
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 18, No. 4 (2015) 1063-1081 
DOI: http://dx.doi.org/10.12989/scs.2015.18.4.1063                                               1063 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

On vibration properties of functionally graded nano-plate 
using a new nonlocal refined four variable model 

 
Ismahene Belkorissat 1, Mohammed Sid Ahmed Houari 2, 

Abdelouahed Tounsi 1,2, E.A. Adda Bedia 1 and S.R. Mahmoud 3,4 
 

1 Material and Hydrology Laboratory, University of Sidi Bel Abbes,  
Faculty of Technology, Civil Engineering Department, Algeria 

2 Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, 
Université de Sidi Bel Abbes, Faculté de Technologie, Département de génie civil, Algérie 
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia 

4 Mathematics Department, Faculty of Science, University of Sohag, Egypt 
 

(Received July 17, 2014, Revised October 06, 2014, Accepted November 06, 2014) 
 

Abstract.  In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration 
properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale 
parameter which can capture the small scale effect. The displacement field of the present theory is chosen 
based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By 
dividing the transverse displacement into the bending and shear parts, the number of unknowns and 
equations of motion of the present theory is reduced, significantly facilitating structural analysis. The 
material properties are assumed to vary only in the thickness direction and the effective properties for the FG 
nano-plate are computed using Mori–Tanaka homogenization scheme. The governing equations of motion 
are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the 
refined four variable plate theory via Hamilton’s principle. Analytical solution for the simply supported FG 
nano-plates is obtained to verify the theory by comparing its results with other available solutions in the 
open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various 
material compositions on the dynamic response of the FG nano-plate are discussed. 
 
Keywords:   nonlocal elasticity theory; nano-plates; free vibration; refined plate theory; functionally 
graded materials 
 
 
1. Introduction 

 
Nanotechnology is able to create functionally graded materials and engineering structures at a 

nanoscale, which enables a new generation of materials with revolutionary properties and devices 
with enhanced functionality. One of these structures is the nano-scale plates, which have attracted 
attention of scientific community in solid-state physics, materials science, and nano-electronics 
due to their superior mechanical, chemical and electronic properties. The understanding of 
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mechanical behavior of nano-plate is essential in developing of such structures due to their great 
potential engineering applications. 

Both experimental and atomistic simulation results have proved a significant size influence in 
mechanical properties when the dimensions of these structures become very small. For this reason, 
the size influence has a considerable role on static and dynamic response of micro, nanostructures 
and cannot be ignored. It is well-known that classical continuum mechanics does not account for 
such size influences in micro-, nano-scale structures. In order to overcome this problem, many 
nonlocal theories that consider additional material constants, such as the strain gradient theory 
(Aifantis 1999), the micropolar theory (Eringen 1967), and the nonlocal elasticity theory (Eringen 
1972) have been developed to characterize the size effect in micro, nano-scale structures by 
introducing an intrinsic length scale in the constitutive relations. Among these theories, the 
nonlocal elasticity theory, which was developed by Eringen (1983) to account for scale effect in 
elasticity, was employed to investigate lattice dispersion of elastic waves, wave propagation in 
composites, dislocation mechanics, fracture mechanics and surface tension fluids. After this, 
Peddieson et al. (2003) first applied the nonlocal continuum theory to the nanotechnology in 
which the static deformations of beam structures were obtained by using a simplified nonlocal 
beam model based on the nonlocal elasticity theory of Eringen (1983). Xu (2006) presented the 
integral equation approach and the non-local elasticity theory to investigate the free vibration of 
nano-to-micron scale beams. Reddy (2007) reformulated local beam theory by using the nonlocal 
differential constitutive relations of Eringen to study bending, vibration, and buckling behaviors of 
nanobeams. Analytical solutions are obtained to bring out the effect of the nonlocal behavior of 
nanobeams. Benzair et al. (2008) investigated the thermal effect on frequency of single walled 
carbon nanotubes using nonlocal Timoshenko beam model. Heireche et al. (2008a) applied 
nonlocal Timoshenko beam models to the studies of wave properties of single walled carbon 
nanotubes. Tounsi et al. (2013a) investigated the thermal buckling properties of double-walled 
carbon nanotubes (DWCNTs) using also nonlocal Timoshenko beam model, including the effects 
of transverse shear deformation and rotary inertia. Tounsi et al. (2013b) proposed an efficient 
higher-order nonlocal beam theory for the thermal buckling of nanobeams. Their model is capable 
of capturing both the small-scale effect and transverse shear deformation effects of nanobeams, 
and it has strong similarities with the nonlocal Euler–Bernoulli beam theory in aspects such as 
equations of motion, boundary conditions, and stress resultant expressions. A unified nonlocal 
shear deformation theory is proposed by Berrabah et al. (2013) to study bending, buckling, and 
free vibration of nanobeams based on Eringen model. Recently, Tounsi et al. (2013c) developed a 
new nonlocal thickness-stretching sinusoidal shear deformation beam theory for the static and 
vibration of nanobeams. Benguediab et al. (2014) investigated the chirality and scale effects on 
mechanical buckling properties of zigzag double-walled carbon nanotubes. 

