mechanical properties of the materials to vary from point 
to point (random, piecewise continuous or continuous functions of coordinates) (Babich and 
Khoroshun 2001, Awrejcewicz and Krysko 2008, Sofiyev et al. 2009, Grigorenko and Grigorenko 
2013). Furthermore, certain parts of structural elements have to operate under radiation and 
elevated temperatures and which cause non-homogeneity in the material, i.e., the constants of the 
material become functions of space variables (Lal and Kumar 2012). In addition, the FGMs is a 
subgroup of non-homogeneous materials, also. They are non-homogeneous with regard to 
mechanical and strength properties. Depending on the processing technique, they may exhibit 
either isotropic or anisotropic material properties. For example, in studying the mechanics of the 
former class of materials produced by spark plasma sintering (SPS), a non-homogeneous isotropic 
model may be appropriate; and for the latter class of materials fabricated by plasma spraying or 
physical vapor deposition (PVD), the non-homogeneous orthotropic model may suffice as a first 
approximation (Kim and Paulino 2002, Ootao and Tanigawa 2007). A study that includes a 
non-homogeneity would be interesting as it would shed light on the effects of non-homogeneity on 
the buckling phenomenon of conical shells under combined loads. Thus in the present paper, the 
stability analyses of non-homogeneous orthotropic shells under combined loads are carried out. 
This is one of the dominant loading conditions for aerospace and marine structures. The content of 
this paper is arranged as follows: first, the equations of stability of a non-homogeneous orthotropic 
truncated conical shell subjected to the combined loading are derived based upon the modified 
Donnell type thin shell theory. Young’s moduli and shear modulus of orthotropic materials vary as 
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linear, quadratic and exponential functions in the thickness direction. Then solving the governing 
equations using the Galerkin’s method, we obtain an expression for the critical combined load of 
non-homogeneous orthotropic truncated conical and cylindrical shells. The results are compared 
with corresponding studies presented by other authors. The effects of non-homogeneity, material 
orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical 
combined load examined in detail. 
 
 
2. Theoretical development 

 
The configuration of a thin non-homogeneous orthotropic truncated conical shell and the 

coordinate system are taken as shown in Fig. 1 that R1 and R2 indicate the radii of the cone at its 
small and large ends, respectively, γ denotes the semi-vertex angle of the cone, L is the truncated 
cone length along its generator and S1 is the distance of the smaller end of the truncated conical 
shell from the vertex. We introduce the Sθζ curvilinear coordinate system; S coincides with 
generator, θ is circumferential coordinate and ζ is perpendicular to the S-θ plane and its direction is 
inwards normal of the truncated conical shell. w is the displacement of the reference surface in the 
normal direction, positive towards the axis of the cone and assumed to be much smaller than the 
thickness. 

It is assumed that the conical shell material is a non-homogeneous orthotropic. The 
non-homogeneity of orthotropic materials of the conical shell is assumed to arise due to the 
variation of Young’s moduli and shear modulus along the thickness direction ζ (Sofiyev et al. 
2009) 

)(),(),( 000   GGEEEE SS                     (1) 

 
 

Fig. 1 Geometry of composite truncated conical shell subjected to combined load 
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where E0S and E0θ are the Young’s moduli in S and θ directions, respectively, and G0 is the shear 
modulus of the homogeneous orthotropic materials. Also, it is assumed that the Poisson’s ratios vSθ 
and vθS are constant and satisfying vθSE0S = vSθE0θ. Here )(  is function of the non-homogeneity 
defining the variations of the Young’s moduli and shear modulus, respectively. 

In this study, two different variation laws for the non-homogeneity of orthotropic materials are 
considered: (a) simple power-law; and (b) exponential distributions through the thickness of the 
shells. 

(a) The orthotropic material properties of the non-homogeneous shells are assumed to vary 
through their thickness direction according to the simple power-law distribution (Babich 
and Khoroshun 2001, Awrejcewicz and Krysko 2008, Sofiyev et al. 2009, Grigorenko and 
Grigorenko 2013, Lal and Kumar 2012) 

 
k 1)(                                (2) 

 
where μ is a non-homogeneity parameter, satisfying 0 ≤ μ ≤ 1 and k = 1, 2,... is the 
power-law index. 

