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Abstract.  A finite-element model for beams with partially delaminated layers is used to investigate their 
behavior. In this formulation account is taken of lateral strains and the first-order shear deformation theory is 
used. Both displacement continuity and force equilibrium conditions are imposed between the regions with 
and without delamination. Numerical results of the present model are presented and its performance is 
evaluated for static and dynamic problems. 
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1. Introduction 

 
The mechanical properties of composite materials may degrade severely in the presence of 

damage. Delamination is a frequently encountered mode of internal damage and is one of the most 
prevalent life-limiting failure modes in laminated composite structure. 

Many researchers had been studying the effect of Delamination. Mahieddine et al. (2010) 
present a mathematical model for analysis of delaminated beams with integrated piezoelectric 
actuators. A simplified analysis of dynamic delamination in composites is presented by Corigliano 
et al. (2006). The effect of delamination resistance on fatigue crack growth behavior of composite 
laminates is studied by Zhang et al. (2012). Coronado et al. (2012) analysed the influence of 
temperature on the process of mode-I delamination in a carbon fibre reinforced epoxy material 
under static and fatigue loadings. Zhao et al. (2013) established an analysis method to predict 
delamination and/or filler crack of out-of-plane woven composite joints using cohesive elements. 
The actions of typical parameters about material, interfacial and computational aspects in 
definition of cohesive element are depicted and a parameter model is proposed. For the prediction 
of delamination initiation and growth, a method based on a damage mechanics approach by 
adopting softening relationships between tractions and separations is used to simulate the 
delamination by Benzerga et al. (2012). Lee et al. (2002) studied a composite beam with arbitrary 
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lateral and longitudinal multiple delamination. Finite element methods have been developed using 
the layerwise theory by Kim et al. (2003). An improved analytical model for delamination in 
composite beams, using a second-order shear-thickness deformation displacement field, was 
introduced by Hamed et al. (2006). A simplified hinge for load introduction in composite 
delamination and adhesive tests using beam-type specimens has been presented by Renart et al. 
(2011). The proposed solution does not include adhe-sive joints susceptible of failure during the 
tests. Brandt (1998) introduced a mechanical hinge to overcome all these problems. This hinge 
includes a metallic fastener box with a slot where the bending beam of the specimen is fitted and 
mechanically adjusted. Sjögren and Asp (2002) presents a study of delamination growth in 
HTA/6376C carbon fibre/epoxy laminates. Tests were conducted under Mode I, Mode II and 
mixed-mode static and fatigue loading at both ambient conditions and elevated temperature. An 
investigation on dynamic delamination problems under steady-state crack growth is proposed by 
Greco and Lonetti (2009). Through the thickness delamination phenomena in unidirectional 
composite laminates are analyzed in the context of the interface methodology, based on the 
combination of shear deformable beams and interface elements. Prokić et al. (2014) developed a 
computer program for the determination of geometrical and material properties of composite 
thin-walled beams with arbitrary open cross-section and any arbitrary laminate stacking sequence. 
Bending behavior of reinforced concrete slabs encased over shallow I-sections at different levels 
of compression heads were investigated by Gőrkem and Hűsem (2013). 

A finite-element model is developed to investigate the effects of delamination of a beam layers. 
The present model takes into account the lateral strains which are often neglected in the 
conventional models of beams. The principal advantage of the element is that it allows the 
modeling of delamination anywhere in the structure. The region without delamination is modeled 
to carry constant peel and shear stresses; while the region with delamination is modeled by 
assuming that there is no peel and shear stress transfer between the top and bottom layers. The 
accuracy of the approach is verified by comparing results with previously published data. 
 
 
2. Finite element formulation 

 
Considering the first-order shear deformation theory for a laminated composite beam, the axial 

and the transverse displacement field are expressed by 
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where U(i) and W(i) are axial and transverse displacement. i = T, B represent the top and bottom 
layers. 

The strain relations for each of the sublaminates associated with the displacement field are 
given by 
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Using Eq. (1), the strain relations can be given by 
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where (●),x denotes differentiation with respect to x. 

The stress for each layer is given by 
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The constitutive relations, which neglect the thermal effects, are given by 
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where 

 i
x  is the normal stress,  i

x  is the normal strain,  i
xz  is the shear stress and 

 i
xz  is the 

shear strain. 
The expression for  iC11

~
 are as follows 
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The strain energy (Ep) and the kinetic energy (Ec) are given by 
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where (.) denotes temporal derivatives, Ω(i) is the volume of the layer. 

In order to perform a finite element formulation, the unknown functions u(i)(x, t), w
(i)(x, t) and 

 i
y (x, t) are represented by piecewise interpolation polynomials 
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where 
eL

x
  

Introducing a nodal parameters {q} and by substitution of polynomial approximations of the 
unknown functions into Eqs. (5) and (6), the strain energy and kinetic energy can be written as 
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where the stiffness and mass matrices are given by 
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Applying Hamilton’s principle, the governing differential equation expressed in global 

coordinates is obtained and can be written as 
 

       FqKqM                             (13) 
 

The elements in the delaminated region and the region without delamination are derived 
separately and all the variables in the displacement fields are independent. 