With the rapid development of technology, functionally graded (FG) beams and plates have 
been started to use in micro/nanoelectromechanical systems (MEMS/NEMS), such as the 
components in the form of shape memory alloy thin films with a global thickness in micro- or 
nano-scale (Fu et al. 2003, Witvrouw and Mehta 2005, Lü et al. 2009), electrically actuated 
MEMS devices (Hasanyan et al. 2008, Mohammadi-Alasti et al. 2011, Zhang and Fu 2012), and 
atomic force microscopes (AFMs) (Rahaeifard et al. 2009). Since the dimension of these structural 
devices typically falls below micron- or nanoscale in at least one direction, an essential feature 
triggered in these devices is that their mechanical properties such as Young’s modulus and flexural 
rigidity are size-dependent. So far, only a few works have been reported for FG nanostructures 
based on the nonlocal elasticity theory. Janghorban and Zare (2011) investigated nonlocal free 

1064



 
 
 
 
 
 

On vibration properties of functionally graded nano-plate using a new nonlocal refined 

vibration axially FG nanobeams by using differential quadrature method. Daneshmehr et al. (2014) 
presented a nonlocal higher order plate theory for stability analysis of FG nanoplates subjected to 
biaxial in plane loadings. Recently, Larbi Chaht et al. (2015) studied the bending and buckling 
response of FG size-dependent nanoscale beams including the thickness stretching effect. 

In the current study, free vibration characteristics of FG nano-scale plates are studied using a 
new nonlocal hyperbolic refined plate theory. The partition of the transverse displacement into the 
bending and shear parts leads to a reduction of the number of unknowns, and subsequently, makes 
the new theory simple to use. In addition, the small scale effect is taken into account by using the 
nonlocal constitutive relations of Eringen. The effects of nonlocal parameter, aspect ratio, various 
material compositions on the free vibration responses of the FG nano-plate are discussed. Some 
illustrative examples are also presented to verify the present formulation and solutions. Good 
agreement is observed. 
 
 
2. Theoretical formulation 

 
2.1 Functionally graded material 
 
Fig. 1 shows a functionally graded (FG) rectangular nano-plate of length a, width b, and 

