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Abstract.   A new refined hyperbolic shear deformation theory (RHSDT), which involves only four 
unknown functions as against five in case of other shear deformation theories, is presented for the 
thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number 
of unknown functions involved is only four, as against five in case of other shear deformation theories. The 
theory presented is variationally consistent, does not require shear correction factor, and gives rise to 
transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness 
satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, 
two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson’s ratio of 
the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in 
terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an 
isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of 
the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal 
load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and 
stresses of functionally graded metal–ceramic plates are investigated. It can be concluded that the proposed 
theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates. 
 
Keywords:    hyperbolic plate theory; thermoelastic bending response; functionally graded material; 
sandwich plate 
 
 
1. Introduction 

 
Functionally graded materials (FGMs) are special composites whose material properties vary 

continuously through their thickness. FGMs are usually made of mixture of ceramic and metal, 
and can thus resist high-temperature environments while maintaining toughness. The technology 
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of FGMs was an original material fabrication technology proposed in Japan in 1984 by Sendai 
Group. FGMs are used in very different applications, such as reactor vessels, fusion energy 
devices, biomedical sectors, aircrafts, space vehicles, defense industries and other engineering 
structures. Indeed, the mechanical behavior of structural members with FGMs is of considerable 
importance in both research and industrial fields (Lu et al. 2009, Talha and Singh 2010, Wen et al. 
2011, Jha et al. 2013, Bessaim et al. 2013, Chakraverty and Pradhan 2014, Bousahla et al. 2014, 
Ait Yahia et al. 2015, Bourada et al. 2015). 

The advantage of using FGMs is that they able to withstand high temperature gradient 
environments while maintaining their structural integrity. For example, in a conventional thermal 
barrier coating for high-temperature applications, a discrete layer of ceramic material is bounded 
to a metallic structure. However, the abrupt transition in material properties across the interface 
between distinct materials can cause large interlaminar stresses and leads to plastic deformation or 
cracking (Finot and Suresh 1996). These adverse effects can be alleviated by functionally grading 
the material to have a smooth spatial variation of material composition, with ceramic-rich material 
placed at the high-temperature locations and metal-rich material in regions where mechanical 
properties need to be high. 

In recent years, studies on FGM structures in thermal environments are an altercative emerging 
area in the research community. Obata and Noda (1994) have investigated 1D steady-state thermal 
stresses in a FG hollow sphere and a FG hollow circular cylinder using a perturbation approach. 
Reddy and Chin (1998) have developed coupled as well as uncoupled thermoelastic finite element 
formulation for analyzing the thermomechanical behavior of FG cylinders and plates subjected to 
abrupt thermal loading. Praveen et al. (1999) have developed a thermoelastic finite element model 
to study the response of a FG cylinder subjected to rapid heating. The analysis takes into account 
the material properties variations with temperature. Vel and Barta (2002, 2003) have presented 
exact 3D solutions for the steady-state and quasi static transient thermoelastic response of a thick 
plate with an arbitrary variation of material properties in the thickness direction. Ying et al. (2009) 
investigated thermal deformations of FGM thick plates using a semi-analytical method. A novel 
refined hyperbolic shear deformation theory was developed by El Meiche et al. (2011) utilizing 
Navier’s solution technique for buckling and free vibration analysis of FG sandwich plates. Ould 
Larbi et al. (2013) presented an efficient shear deformation beam theory based on neutral surface 
position for bending and free vibration of FG beams. Recently, the post-buckling and nonlinear 
free vibration behaviors of geometrically imperfect FG beams supported by nonlinear elastic 
foundation are studied by Yaghoobi and Torabi (2013a). Yaghoobi and Torabi (2013b) presented 
exact solution for thermal buckling of FG plates resting on elastic foundations with various 
boundary conditions. An analytical approach is developed by Yaghoobi and Yaghoobi (2013) for 
buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with 
various boundary conditions. Belabed et al. (2014) proposed an efficient and simple higher order 
shear and normal deformation theory for FG plates. Hebali et al. (2014) developed a new 
quasi-three-dimensional (3D) hyperbolic shear deformation theory for the bending and free 
vibration analysis of FG plate. Fekrar et al. (2014) developed a new five-unknown refined theory 
based on neutral surface position for bending analysis of exponential graded plates. In the same 
way, Hamidi et al. (2015) proposed a sinusoidal plate theory with 5-unknowns and stretching 
effect for thermo-mechanical bending analysis of FG sandwich plates. Houari et al. (2013) 
analyzed the sandwich plates with functionally graded skins under thermal load by using a higher 
order shear deformation theory with thickness stretching effect. Attia et al. (2015) studied the free 
vibration response of FG plates with temperature-dependent properties using various four variable 
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refined plate theories. Mahi et al. (2015) developed a new hyperbolic shear deformation theory for 
bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated 
composite plates with various boundary conditions. Swaminathan and Naveenkumar (2014) 
presented higher order refined computational models for the stability analysis of FG plates. 
Mantari and Granados (2015) presented a new quasi-3D hybrid type higher order shear 
deformation theory for thermoelastic bending analysis of functionally graded sandwich plates. 