(b) The orthotropic material properties of the non-homogeneous shells are assumed to vary 
through their thickness direction according to the exponential-law distribution, also 

 
)5.0()(   e                                (3) 

 
where η is a exponential factor and is a real number (Kim and Paulino 2002, Ootao and 
Tanigawa 2007). 

 
The truncated conical shell is subjected to simultaneous action of the axially compressive load 

T and external normal pressure P, as shown in Fig. 1. Under this loading the membrane stress 
resultant, at the critical state, may be expressed as (Agamirov 1990, Sofiyev 2014) 
 

0; tanS, 000    SS NPNTN                       (4) 
 
where 

00 , θs   NN  and 0
SN  are the membrane forces for the condition with zero initial moments. 

These equations based on the membrane theory of shells degenerate to their more familiar 
forms for cylindrical shells, when γ is set equal to zero. 

For thin non-homogeneous orthotropic shells, the stresses  ,S  and  S  are related to the 
corresponding strains  ,S  and  S  by the stress-strain relationship (Reddy 2004, Sofiyev et al. 
2009) 
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Where Qij, (i, j = 1, 2, 6) are quantities of non-homogeneous orthotropic materials and are 
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The strains are defined as linear functions of the thickness coordinate ζ 
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where θ1 = θ sin γ and eS, eθ, eSθ are the strains on the reference surface. 

The definitions of the force and moment resultants are given as (Reddy 2004) 
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Let Ψ (S, θ) be the stress function for the stress resultants defined by (Agamirov 1990) 
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In view of Eqs. (5), (7) and (9), and when solutions (8) are used, the moments and stresses may 

be given in the following final explicit forms 
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where the following definitions apply 
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The modified Donnell type stability and strain compatibility equations of a non-homogeneous  

orthotropic truncated conical shell under external pressures can be written as (Agamirov 1990) 
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Expanding the force and moment resultants and substituting into Eqs. (14) and (15), and 

together with (4) and (9) yields 
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  (17) 

 
where z = ln (S / S1) and Ψ1 = Ψe−2z, and the following definitions apply 
 

 
 

 
 
 

.2222   ,533   ,4

,   ,2   ,43   ,2

,,   ,2   ,34   ,2

,2   ,353   ,4   ,

,2   ,335

,4   ,   ,2   ;   ,2

,   ),(2   ,34   ,2   ,

),(2   ,335   ,4   ,

2414231316142324131523241314

2313142432121332241124133210

149118112131721123161221315

2212211141222112132212212221

24142313162414231315

14231314131324321412131132231410

249213122822311172231116215

2112221142122111231222112121

bbbbqbbbbqbbbq

bqbbbqbbbqbbbq

bqbqbbbqbbbqbbbq

bbbbqbbbbqbbbqbq

cccckcccck

ccckckccckckccck

ckccckccckccckck

cccckcccckccckck













(18) 

 
The Eqs. (16) and (17) are the basic equations describing the required buckling response of NH 

orthotropic conical shells subjected to combined loading of external pressure and axial 
compression. 

 
 

3. Solution of basic equations 
 

It is assumed that the non-homogeneous orthotropic conical shell is subject to the simply- 
supported boundary conditions. According to study of Agamirov (1990), the deflection of axially 
and laterally combine-loaded conical shells can be expressed as follows 
 

)sin()sin( 121  zfew z                           (19) 
 
where f is the unknown amplitude, β1 = mπ / z0 and β2 = n / sinγ, in which z0 = ln (1 + L / S1) and m 
and n are number of half-waves along a generatrix and an integer representing the circumferential 
wave number of the buckled conical shell, respectively. 

Taking into account (19), the compatibility Eq. (17) is solved exactly to yield the stress 
function Ψ1, satisfying the boundary conditions, as 
 

  )sin()sin()cos()cos()sin( 12141312111  zAzAzeAzeAf zz         (20) 
 
where the following definitions apply 
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Introduction of Eqs. (19) and (20) into Eq. (16) and applying the Galerkin method, yields 
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(a) The truncated conical shell is subjected to an axial compressive load only, i.e., ,0 TNS   

.000   SNN  In this case, after integrating Eq. (23), for the dimensionless critical axial 
compressive load of the non-homogeneous orthotropic conical shell, yields 
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where Q is parameter and defined as 
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(b) The truncated conical shell is subjected to uniform lateral pressure only, i.e., ,00 SN  
; tanS0  PN   .00 SN  In this case, after integrating Eq. (23), for the dimensionless 

critical lateral pressure of the non-homogeneous orthotropic conical shell, the following 
equation is obtained 
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(c) The truncated conical shell subjected to uniform hydrostatic pressure only, i.e., 