thickness h. The material on the top surface (z = +h / 2) of the plate is ceramic and is graded to 
metal at the bottom surface of the plate (z = −h / 2) by a power law distribution. According to 
Mori–Tanaka homogenization scheme, the effective Bulk Modulus (K) and the effective shear 
modulus (G) are given by (Belabed et al. 2014, Valizadeh et al. 2013, Cheng and Batra 2000, Qian 
et al. 2004) 
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Fig. 1 Schematic representation of a rectangular FG plate 
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where 
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Here, Vi (i = c, m) is the volume fraction of the phase material. The subscripts c and m refer to 
the ceramic and metal phases, respectively. The volume fractions of the ceramic and metal phases 
are related by VC + Vm = 1, and VC is expressed as 
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where n in Eq. (3) is the volume fraction exponent, also referred to as the gradient index. Fig. 2 
shows the variation of the volume fraction of the ceramic phase in the thickness direction z for the 
FG plate. The effective Young’s modulus E and Poisson’s ratio v can be computed from the 
following expressions 
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The effective mass density ρ is given by the rule of mixtures as (Natarajan et al. 2011, 
Benachour et al. 2011, Bessaim et al. 2013, Yaghoobi and Torabi 2013, Tounsi et al. 2013d, Ould 
Larbi et al. 2013, Bouremana et al. 2013, Hebali et al. 2014) 
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Fig. 2 Variation of ceramic phase through the thickness of the plate 
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2.2 Review of nonlocal elasticity 
 
According to Eringen (1972, 1983), the stress field at a point x in an elastic continuum not only 

depends on the strain field at the point (hyperelastic case) but also on strains at all other points of 
the body. Eringen attributed this fact to the atomic theory of lattice dynamics and experimental 
observations on phonon dispersion. Thus, the nonlocal stress tensor components σ at point x are 
expressed as 
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V

xdxtxx )(  ,                           (6) 

 

where t(x) are the components of the classical macroscopic stress tensor at point x and the kernel 
function α(|x′ − x|, τ) represents the nonlocal modulus, |x′ − x| being the distance (in Euclidean 
norm) and τ is a material constant that depends on internal and external characteristic lengths (such 
as the lattice spacing and wavelength, respectively). Eringen (1972, 1983) numerically determined 
the functional form of the kernel. By appropriate choice of the kernel function, Eringen (1983) 
showed that the nonlocal constitutive equation given in integral form (see Eq. (6)) can be 
represented in an equivalent differential form as 
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where μ = ),( 0ae  e0 is a material constant and a  and L are the internal and external characteristic 
lengths, respectively. 

 
2.3 Four variable plate theory 
 
Recently, using a new four variables refined plate theory against five in case of other shear 

deformation theories, Tounsi and his co-workers (Ait Yahia et al. 2015, Ait Amar Meziane et al. 
2014, Draiche et al. 2014, Klouche Djedid et al. 2014, Nedri et al. 2014, Zidi et al. 2014, Sadoune 
et al. 2014, Tounsi et al. 2013d, Bachir Bouiadjra et al. 2013, Bouderba et al. 2013, Kettaf et al. 
2013, Bachir Bouiadjra et al. 2012, Bourada et al. 2012, El Meiche et al. 2011) studied a series of 
buckling, bending and vibration behavior of functionally graded plate and laminated plate. In the 
present work, a new nonlocal hyperbolic four variables plate theory is presented. 

 
2.3.1 Kinematics 
The displacement field of the present theory is chosen based on the following assumptions: (1) 

the in-plane and transverse displacements are partitioned into bending and shear components; (2) 
the bending parts of the in-plane displacements are similar to those given by the classical plate 
theory (CPT); and (3) the shear parts of the in-plane displacements give rise to the hyperbolic 
variations of shear strains and hence to shear stresses through the thickness of the plate in such a 
way that the shear stresses vanish on the top and bottom surfaces of the plate. Based on these 
assumptions, the following displacement field can be obtained 
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here u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
midplane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively; and h is the plate thickness. The nonzero strains associated with the 
displacement field in Eq. (8) are 
 

,)(,)(
0

0

0

0

0





















































































xz

yz

xz

yz

s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

xy

y

x

zg

k

k

k

zf

k

k

k

z














           (9) 

