
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 18, No. 4 (2015) 909-924 
DOI: http://dx.doi.org/10.12989/scs.2015.18.4.909                                                 909 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Thermoelastic interaction in functionally graded nanobeams 
subjected to time-dependent heat flux 

 

Ashraf M. Zenkour 1,2 and Ahmed E. Abouelregal 3,4a 
 

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
2 Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt 

3 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 
4 Department of Mathematics, College of Science and Arts, Aljouf University, Al-Qurayat, Saudi Arabia 

 
(Received March 29, 2014, Revised August 04, 2014, Accepted October 02, 2014) 

 
Abstract.   This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent 
heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according 
to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. 
The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is 
pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve 
this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, 
and without energy dissipation can extracted as limited and special cases of the present model. An analytical 
technique based on Laplace transform is used to calculate the variation of deflection and temperature. The 
inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of 
the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the 
lateral vibration, the temperature, and the axial displacement of the nanobeam are studied. 
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1. Introduction 

 
The classical uncoupled thermoelasticity theory predicts two phenomena not compatible with 

physical observations. First, the equation of heat conduction of this theory was given without any 
elastic terms. Second, the heat equation is of a parabolic type, predicting infinite speeds of 
propagation for heat waves. Biot (1956) introduced the coupled thermoelasticity (CTE) theory to 
overcome the first shortcoming. The governing equations for this theory are coupled, eliminating 
the first paradox of the classical theory. However, both theories share the second shortcoming 
since the governing equations for the coupled are of the mixed type, parabolic-hyperbolic. 

Two generalizations to the coupled theory were introduced. The first is due to Lord and 
Shulman (LS) (1967), who postulate a new law of heat conduction to replace the classical 
Fourier’s law in their wave-type heat equation. This wave-type heat equation automatically 
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ensures finite speeds of propagation for heat and elastic waves. The remaining governing 
equations for LS theory, namely, the equations of motion and constitutive relations, remain the 
same as those for the coupled and uncoupled theories. The second generalization to the CTE 
theory is what is known as the theory of thermoelasticity with two relaxation times or the theory of 
temperature-rate-dependent thermoelasticity. Müller (1971), in a review of the thermodynamics of 
thermoelastic solids, proposed an entropy production inequality, with the help of which he 
considered restrictions on a class of constitutive equations. A generalization of this inequality was 
proposed by Green and Laws (1972). Green and Lindsay (1972) obtained an explicit version of the 
constitutive equations. Green and Naghdi (GN) (1993) proposed a new generalized 
thermoelasticity theory by including the thermal-displacement gradient among the independent 
constitutive variables. An important feature of this theory, which is not present in other 
thermoelasticity theories, is that it does not accommodate dissipation of thermal energy. 

Tzou (1995a, 1996) proposed the dual-phase-lag (DPL) model, which describes the interactions 
between phonons and electrons on the microscopic level as retarding sources causing a delayed 
response on the macroscopic scale. For macroscopic formulation, it would be convenient to use the 
DPL mode for investigation of the micro-structural effect on the behavior of heat transfer. The 
physical meanings and the applicability of the DPL model have been supported by the 
experimental results (Tzou 1995b). The DPL is such a modification of the classical thermoelastic 
model in which Fourier law is replaced by an approximation to a modified Fourier law with two 
different time translations: a PL of the heat flux τq and a PL of the temperature gradient τθ. Prasad 
et al. (2010, 2011) and Mukhopadhyay et al. (2011) investigated the effects of phase-lags on the 
wave propagation problems of some deformable structures. 

Micro-scale mechanical resonators have high sensitivity as well as fast response and are widely 
used as sensors and modulators. Recently, micro- and nano-mechanical resonators have attracted 
considerable attention due to their important technological applications. Accurate analysis of 
various effects on the characteristics of resonators, such as resonant frequencies and quality factors, 
is crucial for designing high-performance components. Many authors have studied the vibration 
and heat transfer process of beams. Fang et al. (2006) studied the vibration and heat transfer 
process of beams. Al-Huniti et al. (2001) investigated the thermally-induced displacements and 
stresses of a rod using the Laplace transformation technique. Kidawa-Kukla (2003) studied the 
problem of transverse vibrations of a beam induced by a mobile heat source. The analytical 
solution to the problem was obtained using the Green's functions method without considering the 
thermoelastic coupling effect. 

