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Abstract.  This paper is concerned with the dynamic analysis of simply-supported steel-concrete 
composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, 
the governing motion equations are derived from the direct balanced method. By variable separation 
approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the 
orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, 
and compared with the experimental results. The analysis results show that the governing motion equations 
become more complicated when interface slip is taken into account, and the dynamic behaviors are 
significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, 
the global stiffness should not be reduced as the same factor to all orders, but as different ones according to 
the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design 
and experiment, or else great deviation is inevitable. 
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1. Introduction 

 
The steel-concrete composite beams (short for composite beam herein) are composed of 

concrete slab and steel girder, which are connected by shear connectors (e.g., headed studs), as 
shown in Fig. 1. Taking full advantage of material properties of the compressive concrete slab and 
the tensile steel girder, the composite beams possess excellent mechanical performance, diversified 
format and convenient construction, which are widely adopted in highway and railway bridges. 
For bridges with short and medium spans, especially for spans of 60 m to 80 m, the construction 
cost of composite beams is 18% less than that of the concrete bridges, and have significant 
advantages in comprehensive benefits (Taly 1998). In Europe and America, almost all the short 
bridges with the span between 25 m and 60 m are composite beams (Galambos 2000). 

Nevertheless, due to the flexibility of shear connectors, interface slip will inevitably occur 
between the interface of concrete slab and steel girder under external loads, which affects not only 
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Fig. 1 Typical composite beams with shear connectorsㅇ 
 
 
the static (e.g., Zhang 2002, Kroflic et al. 2010), but also the dynamic behaviors of composite 
beams. For this reason, it shows significant differences from the beams with homogenous material 
(e.g., concrete beam, steel girder) (Banerjee 2001, Jiang et al. 2006). 

The effects produced by such interface slip have been considered a lot in static calculations 
(e.g., Nie et al. 1994), but very few can be found for dynamic analyses (e.g., Biscontin et al. 2000, 
Huang and Su 2008, Kim 2009). For bridges subjected to moving loads, both the loads and the 
dynamic response of the beam vary with time (Xia et al. 2003, 2007, Esmailzadeh and Jalili 2003), 
which makes the dynamic equations even more complex, but references about theoretical and 
experimental studies of composite beams under moving loads are even far rarer. 

Generally, in the published references, there are several types of concerns and methodologies 
for composite beams that considering interface slip. 

The early method (i.e., “transformed section method”) was based on elastic theory, which was 
first proposed by Andrews (1912). In this method, both the steel and concrete are considered as 
idealized elastic materials, fully connected and deformable compatibility. The concrete is 
transformed to the steel through the modular ratio, and then calculated based on mechanics of 
materials. However, the real relative slip at the interface between steel girder and concrete slab 
was not taken into account, which will inevitably lead to unsafe results in bearing capacity and 
deflection. It should be mentioned that the elastic method is only applicable to the analysis of 
serviceability limit state. 

To avoid the calculation error caused by the elastic method, the stiffness calculation formulae 
were proposed, such as the “stiffness reduction factor” method (Nie et al. 1998) and the 
“combination coefficient” method (Wang et al. 2005), in which the effect of global stiffness 
degradation caused by interface slip can be taken into account. However, in the “stiffness 
reduction factor” method, the expression of stiffness reduction factor is not monotonic, and is 
restricted by the value range of connection stiffness. While in the “combination coefficient” 
method, which is based on the half-theory and half-experience approach, only two extreme values 
for the amplification coefficient are available from the connection stiffness, other values between 
them can only be obtained by interpolation, and it can only be used to calculate the deflection of 
composite beams with partial connection. 

In the third type method (e.g., Nie et al. 1994, 1998, Wang 1998), the additional deflection 
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caused by interface slip are derived from the differential equation of relative slip, by which the 
general deflection formulae of composite beams that considered the flexible connectors were 
obtained. In this method, the influences of slip effect and connection degree are inclusive and 
some correction factors and construct restrictions are introduced to meet the requirements of 
calculation and engineering. 

