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Abstract.  This work attempts to implement multiple regression analysis (MRA) for modeling and 
predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from 
theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is 
complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with 
corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points 
were collected from different sources. Then mathematical models for the key response parameter (shear 
buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input 
geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA 
could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% 
confidence interval, having an R2 value of 0.93 and passing the F- and t-tests. 
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1. Introduction 

 
Steel beams with corrugated webs are a relatively recent development in structural systems and 

have seen a lot of use in bridge construction. They are typically composed of corrugated steel 
plates (forming the web) that are welded to a pair of flanges (Fig. 1). 

The corrugations can take many shapes: rectangular, triangular, semi-circular, sinusoidal (as 
seen in Fig. 1), and trapezoidal (Fig. 2), the latter of which is the focus of this paper. Fig. 2(a) 
shows an example of a trapezoidal corrugated steel beam. Fig. 2(b) shows a cross-section through 
that beam and identifies all the relevant geometric properties for such a configuration: the length of 
the horizontal corrugation (a), the length of the horizontal projection of the diagonal corrugation 
(b), the length of the diagonal corrugation (c), the depth of the corrugation (d), the angle of 
corrugation (θ), and the thickness of the web (tw). 

Steel beams with corrugated webs have been shown theoretically and experimentally to have 
higher shear strength than beams with straight webs, alleviating the need for transverse stiffeners. 
A number of studies have been carried out to quantify this effect, attempting to express the 
                                                 
Corresponding author, Professor, E-mail: sbarakat@sharjah.ac.ae 
a M.Sc. Student, E-mail: ahmadalmansouri@gmail.com 
b Associate Professor, E-mail: saltoubat@sharjah.ac.ae 



 
 
 
 
 
 

Samer Barakat, Ahmad Al Mansouri and Salah Altoubat 

Fig. 1 Corrugated steel plates being welded to flanges at Zeman International plant in Austria, 
forming corrugated web steel beams 

 

 
(a) 

 

 

(b) 

Fig. 2 I-girder with corrugated steel webs: (a) profile; (b) geometric notations (Moon et al. 2009) 
 
 
increase in shear strength of the section in terms of the geometry of the corrugations and the 
material properties (see for example Abbas et al. 2002, 2006, Gil et al. 2005, Yi et al. 2008, Yong 
et al. 2013). Sause and Braxtan (2011) collected test results from eight different experiments on 
the shear strength of trapezoidal corrugated steel webs. Their objective was to test the accuracy of 
an equation proposed by an earlier researcher, El Metwally (1998), to calculate the shear stress 
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capacity of such sections and to modify this equation to better reflect the experimental results. All 
in all, they collected a total of 102 data points (see Appendix for a complete table of the results). 
However, because El Metwally’s equation was derived from the local and global buckling theories, 
Sause and Braxtan (2011) could only use 22 of the 102 results in their study, as those were the 
only results originating from test conditions that were compatible with the assumptions of the 
theories. The motivation behind this paper is to find a more inclusive equation to calculate the 
shear buckling strength of beams with corrugated webs that would not be subject to the same 
restrictions. To that end, the approach of this paper will be to derive an equation from the test 
results themselves, setting aside a portion of the results to verify the accuracy of the equation. It 
should be noted that this paper will refer to the dimensions of the corrugated web using the 
notation defined in Sause and Braxtan (2011), which is shown in Fig. 3. It should also be noted 
that this notation is different to that of Fig. 2. 

Two modes of shear buckling are defined: local and global buckling. Local buckling refers to 
deformations occurring in individual folds of the web. These deformations can occur 
simultaneously in multiple folds and can propagate into adjacent unaffected folds. Global buckling, 
on the other hand, occurs over several folds, the buckled shape extending diagonally over the 
depth of the web. Because of the similarity between global buckling and multiple simultaneous 
local buckling, experimentally observed buckling often appears to have characteristics of both 
modes. Local buckling is considered to be controlled by the slenderness of the individual folds of 
the webs, whereas global buckling is considered to be controlled by the slenderness of the entire 
web. 