The present nanobeam is made of a ceramic and a metal for the purpose of thermal protection 
against large temperature gradients. The ceramic material provides a high temperature resistance 
due to its low thermal conductivity, while the ductile metal constituent prevents fracture due to its 
greater toughness. This is a new class of composite materials, which is known as functionally 
graded materials (FGMs). FGM characterizes a class of materials where the microstructures are 
spatially graded to achieve specific thermal properties to suit the functionality of the structure. The 
gradient compositional variation of the constituents from one surface to the other provides an 
elegant solution to the problem of high transverse shear stresses that are induced when two 
dissimilar materials with large difference in material properties are bonded. Gradually varying the 
material properties can prevent from interface cracking, delamination and residual stresses and 
thus maintain structural integrity to a desirable level. 

Ching and Yen (2006) presented numerical solutions obtained by the meshless local 
Petrov-Galerkin method for transient thermoelastic deformations of FG beams. Malekzadeh and 
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Shojaee (2014) investigated the dynamic response of FG beams under a moving heat source. The 
material properties are assumed to be temperature-dependent and graded in the thickness direction. 
Mareishi et al. (2013) developed the thermo-mechanical vibrations of FG beams. Governing 
equations are obtained based on higher-order variation of transverse shear strain through the depth 
of the beam. Recently, Abbas and Zenkour (2013) presented the electro-magneto-thermoelastic 
analysis problem of an infinite FGM hollow cylinder based upon LS theory. 

The nonlocal elasticity theory initiated by Eringen (1972, 1983) and Eringen and Edelen (1972) 
is widely used. The local theories assume that the stress at a point is a function of strain at that 
point. However, the nonlocal elasticity theory assumes that the stress at a point is a function of 
strains at all points in the continuum. In this paper, the vibration phenomenon of a nanobeam 
subjected to a time-dependent heat flux is studied (see also, Zenkour and Abouelregal 2014a, b, c). 
Material properties of the nanobeam are assumed to be graded in the thickness direction according 
to a novel exponential distribution in terms of the volume fractions of the metal and ceramic 
constituents. The solution for the generalized thermoelastic vibration of the nanobeam induced by 
a time-dependent heat flux is developed. The Laplace transform method is used to determine the 
lateral vibration, the temperature and the displacement of the nanobeam. The effect due to some 
parameters, especially the nonlocal one, on thermal oscillation quantities is studied and 
represented graphically. 
 
 
2. Basic equations of generalized thermoelasticity theory 

 
The governing equations of the linear theory of thermoelasticity with DPLs are: 
Equations of motion: 

iijji uF  ,                                (1) 
 
where σij are the components of the stress tensor, Fi are the components of body force vector, ρ is 
the material density, and ui are the components of the displacement vector. 

Constitutive equations: 
,2 ijijkkijij ee                         (2) 

 
where λ and μ are Lame's coefficients, eij is the strain tensor, ekk is the strain dilatation, γ = (3λ + 
2μ) αt is the coupling parameter, in which αt being the coefficient of linear thermal expansion, θ = 
T – T0 denotes the thermodynamical temperature, in which T is the temperature and T0 is the 
reference temperature assumed to be such that |θ / T0| << 1, and δij is the Kronecker’s delta. 

Equation of entropy (Energy equation): 
 

Qq iii  ,0                                (3) 
 
where η is the entropy per unit volume measured from the entropy of the reference state, qi are the 
components of the heat flows vector, Q is the heat supplied per unit volume from the external 
world, and θ0 is the reference thermodynamical temperature. 