Methods based on variational principle of energy were proposed by Ranzi and Zonab (2007) 
and Zhang (2009). By assuming different longitudinal shape functions for the inner roof, the 
cantilever flanges of concrete slab and the lower plane of steel girder, and considering the relative 
slip of them, the analytical solutions to the deflection of the composite beams under different load 
distribution forms were derived. In the methods, the influences of shear deformation and shear lag 
are taken into account, while some coefficients are difficult to calculate. 

Up to now, most of the deflection solutions for composite beams that consider interface slip are 
related to static theory, while those concerned with the dynamic behaviors are rarely involved. 

Xu and Wu (2007) studied the static, dynamic and buckling behaviors of partial interaction 
composite members by taking into account the influences of rotary inertia and shear deformations, 
and the analytical solutions of the deflection were found for the beam with uniformly distributing 
load under common boundary conditions. Nie et al. (1998) derived a closed-form solution for the 
simple partial composite beam subjected to a moving load, but without damping considered. 
Girhammar et al. (2009) discussed the partial differential equations and general solutions for the 
deflection and internal actions and the pertaining consistent boundary conditions for composite 
Euler-Bernoulli members with interlayer slip subjected to general dynamic loading. Considering 
the rotary inertia and the shear deformation, Won et al. (2012) studied a damped Timoshenko 
beam element for the DOF-efficient forced vibration analysis of beam-like structures coated with 
viscoelastic damping layers, in which the complex composite section is replaced with a 
homogeneous one by means of the transformed section approach. 

In this paper, some typical analysis models of composite beams are summarized. On this basis, 
the fundamental motion equations for simply-supported composite beams are derived, and the 
orthogonality conditions about mass, damping and stiffness matrices are obtained, as well as the 
“dynamic reduction factor” is discussed. Based on the modal superposition method, the solution to 
the dynamic response for composite beams under moving loads is proposed. The relevant dynamic 
experiments are carried out, and some results are compared with the numerical results. 
 
 
2. Fundamental analytical model and governing equations 
 

To consider the effect of shear connectors, an infinitesimal element of composite beam is 
established, which is composed of two sub-beams, a concrete slab and a steel girder, as shown in 
Fig. 2. 

Based on considerable established research results (e.g., Biscontin et al. 2000, Dilena and 
Morassi 2003, Huang and Su 2008), some reasonable assumptions involved in the model are as 
follows: 

 

(1) There is no separation due to the lift of concrete slab from steel girder; 
(2) Both the concrete slab and steel girder are treated as Euler-Bernoulli beams; 
(3) The shear forces borne by the connectors distribute evenly along the beams; 
(4) The binding force on the interface of concrete slab and steel girder is ignored; 
(5) The load is treated as concentrated force. 
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Fig. 2 Mechanical schematic diagram of composite beams 
 
 

2.1 Infinitesimal element balanced equation 
 
An infinitesimal element of dx segment is studied, in which the shear force on the interface can 

be expressed as QL (x) = KSδdx, where KS is the shear stiffness of the connector per unit length, 
and δ is the relative slip in the range of dx, with the subscripts 1 and 2 denoting the concrete slab 
and the steel girder, respectively. 

 
(1) Equilibrium equations of vertical forces 
Considering the vertical force equilibrium of the sub-beams, the equilibrium equation for the 

vertical force of the infinitesimal element can be written as 
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where v(x, t) is the vertical displacement; Q(x, t), p(x, t), m(x) and c(x) are the shear force, vertical 
force, mass and damping factors subjected by unit length of beam, respectively. 

 
(2) Equilibrium equations of moments 
By summation of the bending moments at the right side of the neutral axes for the two sub- 

beams, the vertical moment equilibrium equations for the infinitesimal element of the composite 
beam can be obtained as 
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where M(x, t) is the moment borne by the element, and h is the distance between the neutral axes 
of concrete slab and steel girder. Addtionally, the minterm is neglected in this equation 

 
(3) Displacement compatibility equations 
Suppose the vertical displacement v(x, t) causes a longitudinal relative slip δ and a rotation 

angle v′ at the interface, and the corresponding relative rotation angle of the normal line of the 
neutral axes is θ, it can be seen from Fig. 2 that 
 

hv )(                                   (3) 
 

Apparently, for the infinitesimal element dx, a relational expression can be expressed as 
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in which the left term is the moment caused by the slip δ, and the right term is the moment 
caused by the rotational angle θ. 