The objective of this investigation is to develop a simple and efficient theory for thermoelastic 
bending of FGM sandwich plates. Various higher-order shear deformation theories involve use of 
five unknown functions. The well-known higher-order plate theories are as follows: (i) parabolic 
shear deformation plate theory (PSDPT) Reddy (1984); (ii) sinusoidal shear deformation plate 
theory (SSDPT) Touratier (1991); and (iii) exponential shear deformation plate theory (ESDPT) 
Karama et al. (2003). Recently, four variable refined plate theories (Draiche et al. 2014, Ait Amar 
Meziane et al. 2014, Yaghoobi and Fereidoon 2014, Nedri et al. 2014, Zidi et al. 2014, Khalfi et al. 
2013, Bouderba et al. 2013, Bachir Bouiadjra et al. 2013, Tounsi et al. 2013, Bourada et al. 2012, 
Benachour et al. 2011) are developed for FGM plates. 

In this paper a new refined hyperbolic shear deformable plate theory (RHSDT) is used for 
thermoelastic bending of FGM sandwich plates. The hyperbolic function in terms of thickness 
coordinate is used in the displacement field to account for shear deformation. The novel feature of 
the theory is that it does not require shear correction factor and satisfying the shear-stress-free 
boundary conditions at top and bottom of the plate. The effects of temperature field on the 
dimensionless axial and transverse shear stresses and deflection of the FGM sandwich plate are 
studied. Numerical examples are presented to illustrate the accuracy and efficiency of the present 
theory by comparing the obtained results with those computed using various other theories. 
 
 
2. Problem formulation 

 
Consider the case of a uniform thickness, rectangular FGM sandwich plate composed of three 

microscopically heterogeneous layers referring to rectangular coordinates (x, y, z) as shown in Fig. 
1. The top and bottom faces of the plate are at z = ± h / 2, and the edges of the plate are parallel to 
axes x and y. 

 
 

Fig. 1 Geometry of rectangular FGM sandwich plate with uniform thickness in the rectangular 
Cartesian coordinates 
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Fig. 2 The material variation along the thickness of the FGM sandwich plate 
 
 
The sandwich plate is composed of three elastic layers, namely, ‘‘Layer 1’’, ‘‘Layer 2’’, and 

‘‘Layer 3’’ from bottom to top of the plate (Fig. 2). The vertical ordinates of the bottom, the two 
interfaces, and the top are denoted by h1 = − h / 2, h2, h3, h4 = h / 2, respectively. For the brevity, 
the ratio of the thickness of each layer from bottom to top is denoted by the combination of three 
numbers, i.e., ‘‘1-0-1’’, ‘‘2-1-2’’ and so on. 

The volume fraction of the FGMs is assumed to obey a power-law function along the thickness 
direction 
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where V (n), (n = 1, 2, 3) denotes the volume fraction function of layer n; k is the volume fraction 
index (0 ≤ k ≤ +∞), which indicates the material variation profile through the thickness. 

The effective material properties, like Young’s modulus E, Poisson’s ratio v, and thermal 
expansion coefficient α then can be expressed by the rule of mixture (Marur 1999) as 
 

  )(
212

)(  )( nn VPPPzP                            (2) 
 
where P(n) is the effective material property of FGM of layer n. P2 and P1 denote the property of 
the bottom and top faces of layer 1 (h1 ≤ z ≤ h2), respectively, and vice versa for layer 3 (h3 ≤ z ≤ 
h4) depending on the volume fraction V  (n) (n = 1, 2, 3). For simplicity, Poisson’s ratio of plate is 
assumed to be constant in this study for that the effect of Poisson’s ratio on the deformation is 
much less than that of Young’s modulus (Delale and Erdogan 1983). 