The region without delamination is modeled by assuming that there is no peel and shear stress 
transfer between the top and bottom layers. Moreover, in the interfaces between the regions with 
and without delamination, both displacements and forces continuity conditions are imposed. 
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Fig. 1 Model of delaminated beam 

 

Fig. 2 Zones of delaminated beam 
 

Table 1 Material parameters used in calculation 

 C11 [1010 N/m2]  16.6  

 C12 [1010 N/m2]  63.9  

 C13 [1010 N/m2]  63.9  

 C33 [1010 N/m2]  16.6  

 C44 [1010 N/m2]  79.6  

 C66 [1010 N/m2]  79.6  

 ρ [kg/m3]  2330  

 
 

The Beam is divided into three zones as shown in Fig. 2. 
The constraint equations imposed are 
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3. Results and discussions 
 

In order to verify an accuracy of the finite elements model based on the formulation presented 
above, a beam with delamination between the top and the bottom layers was considered. 

The beam’s length, width and thickness are L = 0.4 m, b = 0.03 m and h = 0.01 m, a uniformly 
distributed load of 103 Nm-2 is applied. The parameters of the beam used in calculations are listed 
in Table 1. 
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For a clamped-free beam, the delamination length is chosen to be Ld = L
3

1
 located in the 

middle of the beam. The deflections computed by the present model are compared with those 
obtained by the use of an analytical model Mahieddine et al. (2010). The results are presented in 
Table 2. The results show good agreement between the values obtained with the two approaches. 

Figs. 3 and 4 show the deflection field and the axial displacement field computed by this model 
for a clamped-free beam. Fig. 5 shows the stress field for the clamped-free beam. 

 
 

Table 2 Deflections for the clamped-free beam 

x [m] w [m] from analytic model w [m] from present model Error 

0.000000 0.000000 0.000000 0.000000 
0.033333 -2.216622 e-4 -2.216622 e-4 4.729826 e-11 
0.066667 -8.378124 e-4 -8.378124 e-4 4.949883 e-11 
0.100000 -1.780080 e-3 -1.780080 e-3 5.182010 e-11 
0.133333 -2.986606 e-3 -2.986606 e-3 5.420637 e-11 
0.166667 -4.402042 e-3 -4.402042 e-3 5.656910 e-11 
0.200000 -5.977553 e-3 -5.977553 e-3 5.876678 e-11 
0.233333 -7.670813 e-3 -7.670813 e-3 6.087850 e-11 
0.266667 -9.446009 e-3 -9.446009 e-3 6.291718 e-11 
0.300000 -1.127384 e-2 -1.127384 e-2 6.488764 e-11 
0.333333 -1.313152 e-2 -1.313152 e-2 6.669922 e-11 
0.366667 -1.500276 e-2 -1.500276 e-2 6.825461 e-11 
0.400000 -1.687780 e-2 -1.687780 e-2 6.941856 e-11 

 

Fig. 3 Deflection field of the clamped-free beam 

 

Fig. 4 Axial displacement of the clamped-free beam 
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Fig. 5 Stress field of the clamped- free beam 
 

Fig. 6 Deflection field in the free end of the beam 
 

Fig. 7 Axial displacement in the free end of the beam 
 

Fig. 8 Stress field in the free end of the beam 
 
 
In the second example a delamination between the top and the bottom layers in the free end of 

the beam was considered. The delamination length is chosen to be Ld = L
3

1
. The material and 

geometric characteristics are the same as in the previous example problem. 

1125



 
 
 
 
 
 

A. Mahieddinet, M. Ouali and A. Mazouz 

Table 3 Natural frequencies for the clamped-free beam 

Mode  (s-1) Exact  (s-1) Present model Error (%) 

1 84,5680793 84,5667407 8,03-05 

2 354,439181 354,311628 0,007 

3 932,529449 932,265657 0,01 

4 1795,30077 1794,92573 0,02 

5 2945,97338 2944,98303 0,05 

6 4384,31414 4382,45853 0,11 

7 6110,32306 6097,31073 0,78 

8 8124,00013 8085,78424 2,29 

9 10425,3454 10335,1917 5,40 

10 13014,3587 12889,0197 7,52 

 
 
Figs. 6 and 7 show the deflection field and the axial displacement field. Fig. 8 shows the stress 

field computed by this model for a clamped-free beam for the clamped-free beam. 
Those figures show that the delamination appear between the top and the bottom layers. In the 

interfaces between the region with delamination and region without delamination appear some 
singularities and the stress field is higher in those interfaces compared to other region of the beam, 
which enables the location of the delaminationd. 

The lowest 10 order natural frequencies computed with the present model are compared with 
the exact frequencies as shown in Table 3. Good agreement is observed between the two 
approaches, the differences of the 1st to the 10th order natural frequencies are less than 8%. 

 
 

4. Conclusions 
 
To investigate the behavior of the partially delaminated layers, a finite elements model of beam 

using the first-order shear deformation theory is used. Numerical results are presented for static 
and dynamic problems. The differences between the deflections computed from the present model 
and previously computed data show that the results agree very closely. The delamination appears 
in displacement and stress fields, which enables its location. The frequencies computed with the 
model based on the formulation presented in this paper are in good agreement with the exact 
results. This shows the validity of the assumptions adopted in the present paper. 
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