 
(4) Motion equation of composite beams 
From Eqs. (1) to (4), the motion equations of a straight composite beam with uniform section 

that considering the relative slip are obtained. If m(x) and c(x) are treated as constants m  and c  
respectively, the motion equation solved by the method of variables separation are obtained as 
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of the system, respectively; 
v(x, t) = ϕ(x)·q(t) represents the vertical displacement of v(x, t) occurring at x, in which ϕ(x) is 

the mode shape and q(t) the amplitude varying with time; 
(EI)B = E1I1 + E2I2 represents the sum of bending stiffness for the concrete slab and steel girder 

around their respective neutral axes; 
(EI)C = E1A1h1

2 + E2A2h2
2 represents the bending stiffness around the neutral axis of the 

composite beam. It can be seen that the expression is similar to the conventional beams, except the 
expression of global stiffness. 

(EI)F = (EI)C + (EI)B represents the stiffness of the composite beam when KS is infinite, i.e., in 
the case without interface slip. 

 
(5) Solutions to the motion equation 
If λ and ϕ(x) are regarded as the eigenvalue and eigenfunction of Eq. (5), the solution can be 

expressed as 
 

xFxExDxCxBAx 332211 coshsinhcoshsinhcoshsinh)(        (6) 

569



 
 
 
 
 
 

Zhongming Hou, He Xia, Yuanqing Wang, Yanling Zhang and Tianshen Zhang 

where λi (i = 1, 2, 3,..., 6) is the roots of the characteristic equation for Eq. (6); The coefficients A, 
B, ……, F can be obtained using the corresponding boundary conditions. 

For a simply-supported composite beam, the mode shape can be expressed as ϕn(x) = sin(nπx / 
L), and the circular frequency for the beam is obtained as 
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With regard to a conventional beam with homogenous material, KS tends to be infinite, i.e., α 
ends to be 0 and 

2
n  tends to be 1, as a result 
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Eq. (8) has the same form with conventional straight beams, and (EI)F can be deemed as the 

global stiffness of composite beams without taking account of slip, thus we have 
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where (EI)eq represents the equivalent stiffness of composite beams. 

From Eqs. (7) and (8) we can see that the vertical natural frequencies will decrease when the 
interface slip is considered, thus 

2
n  reflects the dynamic stiffness of the composite beam, which 

can be regarded as “Dynamic stiffness reduction factor (DSRF)” of the nth order, and n  is the 
“Frequency reduction factor (FRF)”. 

 
2.2 Orthogonality conditions of the mode shape 
 
For the nth mode shape, Eq. (5) can be rewritten as 
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By multiplying ϕm(x) to both sides of the equation and integrating along the x-axis, the 

orthogonality of Eq. (11) is investigated. After conducting partial integration, we obtain 
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For a simply-supported composite beam, the first three terms at the right hand side with definite 

integral from 0 to L equal to zero, thus a simplified symmetric form can be obtained as 
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Apparently, Eq. (13) is still valid when n and m are exchanged for each other due to the 

symmetry, we obtain 
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Subtracting Eq. (13) from Eq. (14), we have 
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For a real beam, the natural frequencies of different orders are different for each other, namely 

22
nm    when m ≠ n, so the modal shapes ϕm (x) and ϕn (x) should satisfy the orthogonality 

conditions 
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From Eq. (16), it is easy to obtain that 
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Eqs. (16) and (17) are, respectively, the orthogonality conditions about mass and stiffness for 

571



 
 
 
 
 
 

Zhongming Hou, He Xia, Yuanqing Wang, Yanling Zhang and Tianshen Zhang 

the simply-supported composite beam. 
Since the terms of ϕm (x) and ϕn (x) are asymmetric, and c* = 2ξωm*, we have 
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Likewise, by multiplying ϕm (x) to both sides of Eq. (18), and employing partial integral and the 

orthogonality conditions of Eqs. (16) and (17), we have 
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The orthogonality conditions of Eqs. (16), (17) and (19) provide the decoupling methods for the 

motion equation of composite beams, and can be conveniently applied in the derivation. 
 
2.3 Buckling of the axially compressed beam 
 
The simply supported sandwich beam is compressed by axial force F0 (F1 = 0, see Fig.1). 