 
2.1 Higher-order plate theory 
 
The displacements of a material point located at (x, y, z) in the plate may be written as 
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where, u, v, w are displacements in the x, y, z directions, u0, v0 and w0 are midplane displacements, 
θx and θy rotations of the yz and xz planes due to bending, respectively. Ψ(z) represents shape 
function determining the distribution of the transverse shear strains and stresses along the 
thickness. The displacement field of the classical thin plate theory (CPT) is obtained easily by 
setting Ψ(z) = 0. The displacement of the first-order shear deformation plate theory (FSDPT) is 
obtained by setting Ψ(z) = z. Also, the displacement of parabolic shear deformation plate theory 
(PSDPT) of Reddy (1984) is obtained by setting 
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The sinusoidal shear deformation plate theory (SSDPT) of Touratier (1991) is obtained by 
setting 









h

zh
z

 
sin)(




                          (4b) 

 

In addition, the exponential shear deformation plate theory (ESDPT) of Karama et al. (2003) is 
obtained by setting 

 2/2)( hzzez                             (4c) 
 
2.2 Present refined hyperbolic shear deformation theory 
 
Unlike the other theories, the number of unknown functions involved in the present refined 

hyperbolic shear deformation theory (RHSDT) is only four, as against five in case of other shear 
deformation theories (Reddy 1984, Touratier 1991, Karama et al. 2003). The theory presented is 
variationally consistent, does not require shear correction factor, and gives rise to transverse shear 
stress variation such that the transverse shear stresses vary parabolically across the thickness 
satisfying shear stress free surface conditions. 

 
2.2.1 Assumptions of the present plate theory (RHSDT) 
Assumptions of the (RHSDT) are as follows: 
 

(1) The displacements are small in comparison with the plate thickness and, therefore, strains 
involved are infinitesimal. 

(2) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only. 

 

),(),(),,( yxwyxwzyxw sb                           (5) 
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(3) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(4) The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

sbsb vvvVuuuU  00 ,                       (6) 
 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 
shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 
way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 
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2.2.2 Kinematics and constitutive equations 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(8) as 
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The strains associated with the displacements in Eq. (9) are 
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For elastic and isotropic FGMs, the constitutive relations can be written as: 

 

)()(

55

44
)(

)()(

66

2212

1211

)(

0

0
and

00

0

0 n

zx

yz
nn

zx

yz

n

xy

y

x
nn

xy

y

x

Q

Q
T

T

Q

QQ

QQ





























































































   (12) 

 
where (σx, σy, τxz, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (2), stiffness coefficients, Qij, can be expressed as 
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2.3 Governing equations 
 
The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The principle of virtual work in the present case yields 
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where Ω is the top surface. 
Substituting Eqs. (10) and (12) into Eq. (14) and integrating through the thickness of the plate, 

Eq. (14) can be rewritten as 
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where hn+1 and hn are the top and bottom z-coordinates of the nth layer. 
The governing equations of equilibrium can be derived from Eq. (15) by integrating the 

displacement gradients by parts and setting the coefficients δu0, δv0, δwb and δws zero separately. 
Thus one can obtain the equilibrium equations associated with the present shear deformation 
theory 
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Using Eq. (12) in Eq. (16), the stress resultants of a sandwich plate made up of three layers can 
be related to the total strains by 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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The stress and moment resultants, ,   , bT
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The temperature field variation through the thickness is assumed to be 
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Substituting from Eq. (18) into Eq. (17), we obtain the following equation, 
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where {p} = {p1, p2, p3, p4}

t is a generalized force vector, dij, dijl and dijm are the following 
differential operators 
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The components of the generalized force vector {p} are given by 
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3. Exact solution for a simply-supported FGM sandwich plate 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 
here concerned with the exact solution of Eqs. (23a)-(23e) for a simply supported FGM plate. The 
following boundary conditions are imposed at the side edges for RHSDT 
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To solve this problem, Navier presented the transverse temperature loads T1, T2, and T3 in the 

form of a double trigonometric series as 
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where λ = π / a, μ = π / b, 21   , TT  and 3T  are constants. 
Following the Navier solution procedure, we assume the following solution form for u0, v0, wb 

and ws that satisfies the boundary conditions 
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where U, V, Wb, and Ws are arbitrary parameters to be determined subjected to the condition that 
the solution in Eq. (28) satisfies governing Eq. (23). One obtains the following operator equation, 
 