, tanS5.00 PNS  ; tanS0  PN  .00 SN  In this case, after integrating Eq. (23), for 
the dimensionless critical hydrostatic pressure of the non-homogeneous orthotropic 
conical shell, the following equation is obtained 
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(d) The following equation is used for the critical combined axial compressive load and lateral 

pressure of the non-homogeneous orthotropic conical shell 
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where 

axT1  and 
LP1  are dimensionless axial compressive load and dimensionless lateral 

pressure, respectively and the following definitions apply 
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Case (1) high values of axial compression combined with relatively low lateral pressure (Shen 

2001, Sofiyev 2014), i.e., .111
Lax PBT   If 

Lax PBT 111   is considering in Eq. (28), the expression 
for dimensionless critical axial compressive load and lateral pressure of the non-homogeneous 
orthotropic truncated conical shell is rewritten as 
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where 
Lax PTB 111 /  is the load-proportional parameter and is a positive number. 

 
Case (2) high values of external pressure combined with relatively low axial load (Shen 2001), 

i.e., .121
axL TBP   If 

axL TBP 122   is considering in Eq. (28), the expression for dimensionless 
critical combined axial compressive load and lateral pressure of the non-homogeneous orthotropic 
truncated conical shell is rewritten as 
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where 
axL TPB 112 /  is the load-proportional parameter and is a positive number. 

As γ → 0, the truncated conical shell is transformed into a cylindrical shell, i.e., 
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If (32) is taken into account in Eqs. (24), (26), (27), (30) and (31) corresponding expressions 

for the non-homogeneous orthotropic cylindrical shell are found, as a special case. 
As μ = 0 (or η = 0); E0S = E0θ = E0; vSθ = vθS = v0, the appropriate expressions for the 

homogeneous isotropic conical shell are found, as a special case. 
As μ = 0 (or η = 0), the appropriate expressions for homogeneous orthotropic conical shells are 

found, as a special case. 
 
 

4. Numerical analysis and discussions 
 
In this section, numerical results are presented and compared with existing data. 
 
4.1 Comparisons 
 
In order to test the validity of this research is carried out two comparisons. In the first example, 

the values of the dimensionless critical hydrostatic pressure of homogeneous isotropic cylindrical 
and truncated conical shells are compared in Table 1 with the results of Baruch et al. (1967) for 

 
 

Table 1 Comparison the values of the critical hydrostatic pressure of homogeneous isotropic cylindrical and 
truncated conical shells with those of Baruch et al. (1967) 

;106
1 H
crP  (ncr) 

γ L / R1 Baruch et al. (1967) Present study 

0 o 

0.5 

21.06(11) 21.238(11) 

10o 19.40(11) 19.373(11) 

30 o 14.55(11) 14.397(11) 

50 o 8.813(11) 8.6403(11) 

0 o 

1 

9.838(8) 9.77997(8) 

10o 8.569(9) 8.5339(9) 

30 o 5.843(9) 5.6651(9) 

50 o 3.285(9) 3.0976(9) 

0 o 

2 

4.744(6) 4.7461(6) 

10o 3.740(7) 3.6878(7) 

30 o 2.237(8) 2.0770(8) 

50 o 1.164(8) 1.0105(8) 
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Table 2 Comparison of dimensionless critical loads homogeneous orthotropic cylindrical shells under 
combined lateral pressure and axial compression 

E0S / E0θ B1 
P1cr × 103 

Shen (2001) Present study 

5 
0 0.1465 (3) 0.1473(3) 

0.1 0.1462 (3) 0.1472(3) 

10 
0 0.1644 (3) 0.1699(3) 

0.1 0.1641 (3) 0.1698(3) 

 
 

different semi-vertex angle γ and L / R1. The other computing data are E0 = 2 × 1011Pa, v0 = 0.3, h = 
0.01 m and R1 = 1 m. For the first comparison, the expression (27) is used. By taking μ = 0 (or η = 
0), E0S = E0θ = E0 and vSθ = vθS = v0, into the expression (27), the appropriate expression a 
dimensionless hydrostatic pressure for the homogeneous isotropic truncated conical shell is found, 
as a special case. In brackets indicate the circumferential wave numbers (ncr) corresponding to the 
minimum values of a critical hydrostatic pressure and γ → 0° corresponds to the cylindrical shell. 
It can be seen that the present results are in good agreement with results of Baruch et al. (1967) 