The system of equilibrium Eqs. (12), (17), and (18) is approximately solved. 
 
 

3. Vibration analysis of composite beams under moving load 
 

3.1 Governing equation 
 
Based on Eq. (11), (17)-(19), when for the governing equations all modes are superposed, we 

obtain 
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Utilizing the orthogonality relationships and the corresponding boundary conditions, Eq. (20) 

can be written as the following form 
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Eq. (21) is the governing equation for a straight composite beam with uniform section, where 
*** ,, nnn KCM  and 

*
nP  are the generalized mass, damping, stiffness and load, respectively, which can 

be expressed as 
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2.2 Vibration equation of composite beams under moving load 
 
Consider a simply-supported composite beam with uniform cross-section, where both (EI)F and 

m  are constants, and load P(t) moves on the beam at a speed V, as shown in Fig. 3. 

For the moving load P(t), the term 
*

nP  in Eq. (22) can be expressed as δ(x ‒ Vt)P(t), where   
is the Dirac-delta function, it has the following features 
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According to the derivation of Section 2.1, by substituting ϕn(x) = sin(nπx / L) into Eq. (23), the 

specific expressions of all the generalized coefficients in the vibration equation are derived as 
follows 
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Fig. 3 Model of a composite beam subjected to a moving load 
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where t0 is the time of the load moving on the beam, i.e., L / V. 

 
3.3 Solution to the vibration equation 
 
Substituting 

*** ,, nnn KCM  and 
*

nP  into Eq. (21), and divided by ,*
nM  the normalized form of the 

nth dynamic equilibrium equation for the simply-supported composite beams under moving load 
can be obtained as 
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where Lmm   denotes the total mass of the beam. 

Eq. (25) is a linear differential equation with constant coefficients, which has the same form 
with the conventional beams, merely the expression of 

*** ,, nnn KCM  and 
*

nP  are more complicated. 
The response of each mode of the beam under moving load can be calculated with the Duhamel 
integral, and the ultimate physical response of the beam can be obtained by superposition of all 
modes concerned. 

If the initial conditions of Eq. (25) are assumed as static, i.e., both )0(nq  and )0(nq  are zero, 
the particular solution to the response can be written as 
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where ωD,n denotes the nth circular frequency with damping. It is worth noticing that there is an 
additional coefficient in the right term compared to conventional beams. 

Based on Eq. (26), the response of multiple loads moving on the composite beam at different 
speeds can be obtained easily. As for a concentrated load acting on a fixed position of the beam 
(i.e., V = 0), the dynamic response expression of the composite beam can be converted into series 
that matching summation conditions through a certain mathematical transformation, this will be 
discussed in another paper. 
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4. Case study 
 
The simply-supported composite beam subjected to moving loads is studied to illustrate the 

application of the dynamic theory derived in this paper, and the results are compared with those 
from the model test. 

 
4.1 Model test 
 
The models have a span of 4200 mm, composed of a concrete slab and two steel girders. The 

concrete slab and steel girders are connected with headed studs as the shear connectors, whose 
diameter and height are 13 mm and 50 mm, respectively. There are two types of connection for the 
models: partial connection with shear connection degree 60% with 42 headed studs, which is 
expressed as PCB, and full connection with 70 headed studs, which is expressed as FCB. Detailed 
dimensions and structural layout can be found in Fig. 4. The definition of connectors’ stiffness can 
be found in European Standard (2007) and the study of Gattesco (2009). 

The 941B sensors and the corresponding data acquisition instrument (COINV) are used to 
measure the acceleration of the beams, and the displacement sensors to measure the vertical 
 
 

 

 

Fig. 4 Dimensions of the test beams (unit: mm) 

 

Fig. 5 Photograph of the model vehicle Fig. 6 Schematic diagram of the test platform 
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Table 1 Comparison of the 1st vertical natural frequencies of FCB and PCB (Hz) 

Model 
Theoretical value 2

1  
Numerical value Test 

results KS (MPa) Slip No slip Slip No slip 

FCB 305.32 22.546 28.91 0.608 25.93 31.607 23.13 

PCB 183.19 20.921 28.91 0.517 24.11 31.208 21.16 

 
 
displacement. A model vehicle with the scale of 1:10 based on the real train carriage of C70 in 
China is taken as the moving loads. The model vehicle has 2 bogies and 4 wheel-sets, and the 
self-weight is 62 kg. The model vehicle and the schematic diagram of test platform can be found in 
Figs. 5 and 6, respectively. 