The modified Fourier’s law: 
 

iiq t
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where K is the thermal conductivity, τθ and τq denote the finite times required for thermal 
equilibrium to be obtained and for effective collisions to take place between the electrons and the 
phonons, respectively. The delay time τθ is said to be the PL of the temperature gradient and the 
other delay time τq, the PL of the heat flux, which will ensure that the heat conduction equation 
will predict finite speeds of heat propagation. 

The entropy-strain-temperature relation: 
 





0

E
kk

C
e                           (5) 

 

where CE is the specific heat at constant strain. 
The strain-displacement relations: 

 

)(
2

1
,, ijjiij uue                                (6) 

 
In all of the above equations, the comma followed by a suffix denotes partial derivation with 

respect to the space variables and the superposed dot denotes the derivation with respect to the 
time t. Eqs. (3)-(5) give the heat equation of the generalized theory of thermoelasticity with DPLs 
as (Tzou 1995b): 
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In what follows, Lame’s coefficients λ and μ will be given in terms of the engineering 

coefficients: Young’s modulus E and Poisson’s ratio ν. 
 
 

3. Formulation of the problem 
 

Let us consider a FG thermoelastic solid nanobeam in Cartesian coordinate systems Oxyz. The 
x axis is drawn along the axial direction of the beam and the y and z axes correspond to the width 
and thickness, respectively (see Fig. 1). In equilibrium, the beam is unstrained, unstressed and at 
temperature T0 everywhere. The small flexural deflections of the nanobeam with dimensions of 
length L (0 ≤ x ≤ L), width b (−b / 2 ≤ y ≤ +b / 2) and thickness h (−h/2 ≤ z ≤ +h/2) are considered. 
The basic governing equations of motion, balance of equilibrated force and heat conduction in the 
context of generalized (non-Fourier) thermoelasticity for displacements ui in the absence of body 
forces, external loads, extrinsic equilibrated body force and heat sources are also considered. 

A new model of FGMs is presented to treat the governing equations of the thermoelastic 
nanobeam that subjected to a sinusoidal pulse heating. Based on this model, the effective material 
property P(z) gradation through the thickness direction is presented by (Zenkour 2006, 2014) 
 

cmP
h)/hz(n

m /PPnePzP P ln,)( 2                         (8) 
 

where PM and Pc represent the metal and ceramic properties, respectively. This study assumes that 
Young’s modulus E, material density ρ, thermal conductivity coefficient K and the stress- 
temperature modulus γ of the FGM change continuously through the thickness direction of the 
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Fig. 1 Schematic diagram for the FG nanobeam 

 
 

beam according to the gradation relation given in Eq. (8). It is to be noted that the material 
properties of the considered beam are metal-rich (fully metal) at the lower surface (z = +h/2) and 
ceramic-rich (fully ceramic) at the upper surface (z = −h/2) of the beam. 

The beam undergoes bending vibrations of small amplitude about the x-axis such that the 
deflection is consistent with the linear Euler-Bernoulli beam theory. That is, any plane 
cross-section initially perpendicular to axis of beam remains, plane and perpendicular to the 
neutral surface during bending. Thus, the displacements ui ≡ (u, v, w) are given by 
 

),(),,,(0,, txwtzyxwv
x

w
zu 



                      (9) 

 
where w is the lateral deflection. Substituting this Euler-Bernoulli assumption into Eq. (7), with 
the aid of Eq. (8), gives the thermal conduction equation for the beam without the heat source (Q = 
0), as 
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where Km, ρm, γm and 
e
mC  are, respectively, thermal conductivity coefficient, the material density, 

thermal modulus, and the specific heat per unit mass at constant strain of the metal material. Note 
that the parameters nK, nγ, nρ and nρCe are given according to Eq. (8) in terms the properties of 
ceramic and metal materials, and 
 

m

me
mm

m
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m χ
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αE
γ 


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21
                        (11) 

 

in which αm, Em, νm and χm are the thermal expansion coefficient, Young's modulus, Poisson's ratio 
and the thermal diffusivity of the metal material, respectively. 