In addition, the dimensionless critical loads 
L
crP1  and 

Cb
crP1  for homogeneous orthotropic 

cylindrical shells under combined loading case (1) are compared in Table 2 with results of Shen 
(2001), for different values of stiffness ratio E0S / E0θ shown. In the second comparison, the 
expression (30) is used. By taking γ → 0° and μ = 0 (or η = 0) into the expressions (26) and (30), 
the appropriate expressions for the dimensionless critical lateral and critical combined loads of the 
homogeneous orthotropic cylindrical shell is found, as a special case. B1 = 0 indicates the loading 
case of uniform lateral pressure. The computing data adopted here are: E0S = 206.844 GPa, G0 = 
0.6 E0θ, vSθ = 0.25 and h = 0.01 m, R / h = 20, L1 / R = 5 (see, Shen 2001). Values in parentheses are 
the wave numbers (ncr) corresponding to the critical loads. It can also be seen that the present 
results agree well with the results of Shen (2001). 

 
4.2 Critical combined loads of NH orthotropic cylindrical and truncated conical shells 
 
The buckling analysis has been presented for non-homogenous orthotropic truncated conical 

shells subjected to combined loading of external pressure and axial compression. Numerous 
examples were solved to illustrate their application to the performance of NH orthotropic 
cylindrical and truncated conical shells. Numerical computations for the critical loads (lateral, 
hydrostatic and combined loads) of homogeneous (H) and non-homogenous (NH) orthotropic 
cylindrical and truncated conical shells have been carried out using expressions (24), (26), (27), 
(30) and (31) and the results are presented in Figs. 2-5 and Table 3. The calculations were 
performed for the following types of orthotropic materials (except of Table 3). The homogeneous 
orthotropic material properties are taken to be (Glass/epoxy): E0S = 5.37791 × 1010 Pa, E0θ = 
1.79264 × 1010 Pa, G0 = 8.9632 × 109 Pa, vSθ = 0.25 and (Graphite/epoxy): E0S = 1.724 × 1011 Pa, 
E0θ = 7.79 × 109 Pa, vSθ = 0.35. In all subsequent calculations, the Young’s muduli and shear 
modulus of orthotropic materials vary as linear, quadratic or exponential functions. The variation 
coefficients are taken into account as μ = 1 or η = 1. The material properties of the shells are 
homogenous, as μ = 0 or η = 0. The following expression is used for percents: [(NH − H) / H] × 
100%. The negative sign in front of the percents show that the values of critical loads in 
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non-homogeneity case are smaller than in homogeneity case. 
Fig. 2 shows the variation of critical combined loads for H and NH graphite/epoxy and 

glass/epoxy truncated conical shells against the load-proportional parameter B1, i.e., under 
combined loading case (1). Then Fig. 3 shows the variation of the values of critical combined 
loads for H and NH graphite/epoxy and glass/epoxy truncated conical shells versus the 
load-proportional parameter B2, i.e., under combined loading case (2). The truncated conical shell 
characteristics are taken to be R1 / h = 100; L / R1 = 2, γ = 45°. It is seen that from Figs. 2 and 3, the 
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Fig. 2 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy 
truncated conical shells versus the load-proportional parameter B1 
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Fig. 3 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy 
truncated conical shells versus the load-proportional parameter B2 
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values of critical combined loads for H and NH graphite/epoxy and glass/epoxy truncated conical 
shells decrease, as load-proportional parameters B1 or B2 increase. The influence of the variation of 
B1 on the values of critical combined loads for the glass/epoxy conical shell is higher than the 
graphite/epoxy conical shell. The effect of changes of B2, on the values of critical combined loads 
for both orthotropic conical shells is almost the same. The values of critical combined loads for H 
and NH glass/epoxy conical shells are higher than the H and NH graphite/epoxy conical shells for 
different load proportional parameters B1 and B2. The influences of load-proportional parameters 
on the values of the critical combined loads are important in the large values of B1 and B2. 