    ,PK                                 (29) 
 

where {Δ} = {U, V, Wb, Ws}
t and [K] is the symmetric matrix given by 

 

  ,

44342414

34332313

24232212

14131211





















aaaa

aaaa

aaaa

aaaa

K                          (30) 

in which 
 2

66
2

1111  AAa   

 661212   AAa    

] )2([ 2
6612

2
1113  BBBa   

] )2([ 2
6612

2
1114  sss BBBa   

 2
22

2
6622  AAa   

] )2[( 2
22

2
661223  BBBa   

] )2[( 2
22

2
661224  sss BBBa   

 4
22

22
6612

4
1133 )2(2  DDDDa   

 4 
22

2 2
6612

4
1134   )2(2  ssss DDDDa   

 2
44

2
55

4
22

22
6611

4
1144 )2(2  ssssss AAHHHHa   

(31)

 
The components of the generalized force vector {P} = {P1, P2, P3, P4}

t are given by 
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in which hzfzfhzz /)()(  ,/   and hzz /)()(  . 

For further computational reasons the converted expressions of the stress components are also 
recorded. They read 
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4. Numerical results and discussion 
 
The thermoelastic bending analysis is conducted for combinations of metal and ceramic. The 

set of materials chosen is Titanium and Zirconia. For simplicity, Poisson’s ratio of the two 
materials is assigned the same value. Typical values for metal and ceramics used in the FG 
sandwich plate are listed in Table 1. 

To illustrate the preceding thermal–structural analysis, a variety of sample problems is 
considered. For the sake of brevity, only linearly varying (across the thickness) temperature 
distribution ;2TzT  non-linearly varying (across the thickness) temperature distribution 

3 (z) TT  ; and a combination of both 32  (z) TTzT   are considered. Note that, in most of 
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Table 1 Material properties used in the FG sandwich plate 

Properties Metal: Ti–6A1–4V Ceramic: ZrO2 

E (GPa) 66.2 117.0 

v 1/3 1/3 

α (10-6/K) 10.3 7.11 

 
 

Table 2 Dimensionless center deflections w  of the different sandwich square plates )0( 3 T  