There is no heat flow across the upper and lower surfaces of the beam (thermally insulated), so 
that ∂θ/∂z should be vanish at the upper and lower surfaces of the beam z = ±h/2. For a very thin 
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beam (nanobeam), assuming that the temperature increment varies sinusoidally along the thickness 
direction. That is 
 

)(sin),(),,( 1 pztxtzx                             (12) 

 
where p = π/h. Now, substituting Eq. (12) into Eq. (10) and integrating the resulting equation with 
respect to z through the beam thickness from –h/2 to h/2, yields 
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where η = ρm
e
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It is to be noted that, the nonlocal theory assumes that stress at a point depends not only on the 

strain at that point but also on strains at all other points of the body. So, the one-dimensional 
constitutive equation gives the uniaxial tensile stress only, according to the differential form of the 
nonlocal constitutive relation proposed by Eringen (1972, 1983) and Eringen and Edelen (1972), 
as 
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where nEα = ln ccmm EE  /  in which αc and Ec are the thermal expansion coefficient and 
Young’s modulus of the ceramic material, respectively. Note that ξ = (e0L)2 is the nonlocal 
parameter in which e0 is a constant appropriate to each material and L is the internal characteristic 
length. In general, a conservative estimate of the nonlocal parameter is e0L < 2.0 nm for a single 
wall carbon nanotube (Wang and Wang 2007). 

The flexure moment of the cross-section is given, with the aid of Eq. (12), by 
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The equation of transverse motion for the present beam is 
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where A = bh is the cross-section area. Substituting Eq. (16) into Eq. (18), one can get the motion 
equation of the beam as 
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where EEE   /  and ./ mmE    

The preceding governing equations can be put in non-dimensional forms using the following 
dimensionless parameters 
 

0

1
1

22
00

2
00 ,),,,(),,(

,),,,,,(),,,,,(

T
ctttt

hzwuLxhzwuLx









                 (20) 

 

So, the governing equations, and the bending and constitutive equations in non-dimensional 
forms are simplified as (dropping the primes for convenience) 
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4. Initial and boundary conditions 
 
The initial and boundary conditions should be considered to solve the present problem. The 

initial conditions of the problem are taken as 
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These conditions are supplemented by considering the two ends of the nanobeam satisfy the 

boundary conditions 
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A dimensionless time dependent heat flux q(z, t) of constant intensity q0 is applied on the 
boundary x = 0 
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Let us consider the heat flux q1(t) is varying harmonically with time described mathematically 

as follow 
0on0),cos()(1  xttq                        (26) 

 
where ω is the angular frequency of thermal ocillation (ω = 0 for a constant heat flux). Using Eqs. 
(12) and (25), then one gets 
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Asumming that the boundary x = L is thermally insulated, this means that the following relation 

will be satisfied 
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5. Solution procedure 
 
The closed form solution of the governing and constitutive equations may be possible by 

adapting the Laplace transformation method. Applying the Laplace transform to Eqs. (21), one 
gets the field equations as 
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where an over bar symbol denotes its Laplace transform, s denotes the Laplace transform 
parameter and 
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Elimination 1  or w  from Eqs. (29) gives the following differential equation for either w or 1  
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where the coefficients A, B and C are given by 
 

qsAACqAsABsAAAAqA 2
313

2
1

2
1423 ,)1(,)(              (32) 

 
Introducing mi (i = 1, 2, 3) into Eq. (31), one gets 
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3
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where D = d/dx and 

2
2

2
1 ,mm  and 

2
3m  are the roots of the characteristic equation 
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These roots are given by 
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where 
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The solution of Eqs. (33) in the Laplace transformation domain can be represented as 
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i
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3

1
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


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where Ci and Fi are parameters depending on s. The compatibility between these two equations 
and Eqs. (29), gives 
 

2
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i
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Then, the axial displacement after using the above equation takes the form 
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zu 3

3

1

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In addition, the strain will be 
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 xim
i

xim
ii

i

eCeCmz
dx

ud
e 3

2
3

1






                       (41) 

 

After using Laplace transform, the boundary conditions take the forms 
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Substituting Eqs. (39) into the above boundary conditions, one obtains six linear equations in 

the matrix form as 
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     (43) 

 
The solution of the above system of linear equations gives the unknown parameters Ci and Ci+3. 