The distribution of the values of critical loads for H and NH graphite/epoxy and glass/epoxy 
conical shells versus the stiffness ratio E0S / E0θ with the linear, quadratic and exponential profiles 
are tabulated in Table 3. The conical shell characteristics and material properties adopted here are 
R1 / h = 150; L / R1 = 2 and E0S = 2 × 1011 (Pa), E0θ = E0S / i, i = 10; 25; 40, vSθ = 0.2; ρ0 = 7800 
kg/m3. The truncated conical shell under combined loading case (1), with load-proportional 
parameter B1 = 500. The number in brackets (ncr) indicate the circumferential wave numbers 
corresponding to minimum values of critical loads. The values of critical lateral and hydrostatic 
pressures and combined load (axial compression and lateral pressure) for H and NH orthotropic 
conical shells decrease, while corresponding circumferential wave numbers increase, as the 
stiffness ratio E0S / E0θ increases. The values of critical combined loads for H and NH orthotropic 
conical shells are lower than the critical lateral or hydrostatic pressures. The effect of 
non-homogeneity on the values of critical combined loads for orthotropic conical shells changed 
irregularly, as the stiffness ratio E0S / E0θ increases from 10 to 40 by step 15. For example, the 
effect of heterogeneity on the values of critical combined loads for orthotropic conical shells with 
linear quadratic and exponential profiles are (6.49%, 5.0%, 6.9%) (-12.99% -15.0% -13.79%) and 
(63.64%, 62.5%, 62.07%), respectively, as the stiffness ratio E0S / E0θ = 10, 25 and 40, respectively. 

The distribution of the values of critical combined loads for H and NH graphite/epoxy and 
glass/epoxy conical shells versus the semi-vertex angle γ with the linear, quadratic and exponential 
profiles are given in Fig. 4. Here, γ → 0° corresponds to a cylindrical shell. The conical shell has 
the following geometric parameters: R1 / h = 150 and L / R1 = 2. The shells under combined loading 
case (1), with load-proportional parameter B1 = 500. The values of critical combined loads for H 
and NH graphite/epoxy and glass/epoxy conical shells decrease, as the semi-vertex angle γ 
increases. As the values of critical combined loads for NH orthotropic shells with linear, 

 
 

Table 3 Variation of critical loads for H and NH graphite/epoxy and glass/epoxy conical shells versus the 
E0S / E0θ with the linear, quadratic and exponential profiles 

 6
1 10H
crP  6

1 10L
crP  6

1 10cb
crP  6

1 10H
crP  6

1 10L
crP  6

1 10cb
crP  

E0S / E0θ Homogeneous NH linear 

10 0.081(12) 0.083(12) 0.077(12) 0.075(12) 0.077(12) 0.072(12) 

25 0.042(13) 0.043(13) 0.04(13) 0.039(13) 0.040(13) 0.038(13) 

40 0.030(13) 0.031(14) 0.029(13) 0.028(14) 0.029(14) 0.027(14) 

E0S / E0θ NH quadratic NH exponential 

10 0.092(12) 0.094(12) 0.087(11) 0.030(12) 0.030(12) 0.028(12) 

25 0.048(13) 0.049(13) 0.046(13) 0.015(13) 0.016(13) 0.015(13) 