The local shear buckling stress of a corrugated web can be predicted using plate buckling 
theory. As described by Timoshenko and Gere (2009), a single fold of the web is considered to be 
supported along its horizontal edges by the flanges of the beam, and along its vertical edges by the 
adjacent folds. The local elastic shear buckling stress, τL,el, can then be expressed as 
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where kL is a coefficient that depends on the aspect ratio of the folds and the boundary conditions 
of the beam, E is Young’s modulus, v is Poisson’s ratio, w is the fold width, and tw is the thickness 
of the web. Of these values, only w, the fold width, changes from fold to fold. For longitudinal 
folds, w = b (Fig. 3), and for inclined folds, w = c. The larger of b and c is taken to determine the 
smallest value of τL,el. As for kL, it is smallest when the ratio of w / hw is small (where hw is the 
height of the web) and when the beam is simply supported, taking a value of 5.34. Fixed support 
raises this value to 8.98. 
 
 

 

Fig. 3 Beam with corrugated web (section through web), Sause and Braxtan (2011) 
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Similarly, an expression for the global shear buckling stress for a corrugated plate can be 
derived from the orthotropic plate theory. Easley (1975) developed the following expression for 
the global shear buckling stress τG,el 
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where kG is a coefficient that depends on the boundary conditions of the plate. It is minimized 
when the beam is long compared to hw. Elgaaly et al. (1996) recommend taking kG as 31.6, 
assuming the flanges simply support the web, or 59, assuming the web is fixed to the flanges. Dy 
and Dx are defined as follows 
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where α is the angle of corrugation and d is the longitudinal projection of the inclined fold, as 
shown in Fig. 3. 

In his Ph.D. Dissertation, Abbas combined Eqs. (2)-(4) to express the global shear buckling 
stress directly in terms of the geometric parameters shown in Fig. 3 
 

2

2/32/1

2

2/32/1

, 1212
),(

w

w
G

w

w
GelG h

bEt
C

h

bEt
Fk                       (5) 

 
where F(α, β) is coefficient based on the dimensions of the corrugations of the web, defined as 
follows 
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where β is the ratio of b to c. Most trapezoidal corrugated plates have a β value ranging between 1 
and 2, Sause and Braxtan (2011). Any lower and the corrugations become too deep, requiring an 
uneconomical amount of material. Any higher and the corrugations become too shallow to 
contribute significantly to the shear buckling resistance of the plate. Similarly, the corrugation 
angle α usually ranges between 30° and 45°. Corrugation angles less than 30° render the folds of 
the web unable to fully support one another Linder and Hunag (1995). 

It is possible that an interaction between local and global buckling modes exist. Past studies 
have attempted to illustrate this relationship and demonstrate its effect on both buckling modes 
using interaction formulas. One such formula, proposed by Linder and Aschinger (1988), can be 
expressed as follows 
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where τI,el is the elastic shear buckling stress due to interaction and n is an integer. Yi et al. (2008) 
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proposed a formula based on Eq. (7) with n = 1. Solving for τI,el, that formula becomes 
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The local, global and interaction buckling slenderness ratios are defined as follows, 
respectively 
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where the exponent n is an integer and τy is the shear yield stress according to the Von Mises yield 
criterion, defined as 
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and Fy is the uniaxial yield stress of the web. 
The normalized local, global, and interaction elastic shear buckling strengths can be determined 

from the slenderness ratios. They are, respectively 
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It should be noted that all of the equations thus far have only considered elastic shear buckling 
stress. Elgaaly et al. (1996) provided an expression for the inelastic shear buckling stress 
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Eq. (16) can be used in place of both τel,L or τel,G if either of them exceeds 0.8τy. The normalized 
inelastic shear buckling strength then becomes 
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While the theories given above have been developed for corrugated webs in pure shear, they 
have been used to predict the shear buckling stress for steel I-beams under shear and flexure. 
Experiments conducted by Sause and Braxtan (2003) have shown that there is no significant 
contribution by corrugated webs to flexural strength. Therefore, the vertical shear stress in the web 
can be expressed as a constant average shear stress over the height of the web, calculated as 
follows 

wwth

V
                                 (18) 

 
where V is the vertical shear force in the beam. However, this expression ignores the shear stress in 
the flanges, which should be taken into account when interpreting experimental results. 