This completes the solution of the problem in the Laplace transform domain. 
 
 

6. Inversion of the Laplace transforms 
 
In order to determine the conductive and thermal temperature, displacement, and stress 

distributions in the time domain, the Riemann-sum approximation method is used to obtain the 
numerical results. In this method, any function in the Laplace domain can be inverted to the time 
domain as 
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e
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0=
2
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where Re is the real part and i is the imaginary number unit. For faster convergence, numerical 
experiments have shown that the value that satisfies the above relation is ζ ≈ 47/t (Tzou 1996). 

 
 

7. Numerical results 
 
In terms of the Riemann-sum approximation defined in Eq. (44), numerical Laplace inversion 

is performed to obtain the dimensionless field variables of the nanobeam. The aluminum as lower 
metal surface and alumina as upper ceramic surface are used for the present nanobeam. The 
material properties are assumed to be 
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metal (aluminum): 
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ceramic (alumina): 
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Fig. 2 The transverse deflection due to different 
models of thermoelasticity ,2(  ω = 5, z 
= h/6) 

Fig. 3 The temperature due to different models of 
thermoelasticity )6/,5,2( hz    
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Fig. 4 The axial displacement due to different 
models of thermoelasticity ,2(   ω = 5, 
z = h/6) 

Fig. 5 Dependence of lateral vibration on different 
values of the angular frequency of the heat 
flux ω ,01.0,02.0,2(   q  z = h/6)
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 The reference temperature of the nanobeam is T0 = 293 K. The length-to-thickness ratio of the 
beam is fixed as L / h = 10. The plots are prepared by using the dimensionless variables for a wide 
range of beam length when, except otherwise stated, L = 1, z = h / 3 and t = 0.12. In what follows, 
the nonlocal parameter  )10( 6    is used. It should be less than 4(μm2). The local theory of the 

beam is given when .0  Some plots consider the present quantities through the length of the 
beam and others take into account both the length and thickness directions. Numerical calculations 
are carried out to investigate the dimensionless lateral vibration w, thermodynamic temperature θ 
and axial displacement u. Figs. 2-13 represent the curves predicted for these quantities. 
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Fig. 6 Dependence of temperature on different 
values of the angular frequency of the 
heat flux ω ,01.0,02.0,2(   q  
z = h/6) 

Fig. 7 Dependence of axial displacement on 
different values of the angular frequency 
of the heat flux ω ,02.0,2(  q τθ = 
0.01, z = h/6) 
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Fig. 8 Dependence of lateral vibration on different 
values of nonlocal parameter   (ω = 5, τq 
= 0.02, τθ = 0.01, z = h/6) 

Fig. 9 Dependence of temperature on different 
values of nonlocal parameter   (ω = 5, 
τq = 0.02, τθ = 0.01, z = h/6) 
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From application point of view, the graphs have been divided into four categories. The first 
category (Figs. 2-4) depicts the dimensionless lateral vibration, temperature and axial displacement 
in the context of different theories of thermoelasticity. The DPL theory, LS model, GN model and 
the CTE theory are used for this purpose when 2 , ω = 5 and z = h / 6. These figures show the 
difference between the local generalized thermoelasticity and the nonlocal generalized 
thermoelasticity models. 

Fig. 2 shows the distribution of the lateral vibration w through the length of the beam. It always 
begins at zero value and non-uniformly vibrates through the beam length to vanish once again at 
the end of the beam. This satisfies the conditions at beam boundaries. The behavior of DPL model 
may be similar than those of the other models. The wave amplitude of the CTE theory is the 
largest one while the wave amplitude of the GN model is the smallest one. Fig. 3 shows that the 
temperature θ is no longer increasing and get its maximum near the first edge of the nanobeam. 
Then, it is decreasing as the axial distance x increases to move in the direction of wave 
propagation. The temperatures of CTE theory may be larger than those of other theories in 0 ≤ x < 
0.5 and smaller than them in 0.5 < x ≤ 1. Fig. 4 illustrates that the axial displacement u moves 
directly in the direction of wave propagation. Once again, the behavior of generalized theories of 
thermoelasticity may be similar than that of CTE model. The different curves change their 
behaviors twice at 15.0x  and .85.0x  