 

where 

,,

2

,

2

,
0

0

2

2

2

2

2

2

2

2

2

2

00

0

0

0

0

0
















































































































































































































x

w
y

w

yx

w
y

w
x

w

k

k

k

yx

w
y

w
x

w

k

k

k

x

v

y

u
x

v
x

u

s

s

xz

yz

s

s

s

s
xy

s
y

s
x

b

b

b

b
xy

b
y

b
x

xy

y

x








 (10a) 

 

and 
)(1)( zfzg                            (10b) 

 
2.3.2 Constitutive relations 
The nonlocal constitutive Eq. (7) has been recently employed for the study of micro and 

nanostructural elements. However, these works are mainly limited to one-dimensional problems 
(CNTs, micro/nano beams, etc.) (Peddieson et al. 2003, Xu 2006, Reddy and Pang 2008, Heireche 
2008a, b, c, Tounsi et al. 2008, 2013a, b, c, Berrabah et al. 2013). From Eq. (7) the two-dimensional 
nonlocal constitutive relations for elastic FG nano-plate can be expressed as 
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (4), stiffness coefficients, Cij, can be expressed as 
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2.3.3 Equations of motion 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Reddy 2007) 
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where the stress resultants N, M, and S are defined by 
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The variation of kinetic energy of the plate is expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 
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Substituting the expressions for δU and δK from Eqs. (14) and (16) into Eq. (13) and 
integrating by parts, and collecting the coefficients of δu0, δv0, δwb and δws, the following 
equations of motion of the proposed beam theory are obtained 
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Substituting Eqs. (10) and (11) into Eq. (15) and integrating through the thickness of the plate, 
the stress resultants are related to the generalized displacements (u0, v0, wb, ws) by the relations 
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where Aij, Bij, Dij, etc., are the plate stiffness, defined by 
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Substituting from Eq. (19) into Eq. (18), we obtain the following equation 
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3. Exact solution for a simply-supported FG plate 
 

Rectangular plates are generally classified according to the type of support used. Here, we are 
concerned with the exact solutions of Eq. (22) for a simply supported nanoplate. The following 
boundary conditions are imposed at the side edges 
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Following the Navier solution procedure, we assume the following solution form for u0, v0, wb 
and ws that satisfies the boundary conditions given in Eq. (23) 
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where Umn, Vmn, Wbmn and Wsmn are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with (m, n)th eigenmode, and α = mπ / a and β = nπ / b. 
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Substituting Eqs. (24) into Eq. (22), the analytical solutions can be obtained from 
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4. Analytical results and discussion 
 
In this part of this work, the size-dependent free vibration response of a simply supported 

nano-plate made of functionally graded material is investigated. The free vibration analysis is 
conducted by considering the top surface of the plate is ceramic rich (Si3N4) and the bottom 
surface is metal rich (SUS304). The mass density ρ and the Young’s modulus E are: ρc = 2,370 
kg/m3, Ec = 348.43e9 N/m2 for Si3N4 and ρm = 8,166 kg/m3, Em = 201.04e9 N/m2 for SUS304. 
Poisson’s ratio v is considered to be constant and taken as 0.3 for the present work. 

In all cases, we present the non-dimensionalized frequency defined as 
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where   is the natural frequency, ρc and Gc are the mass density and shear modulus of the 
ceramic phase, respectively. 

In order to validate the present model, some numerical examples are solved to prove the 
performance in vibrational analysis. For this purpose, we firstly began to investigate simply 
supported plate for different values of nonlocal parameter, the plate thickness and the plate aspect 
ratio. The computed results are presented in Table 1 and are compared with those predicted by the 
third shear deformation theory (TSDT), the first shear deformation theory (FSDT) and the classical 
plate theory (CPT) developed by Aghababaei and Reddy (2009). The numerical results from the  

 
 

Table 1 Comparison of fundamental frequency )/( Gh    of nano-plate (a = 10, E = 30 × 106, ρ = 1, 
v = 0.3) 

a / b a / h μ Present TSDT(a) FSDT(a) CPT(a) 