El Metwally (1998) presents a formula based on the interaction theory for the shear strength of 
corrugated webs. It is applicable over the full range of behavior, including cases where inelastic 
buckling and yielding control. 
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where τn cannot exceed the minimum of τL,el, τG,el, τy, and n is an integer. El Metwally (1998) 
suggests using n = 2 for trapezoidal corrugations. Based on this equation, the normalized shear 
strength becomes 
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For trapezoidal corrugated webs, the equation becomes 
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Sause and Braxtan (2011) suggest that a more accurate formula could be reached by replacing 
the 1 in Eq. (21) with a variable u and varying the exponent n. After comparing the results from 
several different versions of their formula to published test results, they conclude that u = 2 and n 
= 3 achieve the most accurate results. They also find this equation more accurate than those 
proposed by El Metwally (1998) and Yi et al. (2008). 
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2. Multiple Regression Analysis (MRA) 

 
2.1 Scatter plots 
 
To acquire an overall perspective of the inherent relationships of the problem, the pairs of the 
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Fig. 4 Comparison between pairs of variables of interest 
 
 
variables of interest are examined in the matrix scatter diagram shown in Fig. 4. From left to right 
they are: the height of the web hw, the thickness of the web tw, the shear span a, the length of 
longitudinal fold b, the length of inclined fold c, the angle of corrugation α, the uniaxial yield 
stress of the web Fy, and the experimental normalized shear buckling strength ρe. In an effort to 
capture the simplest form of relationships via regression, linear relationships are investigated first 
in the MRA. Subsequently, nonlinear components are explicitly allowed in the formulation (Ang 
and Tang 2007). 

 
2.2 Linear regression models 
 
In a simple regression model, the constant represents the Y-intercept of the regression line. On 

the other hand, in a multiple regression model, the constant represents the value that would be 
predicted for the dependent variable if all the independent variables were simultaneously equal to 
zero. Out of the 102 data points, 8 are omitted because their shear span, a, was not reported. Each 
of the 93 remaining data points is randomly assigned to one of two sets. 73 data points are 
assigned to set 1, from which the linear regression model is to be derived. 20 data points are 
assigned to set 2, against which the results of the linear regression model are to be checked. The 
linear regression model between the dependent variable (ρe) and the all independent variables (hw, 
tw, a, b, c, α, Fy) is then calculated using data set 1. 

Table 1 summarizes the (SPSS, Inc. 2010) outputs for the ρe model. The terms included in this 
table to explain the overall model fit in the regression analysis are: 

 

 R2: The proportion of variance in the dependent variable ρe which can be explained by the 
independent variables. This is an overall measure of the strength of association and does not 
reflect the extent to which any particular independent variable is associated with the 
dependent variable. The adjusted R2 value is an adjustment of the R2 value that penalizes the 
addition of extraneous predictors to the model. The adjusted R2 value is given by 1 ‒ ((1 ‒ 
R2)(N ‒ 1) / (N ‒ k ‒ 1)), where k is the number of predictors and N is the number of data 
points. 

 F-value and F-significance: The F-statistic the p-value associated with it. The F-statistic is 
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Table 1 Linear regression results 

R2 F-value F-significance 

0.965 258.882 0 

Variable Coefficient t-value t-significance 

hw 0.000 2.087 0.41 

a ‒2.087E‒005 ‒0.412 0.682 

tw 0.105 5.042 0.000 

b 0.002 1.764 0.082 

α 0.009 4.304 0.000 

c -0.003 ‒2.393 0.020 

Fy 0.000 1.310 0.195 

 
 

the mean square (regression) divided by the mean square (residual). The p-value is 
compared to some alpha level in testing the null hypothesis that all of the model coefficients 
are 0. 

 Coefficient t-value and t-significance: The t-statistics and their associated 2-tailed p-values 
used in testing whether a given coefficient is significantly different from zero using an alpha 
of 0.05. 