Compared in Table 1 are the theoretical, numerical and test results of the 1st vertical natural 
frequencies of the PCB and FCB beams. In the table, the theoretical ones are analyzed with Eq. (7), 
and the numerical ones are calculated by ANSYS. Ks is the longitudinal shear stiffness of unit 
length of the connector, and Ks = ∞ corresponds to the case without slip. 

It can be seen from Table 1 that: 
 

(1) The results considering relative slip are quite close to the test ones, while those without 
slip are 36.6% as much bigger, which validates the formulae conducted by this paper. 

(2) The 1st vertical natural frequency decreases with the falling of shear connection degree, 
which shows that the relative slip decreased the global stiffness of the composite beams. 

(3) Other details of dynamic characteristics for the model beams can be found in reference 
(Hou 2011). 

 
4.2 Dynamic responses of composite beam under moving loads 
 
4.2.1 Measured results from model test 
Dynamic responses of the beam were measured when the vehicle travels through the beam at 

several speeds from 0.1 to 3.0 m/s. 
In this test, the stiffness of the model beams (the 1st vertical frequencies are greater than 20 Hz) 

are relatively larger than the normal ones (the fundamental frequency is usually less than 10 Hz), 
and compared with the weight of the model beam, the moving loads are relatively lightweight, so 
the responses of the beams are not significant. This will lead to certain errors in the measured 
results produced by the irregularity of the track and other factors. To better compare with the 
calculated results, filtering of 80 Hz was conducted to remove the errors from the measured results. 
Shown in Fig. 7 are the measured acceleration and displacement time histories at midspan of the 
FCB beam under 62 kg model vehicle at speed of 2.35 m/s. 

It can be seen that the acceleration of the beam excited by the model presents as an oscillation 
waveform and quickly attenuates with time, while in the displacement time history, a series peaks 
appear around the static deflection curve with a half-sinusoidal waveform. The measured maximum 
acceleration and displacement are 1.30 m/s2 and 0.08 mm, respectively. 

 
4.2.2 Numerical results and their comparison with measured ones 
The numerical results are calculated according to Eq. (25), in which the 62-kg model vehicle is 

simplified as moving load series, as shown in Fig. 8. In the calculation, the damping ratio of the 
beam is taken as 0.02. 
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Fig. 7 Dynamic responses of FCB beam at midspan under 62 kg model vehicle 
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Fig. 8 Load series distribution of the model vehicle (mm) 
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Fig. 9 Comparison of FCB under 62-kg vehicle between the test and theoretical results 
 
 

Using the same parameters with the model test, the dynamic responses of the beam are 
calculated by the numerical model. Compared in Fig. 9 are the calculated and measured midspan 
time histories. On the whole, the calculated curve agrees well with the measured one. Since the 
influence of the track irregularity in the model test, there appear some higher frequency 
components in the measured curve. 
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Compared in Figs. 10 and 11 are the distributions of theoretical and measured maximum 
mid-span displacements of FCB and PCB under moving loads vs vehicle speed, and in Figs. 12 
and 13 are the distributions of the corresponding dynamic factors. 

These figures show that in the main trend, the theoretical results agree well with the measured 
ones, especially for the displacement of PCB and the dynamic factor of FCB. Within the scope of 
test speeds, the increase of midspan displacements and dynamic factors are not obvious with the 
speed, it is because of the higher stiffness of the model beams and relative lower speed of the 
model vehicle. Although there exist some errors between the calculated and the measured results, 
most of them are less than 5%, which shows the validity of the dynamic analysis theory proposed 
in this paper. 

 
4.2.3 Influence of connection stiffness 
To study the influence of shear connection stiffness, the dynamic responses of the beams are 

calculated. Shown in Fig. 14 are the calculated time histories for FCB and PCB with 62-kg vehicle 
at a speed of 10 m/s, in which the result of conventional beam (marked with CB, i.e., KS = ∞, with 
other parameters unchanged) is also given. 