k Theory 
w  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

RHSDT 0.4802624102 0.4802624102 0.4802624102 0.4802624102 0.4802624102 

PSDPT 0.4802624102 0.4802624102 0.4802624102 0.4802624102 0.4802624102 

SSDPT 0.4802624102 0.4802624102 0.4802624102 0.4802624102 0.4802624102 

ESDPT 0.4802624103 0.4802624103 0.4802624103 0.4802624103 0.4802624103 

FSDPT 0.4802624102 0.4802624102 0.4802624102 0.4802624102 0.4802624102 

1 

RHSDT 0.6368706308 0.6062263692 0.5822683070 0.6210413648 0.5925388921 

PSDPT 0.6368913262 0.6062561495 0.5823018576 0.6210669479 0.5925682404 

SSDPT 0.6369163694 0.6062923043 0.5823425647 0.6210979535 0.5926037400 

ESDPT 0.6369414052 0.6063285913 0.5823832496 0.6211290262 0.5926390742 

FSDPT 0.6366671314 0.6059360027 0.5819321936 0.6207916196 0.5922391382 

2 

RHSDT 0.6714713237 0.6392955205 0.6097919038 0.6560934439 0.6215132668 

PSDPT 0.6714858174 0.6393248874 0.6098293922 0.6561154815 0.6215438592 

SSDPT 0.6715034090 0.6393606439 0.6098750470 0.6561422528 0.6215809264 

ESDPT 0.6715211425 0.6393968398 0.6099210670 0.6561692997 0.6216180116 

FSDPT 0.6713392117 0.6390276350 0.6094377060 0.6558929929 0.6212148977 

3 

RHSDT 0.6835507403 0.6536111265 0.6223824709 0.6702345950 0.6341090637 

PSDPT 0.6835604161 0.6536381567 0.6224203294 0.6702526802 0.6341386760 

SSDPT 0.6835722007 0.6536711126 0.6224665084 0.6702746869 0.6341745670 

ESDPT 0.6835841674 0.6537046290 0.6225132536 0.6702970392 0.6342105448 

FSDPT 0.6834673554 0.6533737951 0.6220352754 0.6700774890 0.6338263885 

4 

RHSDT 0.6887884431 0.6612355282 0.6294497079 0.6772877664 0.6408768475 

PSDPT 0.6887950624 0.6612604942 0.6294872146 0.6773029321 0.6409054051 

SSDPT 0.6888031547 0.6612909572 0.6295330002 0.6773214139 0.6409400177 

ESDPT 0.6888114260 0.6613220299 0.6295794618 0.6773402624 0.6409747420 

FSDPT 0.6887337861 0.6610216386 0.6291117804 0.6771602164 0.6406073812 

5 

RHSDT 0.6914100554 0.6658457922 0.6339205284 0.6813141649 0.6450084220 

PSDPT 0.6914147346 0.6658691382 0.6339575524 0.6813272417 0.6450361194 

SSDPT 0.6914204743 0.6658976406 0.6340027691 0.6813431982 0.6450696862 

ESDPT 0.6914263743 0.6659267720 0.6340487255 0.6813595221 0.6451033721 

FSDPT 0.6913726822 0.6656490845 0.6335907572 0.6812067429 0.6447488688 
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(a) 

 

 

(b) 
 

 

(c) 

Fig. 3 Variation of axial stress x  through the plate thickness for different types of sandwich plates: 
(a) The (1-0-1) FGM sandwich plate; (b) the (1-1-1) FGM sandwich plate; and (c) the (2-2-1) 
FGM sandwich plate 
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the literature, the thermal stress problems are treated under a steady state temperature distribution 
that is linear with respect to the thickness direction. 

Different dimensionless quantities are used for pure temperature loading as: 
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where the reference values are taken as E0 = 1 GPa and α0 = 10-6/K. Numerical results are 
presented in Tables 2-5 using different plate theories. Additional results are plotted in Figs. 2-5 
using the present refined hyperbolic shear deformation theory (RHSDT). It is assumed, unless 
otherwise stated, that a / h = 10, a / b = 1, 01 T  and 1002 T : The shear correction factor of 
FSDPT is fixed to be K = 5/6. 

Table 2 contains the dimensionless center deflection w  for an FG sandwich plate subjected to 
thermal field varying linearly through the thickness ).0( 3 T  The deflections are considered for k 
= 0, 1, 2, 3, 4, and 5 and different types of sandwich plates. Table 2 shows that the effect of shear 
deformation is to increase the deflection. The difference between the shear deformation theories is 
insignificant for fully ceramic plates (k = 0). It can be observed that the results obtained by the 
present refined hyperbolic shear deformation theory (RHSDT) are identical to those of the 
parabolic shear deformation plate theory (PSDPT). 

Table 3 compares the deflections of different types of the FGM rectangular sandwich plates 
with k = 3. The deflections decrease as the aspect ratio a / b increases and this irrespective of the 
type of the sandwich plate. 

Table 4 lists values of axial stress x  for k = 0, 1, 2, 3, 4, and 5 and different types of sandwich 
plates. Once again, the plate is subjected to a thermal field varying linearly through its thickness. 
All theories (Present, PSDPT, SSDPT, ESDPT and FSDPT) give the same axial stress x  for a 
fully ceramic plate (k = 0). In general, the axial stress decreases (in absolute value) as k increases. 

Table 5 shows similar results of transverse shear stress xz  for FGM sandwich plate subjected 
to a combination of linearly and non-linearly thermal field ).100( 3 T  The relative difference 
between RHSDT (present refined hyperbolic shear deformation theory) and the other shear 
deformation theories may be stable for different values of k and this irrespective of the type of the 
FGM sandwich plate. 