 

The multiple regression model does not include constant terms. Consequently, if all the 
independent variables take the value of zero simultaneously, the dependent variables will also be 
equal to zero. This is in agreement with the modeled physical phenomenon. 

Despite the apparent good-fitting and passing the F-test, the linear model is deemed physically 
unsound for the ρe prediction. This is attributed to the negative signs on two of the independent 
variables coefficients, and the negligibly small coefficients of two others. For example, this 
implies that increasing the shear span (a) or the length of the diagonal fold (c) decreases ρe and 
that changing the yield stress (Fy) doesn’t change ρe, which is counterintuitive. Moreover, two 
coefficients (those of α and c) fail the t-test. Consequently, nonlinear regression models are 
reverted to. 

 
2.3 Nonlinear regression models 
 
Nonlinear regression is appropriate when the relationship between the dependent and 

independent variables is not intrinsically linear. Nonlinear regression can estimate models with 
arbitrary relationships between independent and dependent variables. The relationship of the 
dependent variable ρe in terms of each of the independent variables is generally non-flat. Therefore, 
new nonlinear functions are created from the original variables in the original data set 
(El-Shaarawi and Walter 2002). These new variables are created in forms that guarantee that the 
curved functions of the original variables are transformed to linear functions of the new variables. 
This is described by Eqs. (23)-(24) 
 

ifaY 1                                  (23) 
 

)(ii gf                               (24) 
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Fig. 5 Normalized shear buckling strength ρe vs. local slenderness ratio λL 

 

 

Fig. 6 Normalized shear buckling strength ρe vs. global slenderness ratio λG 

 

 

Fig. 7 Normalized shear buckling strength ρe vs. interactive slenderness ratio λI 

765



 
 
 
 
 
 

Samer Barakat, Ahmad Al Mansouri and Salah Altoubat 

Table 2 Nonlinear regression results 

R2 F-value F-significance 
0.930 956.704 0 

Variable Coefficient t-value t-significance 

1 / λI,1 0.747 30.931 0 

 
Table 3 Effect of exponent n on accuracy 

n  R2  

1  0.930  

2  0.921  

3  0.916  

4  0.913  

5  0.913  

 
 
where Y represents the dependent variable ρe. A careful selection of the function fi in Eq. (24) 
results in a linear relationship in Eq. (23), in which the constant a1 can be estimated using 
traditional linear regression procedures. To find the transformation functions gi, different nonlinear 
models are considered. Based on several trials of functions that preserve the physical interpretation, 
many transformation functions were obtained. Noting the aforementioned relationship between the 
slenderness ratios and the theoretical normalized shear buckling strengths (see Eqs. (13)-(15)), it 
was proposed that there could similarly be good correlation between the slenderness ratios and the 
shear buckling strength derived from the experimental results. In order to investigate this potential 
relationship the experimental normalized shear buckling strength e was plotted against each of the 
slenderness ratios (Figs. 5-7). 

The distribution of data points in Fig. 7 indicates a significant inversely proportional 
relationship between ρe and λI,1 (Eq. (11) with n = 1). Performing linear regression between ρe and 
1 / λI,1 confirms this relationship, producing an R2 value of 0.934, as well as passing the F- and 
t-tests (see Table 2). 

The effect of the exponent n on this relationship was explored by performing linear regression 
again between ρe and 1 / λI,1 where n was every integer between 1 and 5. The results are 
summarized in Table 3. It is clear that R2 value is the highest for n = 1. Therefore, the best 
discovered regression model is as follows 
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and λL and λG are as in Eqs. (9) and (10), respectively. 
The accuracy of the regression models was checked. The input values from set 1 of data were 

presented to the MRA model to perform the necessary calculations and produce the corresponding 
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Fig. 8 Set 1’s recalled normalized shear buckling strength ρn vs. experimental ρe 

 

Fig. 9 Set 2’s predicted normalized shear buckling strength ρn vs. experimental ρe 

 

Fig. 10 Combined predicted normalized shear buckling ρn strength vs. experimental ρe 
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Fig. 11 Comparison between ρe, ρn,B and ρn,S 
 
 
outputs. Comparison of experimental values and predicted values of the shear buckling strength of 
a steel beam with corrugated web by MRA are presented in Fig. 8. 