The results show that under the same load and speed, the maximum displacements of PCB, 
FCB and CB at midspan are quite different, which are 0.094, 0.081 and 0.048 mm, respectively, 
showing that the greater the connection stiffness, the smaller the displacement of the beam. 
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Fig. 10 Midspan displacement vs speed for FCB Fig. 11 Midspan displacement vs speed for PCB 
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Fig. 14 Midspan displacement histories of the composite beam under model vehicle 

 

Fig. 15 Relationship between midspan displacement and shear connection stiffness Ks 
 
 

Taking the PCB as an example, the relationship between the maximum displacement and shear 
connection stiffness Ks is shown in Fig. 15, where the weight and speed of the vehicle are fixed to 
500 kg and 50 m/s, respectively, while the other parameters keep unchanged. 

Together by analysis of Eq. (7), the displacement response of the composite beam under 
moving loads, it can be found from Fig. 15 that 

 

(1) When Ks approaches to 0, the displacement of PCB reaches to the maximum value, i.e. 
about 1.865 mm. This means that the concrete slab and steel girder have lost their shear 
connection, and just simply overlapped. 

(2) With the increase of Ks, the displacement of composite beam decreases rapidly. For Ks 
higher than 500 MPa (about 6 times of FCB) or 300 MPa (10 time of PCB, the connection 
degree is about 60%), the displacement gradually becomes a fixed value, which is 0.4 mm. 

(3) The shape of the curve is not correlated to the vehicle parameters such as speed and weight, 
but related to the geometric dimension and material characteristics of the beam. 

(4) The ratio between the maximum and minimum displacements is 4.567, which is related to 
the sectional characteristics of the composite beam. 

 

Presented in Fig. 16 are the 
2
n   curves, which illustrates the relationship between the shear 

connection stiffness and the stiffness reduction factor of the composite beam. 
It is interesting to notice that both the relationships and differences exist between Figs. 16 and 

15, the former shows the relationship between the dynamic stiffness of each order and shear 
connection stiffness, and the latter shows the relationship between the global stiffness of the 
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Fig. 16 Relationship curves of 2
n   

 
 
composite beam and shear connection stiffness, which is the weighted results of the dynamic 
stiffness of all orders considered. 

The above analyses show that the dynamic parameters of the composite beams, such as natural 
frequency, acceleration and displacement, are significantly influenced by the shear connection 
stiffness (reflected with DSRF and FRF), which behave as follows: 

 

(1) The DSRF and FRF of the composite beam have definite expressions. They both decrease 
with the shear connection stiffness, and converge to a certain constant (the maximum 
value is 1), which is related to the sectional parameters of the beam but not the 
characteristics of the shear connector. 

(2) Both the DSRF and FRF decrease rapidly with the natural frequency order considered, and 
DSRF decreases more significantly than FRF. When the modal superposition method is 
adopted, the higher the order considered, the more accuracy of the calculation result can be 
obtained, despite there is less and less contribution of higher orders to the final calculation 
result. 

 
 
5. Conclusions 

 
Based on the fundamental dynamic theory of composite beams founded by this paper, the 

dynamic responses of composite beams under moving loads are derived, and the theoretical results 
show good agreement with the test ones. 

The main conclusions are as follows: 
 

(1) The motion equation of the composite beam becomes complicated when the relative slip 
between concrete slab and steel girder is taken into account, which explicitly reflects the 
influence of shear connectors. 

(2) The vertical natural frequencies of the composite beam decrease obviously when the 
interface slip is considered, which shows great influence on the global stiffness. 
Consequently, such influence ought to be taken into account not only in static but also in 
dynamic calculation. 

(3) The influences of shear connection stiffness cannot be ignored if the interface slip is 
involved, which should be considered not only in the static but also dynamic calculation, 
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and should be paid more attention in calculation, design and experiment, or else 
considerable deviation is inevitable. 

(4) In dynamic calculation of composite beams, the stiffness should not be reduced as the 
same factor to all orders, but as different ones according to the expression of the dynamic 
stiffness reduction factor (DSRF), which is related to the sectional parameters of the beam 
but not the characteristics of the shear connector, and varies with the order of the natural 
vibration characteristic. 
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