It is to be noted that the CPT yields identical center deflections and axial stresses with the 
FSDPT and so Tables 2-4 lack the results of CPT. In addition, the transverse shear stresses as per 
the FSDPT are indistinguishable and so Table 5 lacks the results of FSDPT. It can be observed that 
the results obtained by the present refined hyperbolic shear deformation theory (RHSDT) are 
identical to those of the parabolic shear deformation plate theory (PSDPT). In general, the fully 
ceramic plates give the smallest deflections, transverse shear stresses. As the volume fraction 
exponent increases for FG plates, the deflection and axial stress will increase. In fact the 
non-symmetric (2-2-1) FGM plate yields the smallest axial stresses. But the symmetric (2-1-2) 
FGM plate yields the smallest transverse shear stresses. 
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Table 3 Effect of aspect ratio a / b on the dimensionless deflection of the FGM sandwich plates (k = 3, 
)03 T  

Scheme Theory 
w  

a / b = 1 a / b = 2 a / b = 3 a / b = 4 a / b = 5 

1-0-1 

RHSDT 0.6835507403 0.2734702662 0.1367766934 0.08049100480 0.05265731134

PSDPT 0.6835604161 0.2734799211 0.1367863142 0.08050057789 0.05266682333

SSDPT 0.6835722007 0.2734916748 0.1367980164 0.08051220862 0.05267836270

ESDPT 0.6835841674 0.2735036028 0.1368098802 0.08052398306 0.05269002373

FSDPT 0.6834673554 0.2733869420 0.1366934709 0.08040792405 0.05257441194

1-1-1 

RHSDT 0.6536111265 0.2615866858 0.1309116553 0.07710402281 0.05049555491

PSDPT 0.6536381567 0.2616136607 0.1309385381 0.07713077677 0.05052214456

SSDPT 0.6536711126 0.2616465325 0.1309712706 0.07716331532 0.05055443573

ESDPT 0.6537046290 0.2616799433 0.1310045062 0.07719630764 0.05058711818

FSDPT 0.6533737951 0.2613495179 0.1306747589 0.07686750522 0.05025952271

1-2-1 

RHSDT 0.6223824709 0.2491610666 0.1247536140 0.07352662427 0.04819415962

PSDPT 0.6224203294 0.2491988441 0.1247912569 0.07356407967 0.04823137579

SSDPT 0.6224665084 0.2492449004 0.1248371096 0.07360964929 0.04827658433

ESDPT 0.6225132536 0.2492914914 0.1248834449 0.07365562907 0.04832211149

FSDPT 0.6220352754 0.2488141101 0.1244070550 0.07318062062 0.04784886733

2-1-2 

RHSDT 0.6702345950 0.2681879937 0.1341723150 0.07898921053 0.05170066414

PSDPT 0.6702526802 0.2682060416 0.1341903021 0.07900711268 0.05171845750

SSDPT 0.6702746869 0.2682279928 0.1342121614 0.07902884445 0.05174002622

ESDPT 0.6702970392 0.2682502760 0.1342343297 0.07905085315 0.05176183188

FSDPT 0.6700774890 0.2680309957 0.1340154977 0.07883264575 0.05154442227

2-2-1 

RHSDT 0.6341090637 0.2538130370 0.1270474362 0.07484951752 0.04903700521

PSDPT 0.6341386760 0.2538425841 0.1270768764 0.07487880905 0.04906610667

SSDPT 0.6341745670 0.2538783787 0.1271125106 0.07491422011 0.04910123314

ESDPT 0.6342105448 0.2539142358 0.1271481680 0.07494960009 0.04913625980

FSDPT 0.6338263885 0.2535305552 0.1267652777 0.07456781021 0.04875587597
 
 

Table 4 Dimensionless axial stresses x  of the FGM sandwich square plates )0( 3 T  

k Theory x  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

RHSDT -2.079675000 -2.079675000 -2.079675000 -2.079675000 -2.079675000 

PSDPT -2.079675000 -2.079675000 -2.079675000 -2.079675000 -2.079675000 

SSDPT -2.079675000 -2.079675000 -2.079675000 -2.079675000 -2.079675000 

ESDPT -2.079675000 -2.079675000 -2.079675000 -2.079675000 -2.079675000 

FSDPT -2.079675000 -2.079675000 -2.079675000 -2.079675000 -2.079675000 
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Table 4 Continued 