Furthermore, the prediction accuracy of the model adopted in this work was also checked. One 
additional set 2 of data consisting of 20 points were used to perform the prediction test using the 
MRA model. It should be stressed that all of the data in this later set was initially withheld from 
the MRA. The results of this test are shown in Fig. 9. The closeness of the points to the equality 
line serves only to indicate the validity of the MRA model. A comparison between the predicted 
values of all 93 specimens is shown in Fig. 10. Since most of the point lie beneath the equality line, 
it’s determined that the MRA model has a tendency to underestimate the normalized shear 
buckling strength of a section. Nevertheless, there is a clear trend between the predicted and 
experimental values. 

Fig. 11 shows a comparison between the normalized experimental shear buckling strength (ρe) 
of the 22 specimens that Sause and Braxtan (2011) focused their study on, their corresponding 
predicted normalized shear buckling strength (ρn,B), and the corresponding normalized shear 
buckling strength of the MRA model (ρn,S). Compared to Sause and Braxtan’s (2011) model, the 
MRA model is a bit more dispersed, but it has the advantage of being applicable to a much wider 
range of sections and loading configurations. 

 
 

3. Conclusions 
 
This work aimed at studying the shear buckling strength of a steel beam with corrugated web. 

The theoretical and experimental results showed that the shear buckling strength of a steel beam 
with corrugated web is complicated and affected by several parameters. A simple model that 
predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was 
sought. To that end, a total of 93 experimental data points were collected from different sources 
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and randomly assigned to one of two sets. 73 data points are assigned to set 1 for model derivation. 
20 data points are assigned to set 2 for model checking. Then mathematical models for the key 
response parameter (shear buckling strength of a steel beam with corrugated web) were established 
via MRA in terms of different input geometric, loading and materials parameters. A number of 
different models were tested before settling on one that produced satisfactory results. The final 
model had an R2 value of 0.93 and passed the F- and t-tests. With this model, it is possible to 
predict the shear buckling strength of corrugated web sections from their geometric and material 
properties with good accuracy. 
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Appendix A: Experimental results collected by Sause and Braxtan (2011) 
 

Specimen hw (mm) tw (mm) a / hw b (mm) β d (mm) α (°) Fy (MPa) ρe (τe / τy)