1 

10 

0 0.0930 0.0935 0.0930 0.0963 

1 0.0850 0.0854 0.0850 0.0880 

2 0.0787 0.0791 0.0788 0.0816 

3 0.0737 0.0741 0.0737 0.0763 

4 0.0695 0.0699 0.0696 0.0720 

5 0.0659 0.0663 0.0660 0.0683 

20 

0 0.0238 0.0239 0.0239 0.0241 

1 0.0218 0.0218 0.0218 0.0220 

2 0.0202 0.0202 0.0202 0.0204 

3 0.0189 0.0189 0.0189 0.0191 

4 0.0178 0.0179 0.0178 0.0180 

5 0.0169 0.0170 0.0169 0.0171 

2 

10 

0 0.0588 0.0591 0.0589 0.0602 

1 0.0555 0.0557 0.0556 0.0568 

2 0.0527 0.0529 0.0527 0.0539 

3 0.0503 0.0505 0.0503 0.0514 

4 0.0481 0.0483 0.0482 0.0493 

5 0.0463 0.0464 0.0463 0.0473 

20 

0 0.0149 0.0150 0.0150 0.0150 

1 0.0141 0.0141 0.0141 0.0142 

2 0.0134 0.0134 0.0134 0.0135 

3 0.0127 0.0128 0.0128 0.0129 

4 0.0122 0.0123 0.0123 0.0123 

5 0.0117 0.0118 0.0118 0.0118 

(a) Aghababaei and Reddy (2009) 
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Table 2 Comparison of natural frequency of FG nano-plate (a = 10, n = 5) 

a / b a / h μ 
Mode 1 Mode 2 Mode 3 

Ref (b) Present Ref (b) Present Ref (b) Present 

1 

10 

0 0.0441 0.0432 0.1051 0.1029 0.1051 0.1915 

1 0.0403 0.0395 0.0860 0.0842 0.0860 0.1358 

2 0.0374 0.0366 0.0745 0.0730 0.0746 0.1110 

4 0.0330 0.0323 0.0609 0.0596 0.0610 0.0861 

20 

0 0.0113 0.0111 0.0278 0.0274 0.0279 0.0536 

1 0.0103 0.0101 0.0228 0.0224 0.0228 0.0380 

2 0.0096 0.0094 0.0197 0.0194 0.0198 0.0310 

4 0.0085 0.0083 0.0161 0.0158 0.0162 0.0241 

2 

10 

0 0.1055 0.1029 0.1615 0.1574 0.2430 0.2397 

1 0.0863 0.0842 0.1208 0.1177 0.1637 0.1587 

2 0.0748 0.0730 0.1006 0.0980 0.1310 0.1269 

4 0.0612 0.0596 0.0793 0.0772 0.0999 0.0968 

20 

0 0.0279 0.0274 0.0440 0.0432 0.0701 0.0688 

1 0.0229 0.0224 0.0329 0.0323 0.0464 0.0455 

2 0.0198 0.0194 0.0274 0.0269 0.0371 0.0364 

4 0.0162 0.0158 0.0216 0.0212 0.0283 0.0277 

(b) Natarajan et al. (2012) 
 
 
present theory are found to be in very good agreement with the existing shear deformation theories. 
Noted that the present model has only four unknowns, while the number of unknowns in FSDT 
(e.g., Thai et al. 2012) and TSDT (Aghababaei and Reddy 2009) is five. Also, the present theory 
does not required shear correction factors as in the case of FSDT. It can be also concluded that the 
local elasticity theory overestimates the natural frequency than the nonlocal elasticity theory. 