40 0.034(13) 0.035(13) 0.033(13) 0.011(14) 0.011(14) 0.011(13) 
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quadratic and exponential profiles are compared with each other, the largest influence is observed 
in an exponential case. As the values of the critical combined loads for NH orthotropic cylindrical 
shells (γ → 0) with linear, quadratic and exponential profiles are compared with homogeneous 
orthotropic cylindrical shells, the influence of non-homogeneity on the values of critical combined 
loads for graphite/epoxy (or glass/epoxy) cylindrical shells are 6.92%, (-13.84%), 62.89% (or 
5.72%, -12.56%, 61.21%), respectively. As the values of critical combined loads for NH 
orthotropic conical shells with linear, quadratic and exponential profiles are compared with the 
homogeneous orthotropic conical shells, the effect of non-homogeneity on the values of critical 
combined loads for graphite/epoxy (or glass/epoxy) conical shells is significant and slightly 
change, as γ increases from 15° to 60° by step 15°. It is apparent from the Fig. 4 that the values of 
critical combined loads for H and NH orthotropic cylindrical shells are higher than the 
corresponding values of critical combined loads for H and NH orthotropic conical shells. The 
values of critical combined loads of H and NH glass/epoxy conical shells are higher than the H 
and NH graphite/epoxy conical shells, whereas, the influence of non-homogeneity on the values of 
critical combined load of graphite/epoxy shell is higher than the corresponding effect for the 
glass/epoxy shell. 
Fig. 5 shows the effect of shell geometric parameter (L / R1) on the values of critical combined 
loads of graphite/epoxy and glass/epoxy truncated conical shells under combined loading case (1), 
with the load-proportional parameter B1 = 500.  In computations, the following conical shell 
parameters are used: R1 / h = 150 and γ = 45°. With increasing of the ratio L / R1, the values of 
critical combined loads for graphite / epoxy and glass / epoxy truncated conical shells decrease. It 
is observed that the effect of non-homogeneity is significant, while this effect is changed with 
increasing of L / R1. Comparing the values of critical combined loads of NH orthotropic conical 
shell with those of homogeneous orthotropic conical shell: (a) the effects of linear, quadratic and 
exponential profiles on the values of critical combined load for the graphite/epoxy conical shell are 
(6.52%; -13.77%, 63.04%), (4.76%; -14.29%, 61.9%) and (12.5%; -12.5, 62.5%), whereas, for 
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Fig. 4 Variation of critical combined loads for H and NH graphite/epoxy and glass/epoxy conical 
shells versus the semi-vertex angle γ with different non-homogeneity profiles 
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Fig. 5 Variation of the values of critical combined loads for H and NH graphite/epoxy and glass/epoxy 
conical shells versus L / R1 with different non-homogeneity profiles 

 
 

the glass/epoxy conical shell are (6%; -13.33%, 58%), (5.88%; -12.94%, 60%) and (6.25%; -15.63, 
59.38%), respectively for L / R1 = 1, 3 and 5. 

 
 

5. Conclusions 
 
In this study, the buckling of non-homogeneous orthotropic truncated conical shells under 

combined axial compression and lateral pressure is investigated. The governing equations have 
been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties 
of which vary continuously in the thickness direction. By applying the Galerkin’s method to the 
governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of 
non-homogeneous orthotropic truncated conical shells are obtained. 

The numerical results support the following conclusions: 
 

(a) The values of critical combined loads for H and NH graphite/epoxy and glass/epoxy 
truncated conical shells decrease, as load-proportional parameters B1 or B2 increase. 

(b) The influence of the variation of B1 on the values of critical combined loads for H and NH 
glass/epoxy conical shells is higher than H and NH graphite/epoxy conical shells, 
respectively, while the effect of changes of B2 is almost the same. 

(c) The values of critical combined loads for H and NH glass/epoxy conical shells are higher 
than the H and NH graphite/epoxy conical shells for different load proportional parameters 
B1 and B2. 

(d) The values of critical lateral and hydrostatic pressures and combined load (axial 
compression and lateral pressure) for H and NH orthotropic conical shells decrease, while 
corresponding circumferential wave numbers increase, as E0S / E0θ increases. 
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(e) The effect of non-homogeneity on the values of critical combined loads for orthotropic 
conical shells changed irregularly, as the stiffness ratio E0S / E0θ increases . 

(f) The values of critical combined loads for H and NH graphite/epoxy and glass/epoxy 
conical shells decrease, as the semi-vertex angle γ and L / R1 increase. 

(g) The effect of non-homogeneity on the values of critical combined loads for graphite/epoxy 
(or glass/epoxy) conical shells is significant and slightly change, as γ increases, while this 
effect is significant and changed with increasing of L / R1. 

(h) The values of critical combined loads of H and NH glass/epoxy conical shells are higher 
than the H and NH graphite/epoxy conical shells, whereas, the influence of non- 
homogeneity on the values of critical combined load of graphite/epoxy shell is higher than 
the corresponding effect for the glass/epoxy shell. 

(i) The largest influence of non-homogeneity on the critical combined load is observed in an 
exponential case. 

(j) The values of critical combined loads for H and NH orthotropic conical shells are lower 
than the critical lateral or hydrostatic pressures. 

 
 

References 
 
Agamirov, V.L. (1990), Dynamic Problems of Nonlinear Shells Theory, Nauka, Moscow, Russia. [In 

Russian] 
Ajdari, M.A.B., Jalili, S., Jafari, M., Zamani, J. and Shariyat, M. (2012), “The analytical solution of the 

buckling of composite truncated conical shells under combined external pressure and axial compression”, 
J. Mech. Sci. Tech., 26(9), 2783-2791. 