V-PILOTA 305 0.78 1.00 38.1 1.06 25.4 45.0 621 0.968 

V-PILOTB 305 0.79 1.00 38.1 1.06 25.4 45.0 638 0.808 

V121216A 305 0.64 1.00 38.1 1.06 25.4 45.0 676 0.660 

V121216B 305 0.77 1.00 38.1 1.06 25.4 45.0 665 0.979 

V181216B 457 0.61 0.67 38.1 1.06 25.4 45.0 618 0.939 

V181216C 457 0.76 0.67 38.1 1.06 25.4 45.0 679 0.878 

V181816A 457 0.64 1.00 38.1 1.06 25.4 45.0 591 0.754 

V181816B 457 0.74 1.00 38.1 1.06 25.4 45.0 614 0.806 

V241216A 610 0.64 0.50 38.1 1.06 25.4 45.0 591 0.572 

V241216B 610 0.79 0.50 38.1 1.06 25.4 45.0 588 0.819 

V121221A 305 0.63 1.00 41.9 1.03 23.4 55.0 665 0.627 

V121221B 305 0.79 1.00 41.9 1.03 23.4 55.0 665 0.789 

V122421A 305 0.68 2.00 41.9 1.03 23.4 55.0 621 0.587 

V122421B 305 0.78 2.00 41.9 1.03 23.4 55.0 638 0.697 

V181221A 457 0.61 0.67 41.9 1.03 23.4 55.0 578 0.665 

V181221B 457 0.76 0.67 41.9 1.03 23.4 55.0 606 0.803 

V181821A 457 0.64 1.00 41.9 1.03 23.4 55.0 552 0.611 

V181821B 457 0.74 1.00 41.9 1.03 23.4 55.0 596 0.806 

V241221A 610 0.61 0.50 41.9 1.03 23.4 55.0 610 0.591 

V241221B 610 0.76 0.50 41.9 1.03 23.4 55.0 639 0.740 

V121232A 305 0.64 1.00 49.8 0.87 26.4 62.5 665 0.549 

V121232B 305 0.78 1.00 49.8 0.87 26.4 62.5 641 0.695 

V121832A 305 0.64 1.50 49.8 0.87 26.4 62.5 703 0.435 

V121832B 305 0.92 1.50 49.8 0.87 26.4 62.5 562 0.587 

V122432A 305 0.64 2.00 49.8 0.87 26.4 62.5 714 0.387 

V122432B 305 0.78 2.00 49.8 0.87 26.4 62.5 634 0.564 

V181232A 457 0.60 0.67 49.8 0.87 26.4 62.5 552 0.594 

V181232B 457 0.75 0.67 49.8 0.87 26.4 62.5 602 0.672 

V181832A 457 0.61 1.00 49.8 0.87 26.4 62.5 689 0.477 

V181832B 457 0.75 1.00 49.8 0.87 26.4 62.5 580 0.686 

V241232A 610 0.62 0.50 49.8 0.87 26.4 62.5 673 0.468 

V241232B 610 0.76 0.50 49.8 0.87 26.4 62.5 584 0.648 

V121809A 305 0.71 1.50 19.8 1.07 11.9 50.0 572 0.888 

V121809C 305 0.63 1.50 19.8 1.07 11.9 50.0 669 0.741 

V122409A 305 0.71 2.00 19.8 1.07 11.9 50.0 586 0.786 

V122409C 305 0.66 2.00 19.8 1.07 11.9 50.0 621 0.799 

V181209A 457 0.56 0.67 19.8 1.07 11.9 50.0 689 0.796 

V181209C 457 0.61 0.67 19.8 1.07 11.9 50.0 592 0.932 
 

771



 
 
 
 
 
 

Samer Barakat, Ahmad Al Mansouri and Salah Altoubat 

Specimen hw (mm) tw (mm) a / hw b (mm) β d (mm) α (°) Fy (MPa) ρe (τe / τy)