k Theory x  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

1 

RHSDT -1.993949024 -2.144463137 -2.262047306 -2.071702695 -2.276249844 

PSDPT -1.993921201 -2.144422272 -2.262000494 -2.071667914 -2.276208646 

SSDPT -1.993884786 -2.144368665 -2.261939156 -2.071622328 -2.276154795 

ESDPT -1.993845490 -2.144310614 -2.261873016 -2.071573038 -2.276096911 

FSDPT -1.994116421 -2.144706898 -2.262331770 -2.071910534 -2.276503415 

2 

RHSDT -1.824107609 -1.982324788 -2.127244698 -1.899739614 -2.152914653 

PSDPT -1.824088994 -1.982285282 -2.127192581 -1.899710605 -2.152871650 

SSDPT -1.824064523 -1.982233209 -2.127123963 -1.899672432 -2.152815257 

ESDPT -1.824037920 -1.982176362 -2.127049363 -1.899630827 -2.152754300 

FSDPT -1.824214263 -1.982549342 -2.127547647 -1.899904728 -2.153169938 

3 

RHSDT -1.764716957 -1.912052225 -2.065519569 -1.830269330 -2.099337320 

PSDPT -1.764704974 -1.912016606 -2.065467370 -1.830246217 -2.099295847 

SSDPT -1.764689178 -1.911969550 -2.065398481 -1.830215732 -2.099241393 

ESDPT -1.764671900 -1.911917944 -2.065323270 -1.830182347 -2.099182378 

FSDPT -1.764783222 -1.912249450 -2.065816299 -1.830397030 -2.099579373 

4 

RHSDT -1.738933325 -1.874596642 -2.030851542 -1.795587171 -2.070463527 

PSDPT -1.738925338 -1.874564258 -2.030800203 -1.795568206 -2.070423669 

SSDPT -1.738914769 -1.874521431 -2.030732364 -1.795543156 -2.070371300 

ESDPT -1.738903150 -1.874474330 -2.030658117 -1.795515624 -2.070314469 

FSDPT -1.738976349 -1.874773038 -2.031139594 -1.795689836 -2.070694054 

5 

RHSDT -1.726015831 -1.851936073 -2.008911087 -1.775774941 -2.052760285 

PSDPT -1.726010283 -1.851906151 -2.008860704 -1.775758844 -2.052721725 

SSDPT -1.726002920 -1.851866541 -2.008794079 -1.775737554 -2.052671042 

ESDPT -1.725994791 -1.851822901 -2.008721038 -1.775714098 -2.052616010 

FSDPT -1.726045075 -1.852097357 -2.009191452 -1.775860809 -2.052982076 

 
 

Table 5 Dimensionless axial stresses xz  of the FGM sandwich square plates )100( 3 T  

k Theory xz  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 

RHSDT 0.3875715824 0.3875715824 0.3875715824 0.3875715824 0.3875715824

PSDPT 0.4663492274 0.4663492274 0.4663492274 0.4663492274 0.4663492274

SSDPT 0.5740631176 0.5740631176 0.5740631176 0.5740631176 0.5740631176

ESDPT 0.6962208109 0.6962208324 0.6962208104 0.6962208280 0.6962208236

1 
RHSDT 0.4670021493 0.4617811853 0.4664858752 0.4600158773 0.4634957554

PSDPT 0.5640586115 0.5599566926 0.5669251263 0.5566617108 0.5622309572

1509



 
 
 
 
 
 