The second comparison is carried out for FG plates (n = 5) with different values of nonlocal 
parameter, the plate thickness and the plate aspect ratio. The natural frequencies computed using 
the present theory, are compared with those of Natarajan et al. (2012) in Table 2. Again, good 
results are achieved for both formulations. The difference observed in the case of mode 3, is due to 
the calculation of frequency which is carried out with (1, 3)th eigenmode instead to (1, 2)th 
eigenmode. It should be noted that the present theory involves four unknowns as against five 
unknowns in both FSDT and TSDT. 

Fig. 3 presents the variation of the frequency ratio )/( LNL  against the nonlocal parameter (μ) 

for different values of thickness parameter (a / h). Where NL  and L  are the nondimensional 
frequency based on nonlocal and local elasticity, respectively. These results indicate that the 
responses vary nonlinearly with the small scale parameter. It can be seen that the increase of the 
nonlocal parameter leads to a decrease in the frequency ratio. This result proves that the effect of 
the nonlocal parameter softens the nano-plate. The main finding from the figure is that all 
responses of FG nano-plate with lower thickness parameter (i.e., a / h = 5) are strongly affected by 
the small scale parameter than those of the FG nano-plate with relatively higher thickness 
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Fig. 3 Effect of the nonlocal parameter (μ) and the thickness parameter (a / h) on dimensionless frequency 
ratio )/( LNL  for a simply supported square FG plate with volume fraction exponent n = 5 

 

 
Fig. 4 Effect of the nonlocal parameter (μ) on dimensionless frequency ratio )/( LNL   for a 

simply supported square FG plate for the first two frequencies with a / h = 10 and volume 
fraction exponent n = 5 

 
 

parameter. From this observation, it can be concluded that modeling based on the local (classical) 
plate models is not suitable, and the nonlocal plate models may provide an adequate 
approximation for the nano-sized structures. 

It can be seen from Fig. 4 that the frequency ratios are smaller than unity for both modes 1 and 
2, indicating that the inclusion of the small scale effect leads to a reduction in the vibration 
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frequencies. This underprediction of frequency values is amplified for higher vibration modes. 
Fig. 4 illustrated the effect of the volume fraction exponent on the dimensionless two first 

frequencies of FG nano-plate with a / h = 10 for various values of the small scale parameter. One 
can observe that the dimensionless frequency decreases as the volume fraction exponent increases. 
This is due to the fact that an increase in the volume fraction exponent yields a decrease in the 
stiffness of the FG nano-plate. There is an abrupt change in the responses when the volume 
fraction exponent changes from 0 to 2, but after passing n = 2 all of the curves become flatter. 

 
 

 
(a) 

 

 

(b) 

Fig. 5 Effect of the volume fraction index (n) and the nonlocal parameter (μ) on dimensionless 
frequency for a simply supported square FG plate with a / h = 10: (a) first frequency; (b) 
second frequency 
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5. Conclusions 
 
The size-dependent vibration properties of FG nano-plate are numerically investigated by 

employing a new hyperbolic refined plate model based on the nonlocal differential constitutive 
relations of Eringen. By dividing the vertical displacement into bending and shear components, the 
number of unknowns and governing equations of the present model is reduced to four and is 
therefore less than alternate theories. The influences of small scale parameter, thickness parameter, 
and various material compositions on the vibration response of the FG nano-plate are discussed. 
Numerical results prove that the small scale effects play a considerable role on the vibration 
properties of the FG nano-plate. The novel nonlocal plate model produces smaller frequencies than 
the classical (local) plate model. Therefore, the nonlocal effects should be considered in the 
analysis and modeling of dynamic behavior of nanostructures. Further, it is proved that the volume 
fraction exponent has a great effect on the behaviors of FG nano-plate, and the responses can be 
controlled by selecting proper values of the volume fraction exponent. The formulation lends itself 
particularly well in analysing nanostructures with including the stretching effect (Larbi Chaht et al. 
2015, Hamidi et al. 2015, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Bourada et al. 
2015, Houari et al. 2013, Saidi et al. 2013, Bessaim et al. 2013) which will be considered in the 
near future. 
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