The effect of the angular frequency of thermal oscillation of the heat flux ω has been carried 
out in the second category (Figs. 5-7) at constant values of τq = 0.02, τθ 0.01, z = h / 6 and .2  
In this category, all the field quantities have been examined for four different values of the 
parameter ω (ω = 5, 10, 15 for time-dependent heat flux) and (ω = 0 for constant heat flux). It has 
been observed that both the wave amplitude of lateral vibration and temperature decrease as ω 
increases. Also, the axial displacement increases as ω increases only above the x-axis. 

In the third category, the dimensionless lateral vibration, temperature and axial displacement 
are investigated in Figs. 8-10 for various values of the nonlocal parameter  . In this case the 
angular frequency of thermal oscillation of the heat flux remains constant (ω = 5) as well as 
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Fig. 10 Dependence of axial displacement on 
different values of nonlocal parameter 
  (ω = 5, τq = 0.02, τθ = 0.01, z = h/6) 

Fig. 11 The transverse deflection distribution 
versus the axial and thickness directions 

,2(  ω = 5, τq = 0.02, τθ = 0.01) 
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Fig. 12 The temperature distribution versus the 
axial and thickness directions ,2(   
ω = 5, τq = 0.02, τθ = 0.01) 

Fig. 13 The axial displacement distribution versus 
the axial and thickness directions ,2( 
ω = 5, τq = 0.02, τθ = 0.01) 

 
 

τq = 0.02, τθ 0.01 and z = h / 6. It can be seen that the deflection, temperature and displacement are 
verey sensitive to the variation of nonlocal parameter. In general, the field variables are decrease 
with the increasing value of the nonlocal parameter. 

The last category presented the three-dimensions of the field quantities of the nanobeam at 
constant values of τq = 0.02, τθ = 0.01, ω = 5 and 2  in a wide range of thickness −1/2 ≤ z / h ≤ 
1/2. In Figs. 11-13, one can see the behaviour of these quantities through-the-thickness of the 
nanobeam. The plots of temperature (Fig. 12) and axial displacement (Fig. 13) are very sensitive to 
the variation of the thickness direction. It is observed from Fig. 11, as it is expected, that the lateral 
vibration w  is uniform through the thickness direction. The plot of θ in Fig. 12 is independent of 
the thickness distance z only when x = 0.5 and around its neighborhood. Otherwise, the temperature 
θ is strongly depending on the variation of z, especially, at the beam boundaries. Fig. 13 shows that 
the axial displacement is vanished, as it is expected, at the center of the beam. Otherwise, u is 
strongly depending on the thickness distance z. 

 
 

8. Conclusions 
 
In this paper, a new model of nonlocal generalized thermoelasticity with dual-phase-lags for the 

Euler-Bernoulli nanobeam is constructed. The vibration characteristics of the transverse deflection, 
thermodynamic temperature, and axial displacement of nanobeam subjected to time-dependent 
heat flux are investigated. The effects of the nonlocal parameter   and the angular frequency of 
thermal oscillation of the heat flux ω on the field variables are investigated. Numerical technique 
based on the Laplace transformation has been used. The effects of the thickness, nonlocal 
parameter and the ω parameter on all the studied field quantities have been shown and presented 
graphically. According to the obtained results, it is found that the nonlocal parameter   has 
significant effects on all the studied fields. On the other hand the thermoelastic displacements and 
temperature have a strong dependency on the angular frequency of thermal oscillation of the heat 
flux parameter. The method which used in the present article is applicable to a wide range of 
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problems in thermodynamics and thermoelasticity. It is also observed that the theories of coupled 
thermoelasticity and generalized thermoelasticity with one relaxation time can be obtained as 
limited cases from our discussion problem. 
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