A. Bouchafa, M.B. Bouiadjra, M.S.A. Houari and A. Tounsi 

Table 5 Continued 

k Theory xz  

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

1 
SSDPT 0.6967738614 0.6948170803 0.7052694992 0.6890771075 0.6979014024

ESDPT 0.8478429561 0.8493472298 0.8642891414 0.8402733375 0.8533361303

2 

RHSDT 0.4702713211 0.4598648679 0.4701346983 0.4563344392 0.4653381807

PSDPT 0.5658813664 0.5567693568 0.5715458768 0.5505668090 0.5640619895

SSDPT 0.6960436985 0.6896201730 0.7112661898 0.6791942164 0.6995711498

ESDPT 0.8433472288 0.8415995173 0.8720815362 0.8254402890 0.8547138864

3 

RHSDT 0.4737529709 0.4560245642 0.4701572347 0.4520107054 0.4645262663

PSDPT 0.5687108270 0.5512369044 0.5713193563 0.5440270977 0.5625135986

SSDPT 0.6976345415 0.6815157927 0.7106268240 0.6692561998 0.6968497094

ESDPT 0.8429437758 0.8302322625 0.8709425017 0.8110896408 0.8504454017

4 

RHSDT 0.4784793386 0.4526303727 0.4693704507 0.4489858559 0.4635472624

PSDPT 0.5736245062 0.5464635339 0.5701170738 0.5394455140 0.5608927464

SSDPT 0.7026165109 0.6746640867 0.7087816096 0.6622911958 0.6942257194

ESDPT 0.8476509530 0.8207453411 0.8682981840 0.8010142924 0.8465038762

5 

RHSDT 0.4837367333 0.4499549506 0.4684276059 0.4471214799 0.4627809680

PSDPT 0.5795305375 0.5427240764 0.5687710112 0.5365261496 0.5596420018

SSDPT 0.7093154867 0.6693258637 0.7068213417 0.6577478799 0.6922203248

ESDPT 0.8550478520 0.8133777300 0.8655727331 0.7943293272 0.8435042530

 
 
Fig 3 contains the plots of the axial stress x  through-the-thickness of the FGM sandwich 

plates. The stresses are tensile below the mid-plane and compressive above the mid-plane except 
for the nonsymmetric (2-2-1) FGM plate. The axial stress is continuous through the plate thickness. 
The results demonstrate a nonlinear variation of the axial stress through the plate thickness for k = 
2. All types of FGM plate yield the maximum compressive (minimum tensile) stress at the top 
(bottom) surface of the core layer. These are the ceramic-rich surfaces in which the ceramic plate 
experiences the minimum compressive or maximum tensile stresses. 

In Fig. 4 we have plotted the through-the-thickness distributions of the transverse shear stress 
:xz  The maximum value occurs at a point on the mid-plane of the plate and its magnitude for 

FGM plate is between that for homogeneous plates (ceramic and metal plates) except for the 
(1-0-1) FGM plate. 

In Figs. 5 and 6 we have plotted the through-the-thickness distributions of the dimensionless 
axial stress x  and the transverse shear stress xz  through-the-thickness of the (1-1-1) FGM 
plate (k = 2). These results reveal that the variation of stresses is very sensitive to the variation of 
the thermal load 3T  value. 

In Figs. 5 and 6 we have plotted the through-the-thickness distributions of the dimensionless 
axial stress x  and the transverse shear stress xz  through-the-thickness of the (1-2-1) FGM plate 
(k = 1.5). These results reveal that the variation of stresses is very sensitive to the variation of the 
thermal load 3T  value. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 4 Variation of transverse shear stress xz  through the plate thickness for different types of 
sandwich plates: (a) The (1-0-1) FGM sandwich plate; (b) the (1-1-1) FGM sandwich plate; 
and (c) the (2-2-1) FGM sandwich plate 
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Fig. 5 Effect of the thermal load 3T  on the axial stress x of the (1-2-1) FGM sandwich plate (k = 1.5) 
 
 

 

Fig. 6 Effect of the thermal load 3T  on the transverse shear stress xz  of the (1-2-1) 
FGM sandwich plate (k = 1.5) 

 
 

5. Conclusions 
 
The thermoelastic bending response of FGM sandwich plates is studied using a new refined 

hyperbolic shear deformation theory (RHSDT). The number of primary variables in this theory is 
even less than that of first- and higher-order shear deformation plate theories. The theory gives 
parabolic distribution of transverse shear strains, and satisfies the zero traction boundary 
conditions on the surfaces of the plate without using shear correction factors. All comparison 
studies demonstrated that the deflections and the thermal stresses obtained using the present 
refined theory (with four unknowns) and other higher order shear deformation theories (five 
unknowns) are almost identical. Hence, it can be said that the proposed theory RHSDT is accurate 
and simple in solving the thermoelastic bending behavior of FG plates. The formulation lends 
itself particularly well to finite element simulations (Curiel Sosa et al. 2012, 2013) and also other 
numerical methods employing symbolic computation for plate bending problems (Rashidi et al. 
2012), which will be considered in the near future. 
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