Awrejcewicz, J. and Krysko, V.A. (2008), “Theory of non-homogeneous shells”, Und. Com. Sys., 15-40. 
Babich, D.V. and Khoroshun, L.P. (2001), “Stability and natural vibrations of shells with variable geometric 

and mechanical parameters”, Int. Appl. Mech., 37(7), 837-869. 
Baruch, M., Harari, O. and Singer, J. (1967), “Influence of in-plane boundary conditions on the stability of 

conical shells under hydrostatic pressure”, Isr. J. Tech., 5(1), 12-24. 
Blachut, J. (2011), “On elastic-plastic buckling of cones”, Thin-Wall. Struct., 49(1), 45-52. 
Blachut, J. (2012), “Interactive plastic buckling of cones subjected to axial compression and external 

pressure”, Ocean. Eng., 48, 10-16. 
Grigorenko, Y.M. and Grigorenko, A.Y. (2013), “Static and dynamic problems for anisotropic inhomogeneous 

shells with variable parameters and their numerical solution (review)”, Int. Appl. Mech., 49(2), 123-193. 
Ifayefunmi, O. and Błachut, J. (2013), “Instabilities in imperfect thick cones subjected to axial compression 

and external pressure”, Mar. Struct., 33, 297-307. 
Karpov, N.I. and Karpova, O.A. (1981), “Stability of conical shell under combined load”, Strength. Mater., 

13(11), 1359-1364. 
Khazaeinejad, P., Najafizadeh, M.M., Jenabi, J. and Isvandzibaei, M.R. (2010), “On the buckling of 

functionally graded cylindrical shells under combined external pressure and axial compression”, J. Pres. 
Ves. Tech., 132(6), 064501. 

Kim, J.H. and Paulino, G.H. (2002), “Isoparametric graded finite elements for non-homogeneous isotropic 
and orthotropic materials”, J. Appl. Mech., 69(4), 502-513. 

Lal, R. and Kumar, Y. (2012), “Characteristic orthogonal polynomials in the study of transverse vibrations 
of nonhomogeneous rectangular orthotropic plates of bilinearly varying thickness”, Meccanica, 47(1), 
175-193.  

Mohammadzadeh, R., Najafizadeh, M.M. and Nejati, M. (2013), “Buckling of 2D-FG cylindrical shells 
under combined external pressure and axial compression”, Adv. Appl. Math. Mech., 5(3), 391-406. 

Naderi, A.A., Rahimi, G.H. and Arefi, M. (2014), “Influence of fiber paths on buckling load of tailored 

16



 
 
 
 
 
 

Buckling of non-homogeneous orthotropic conical shells subjected to combined load 

conical shells”, Steel Compos. Struct., Int. J., 16(4), 375-387. 
Ootao, Y. and Tanigawa, Y. (2007), “Three-dimensional solution for transient thermal stresses of an 

orthotropic functionally graded rectangular plate”, Compos. Struct., 80(1), 10-20. 
Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, (Second 

Ed.), CRC Press, New York, NY, USA. 
Sachenkov, A.V. (1964), On the Stability of Conical Shell Under Combined Load. Theory of Plates and 

Shells, Kazan State University, Kazan, Russia. [In Russian] 
Shadmehri, F., Hoa, S.V. and Hojjati, M. (2012), “Buckling of conical composite shells”, Compos. Struct., 

94(2), 787-792. 
Shen, H.S. (2001), “Postbuckling of shear deformable cross-ply laminated cylindrical shells under combined 

external pressure and axial compression”, Int. J. Mech. Sci., 43(11), 2493-2523. 
Sofiyev, A.H. (2010), “The buckling of FGM truncated conical shells subjected to combined axial tension 

and hydrostatic pressure”, Compos. Struct., 92(2), 488-498. 
Sofiyev, A.H. (2014), “On the buckling of composite conical shells resting on the Winkler–Pasternak elastic 

foundations under combined axial compression and external pressure”, Compos. Struct., 113, 208-215. 
Sofiyev, A.H., Omurtag, M.H. and Schnack, E. (2009), “The vibration and stability of orthotropic conical 

shells with non-homogeneous material properties under a hydrostatic pressure”, J. Sound Vib., 319(3-5), 
963-983. 

Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), “On the stability of 
FGM shells subjected to combined loads with different edge conditions and resting on elastic 
foundations”, Acta Mech., 223(1), 189-204. 

Struk, R. (1984), “Non-linear stability problem of an open conical sandwich shell under external pressure 
and compression”, Int. J. Non. Lin. Mech., 19(3), 217-233. 

Tani, J. (1985), “Buckling of truncated conical shells under combined axial load, pressure, and heating”, J. 
Appl. Mech., 52(2), 402-408. 

Van-Dung, D, Hoa, L.K., Nga, N.T. and Anh, L.T.N. (2013), “Instability of eccentrically stiffened 
functionally graded truncated conical shells under mechanical loads”, Compos. Struct., 106, 104-113. 

Weingarten, V.I. and Seide, P. (1965), “Elastic stability of thin- walled cylindrical and conical shells under 
combined external pressure and axial compression”, AIAA Journal, 3(5), 913-920. 

Wu, C.P., Chen, Y.C. and Peng, S.T. (2013), “Buckling analysis of functionally graded material circular 
hollow cylinders under combined axial compression and external pressure”, Thin -Wall. Struct., 69, 54-66. 

 
CC 
 
 
 
 

17



 
 
 
 
 
 

A.H. Sofiyev and N. Kuruoglu 

Nomenclature 
 

Ai (i = 1, 2, 3, 4) : Parameters 

aij, cij, bij (i.j = 1, 2, 6) : Coefficients depending on the material properties and shell characteristics 

B1, B2 : Load-proportional parameters 

E0 : Young’s moduli of homogeneous isotropic material 

E0S, E0θ : 
Young’s moduli of homogeneous orthotropic material in S and θ directions, 
respectively 

ES, Eθ : 
Young’s moduli of non-homogeneous orthotropic material in S and θ
directions, respectively 

eS, eθ, eSθ : Strains on the reference surface 

f : Unknown amplitude 

G : Shear modulus of the non-homogeneous orthotropic materials 

G0 : Shear modulus of the homogeneous orthotropic materials 

H : Shortening of the “homogeneous” 

k = 1, 2,... : Power-law index 

kj, qj (j = 1, 2,..., 16) : Coefficients depending on the material properties and shell characteristics 

L : Length of truncated cone 

L (Ψ1, w) : Differential operator 

Ms, Mθ, MSθ : Moment resultants 

m : Number of half-waves along a generatrix 

NH : Shortening of the “non-homogeneous” 

NS, Nθ, NSθ : Force resultants 

00
  ,

0   ,  Ss NNN  : Membrane forces for the condition with zero initial moments 

n : Circumferential wave number 

P : External normal pressure 

LP1  : Dimensionless lateral pressure 

HP1  : Dimensionless hydrostatic pressure 

cb
crP1  : Dimensionless critical combined load for low lateral pressure 

H
crP1  : Dimensionless critical hydrostatic pressure 

L
crP1  : Dimensionless critical lateral pressure 
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Qij (i, j = 1, 2, 6) : Quantities of non-homogeneous orthotropic materials 

R1, R2 : Radii of the truncated cone at its small and large ends 

S : Axis in the direction of the generator of the cone 

Sθζ : Curvilinear coordinate system 

S1 : Distance of the smaller end of the truncated conical shell from the vertex 

T : Axial compressive load 

axT1  : Dimensionless axial compressive load 

ax
crT1  : Dimensionless critical axial compressive load 

cb
crT1  : Dimensionless critical combined load for low axial load 

w : Displacement of the reference surface in the normal direction 

z : Independent variable 

z0 : Parameter depending on shell characteristics 

β1, β2 : Parameters 

γ : Semi-vertex angle of the cone 

εS, εθ, εSθ : Strains 

η : Exponential factor 

θ : Axis in the circumferential direction 

θ1 : Variable depending on θ 

μ : Non-homogeneity parameter 

v0 : Poisson’s ratio of homogeneous isotropic material 

vSθ, vθS : Poisson’s ratios of homogeneous orthotropic material 

σS, σθ, σSθ : Stresses 

   : Non-homogeneity function 

ζ : Axis perpendicular to the S-θ plane 

xi, yi, zi (i = 0, 1, 2) : Parameters depending on the material properties and shell characteristics 

Q : Parameter depending on the material properties and shell characteristics 

Ψ (S, θ) : Stress function 

Ψ1 : Function depending on Airy stress function 
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