V181809A 457 0.61 1.00 19.8 1.07 11.9 50.0 618 0.827 

V181809C 457 0.62 1.00 19.8 1.07 11.9 50.0 559 0.846 

V241209A 610 0.62 0.50 19.8 1.07 11.9 50.0 606 0.533 

V241209C 610 0.64 0.50 19.8 1.07 11.9 50.0 621 0.572 

L1A 994 1.94 0.98 140 1.98 50 45.0 292 0.861 

L1B 994 2.59 0.99 140 1.98 50 45.0 335 1.008 

L2A 1445 1.94 1.04 140 1.98 50 45.0 282 0.738 

L2B 1445 2.54 1.04 140 1.98 50 45.0 317 0.840 

L3A 2005 2.01 1.00 140 1.98 50 45.0 280 0.691 

L3B 2005 2.53 1.00 140 1.98 50 45.0 300 0.882 

B1 600 2.10 1.33 140 1.98 50 45.0 341 0.838 

B4 600 2.11 1.33 140 1.98 50 45.0 363 0.690 

B4b 600 2.11 1.33 140 1.98 50 45.0 363 0.818 

B3 600 2.62 1.33 140 1.98 50 45.0 317 0.855 

B2 600 2.62 1.17 140 1.98 50 45.0 315 0.955 

M101 600 0.99 1.00 70 3.30 15 45.0 189 0.818 

M102 800 0.99 1.00 70 3.30 15 45.0 190 0.909 

M103 1000 0.95 1.00 70 3.30 15 45.0 213 0.719 

M104 1200 0.99 1.00 70 3.30 15 45.0 189 0.802 

L1 1000 2.10 1.50 106 1.06 86.6 30.0 410 0.764 

L1 1000 3.00 1.49 106 1.06 86.6 30.0 450 0.783 

L2 1498 2.00 1.44 106 1.06 86.6 30.0 376 0.923 

L2 1498 3.00 1.43 106 1.06 86.6 30.0 402 0.868 

No. 1 850 2.00 1.33 102 1.00 85.5 33.0 355 0.789 

No. 2 850 2.00 1.33 91 1.00 71.5 38.2 349 0.774 

V1/1 298 2.05 9.46 144 1.00 102 45.0 298 0.647 

V1/2 298 2.10 6.71 144 1.00 102 45.0 283 0.685 

V1/3 298 2.00 3.36 144 1.00 102 45.0 298 0.790 

V2/3 600 3.00 2.75 144 1.00 102 45.0 279 0.810 

SP1 800 2.00 2.19 146 0.99 104 45.0 307 0.795 

SP2 800 2.00 2.19 170 1.50 80 45.0 299 0.781 

SP3 800 2.00 2.19 185 2.01 65 45.0 292 0.778 

SP4 800 2.00 2.25 117 1.00 83 45.0 298 0.840 

SP5 800 2.00 2.25 136 1.50 64 45.0 291 0.822 

SP6 800 2.00 2.25 148 2.01 52 45.0 294 0.811 

SP2-2-400 1 400 2.00 2.50 170 1.50 80 45.0 263 0.662 

SP2-2-400 2 400 2.00 2.50 170 1.50 80 45.0 263 0.727 

SP2-2-800 1 800 2.00 1.25 170 1.50 80 45.0 272 0.712 

SP2-2-800 2 800 2.00 1.25 170 1.50 80 45.0 272 0.707 

SP2-3-600 1 600 3.00 1.67 170 1.50 80 45.0 294 0.987 
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Specimen hw (mm) tw (mm) a / hw b (mm) β d (mm) α (°) Fy (MPa) ρe (τe / τy)

SP2-3-600 2 600 3.00 1.67 170 1.50 80 45.0 294 1.010 

SP2-3-1200 1 1200 3.00 0.83 170 1.50 80 45.0 294 1.000 

SP2-3-1200 2 1200 3.00 0.83 170 1.50 80 45.0 294 1.023 

SP2-4-800 1 800 4.00 1.25 170 1.50 80 45.0 326 1.000 

SP2-4-800 2 800 4.00 1.25 170 1.50 80 45.0 326 1.003 

SP2-4-1600 1 1600 4.00 0.63 170 1.50 80 45.0 328 1.003 

SP2-4-1600 2 1600 4.00 0.63 170 1.50 80 45.0 328 1.012 

SP2-8-800 1 800 8.00 1.25 170 1.50 80 45.0 270 1.314 

SP2-8-800 2 800 8.00 1.25 170 1.50 80 45.0 270 1.381 

L1 1500 4.80 NA 450 1.25 300 33.7 250 0.719 

L2 1500 4.80 NA 550 1.55 300 32.2 250 0.603 

L3 1500 4.80 NA 450 1.48 300 9.4 250 0.513 

L4 1500 4.80 NA 550 1.80 300 10.6 250 0.457 

I1 2000 4.80 NA 320 2.92 100 24.0 250 0.950 

I2 2000 3.80 NA 350 3.37 100 16.0 250 0.517 

G1 2000 4.80 NA 200 1.08 180 14.2 250 0.793 

G2 2000 3.80 NA 160 2.67 50 33.4 250 0.834 

G3 2000 3.80 NA 160 1.55 100 15.1 250 0.850 

G8A 1500 6.27 3.00 300 1.20 200 36.9 465 0.853 

G7A 1500 6.30 3.00 300 1.20 200 36.9 465 0.907 

SC1 1500 6.27 3.00 300 1.20 200 36.9 465 0.796 

MI2 2000 4.00 1.40 250 1.10 220 15.3 296 0.639 

MI3 2000 4.00 1.40 220 1.16 180 18.4 296 0.617 

MI4 2000 4.00 1.40 220 1.13 180 22.6 296 0.770 
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