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Abstract.  Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting 
system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element 
models or a strip model can be used to represent the SPSW components. However, such models often 
require significant effort for tall or medium height buildings. In order to simplify the analysis process, 
discrete elements for the framing members can be used. This paper presents development of a simplified 
equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a 
simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic 
performance using regular structural analysis tools. It is observed that the proposed model can capture the 
global behavior of the structures quite accurately and potentially aid in the performance-based seismic 
design of SPSW buildings. 
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1. Introduction 

 
The use of ductile steel plate shear wall (SPSW) is gaining grounds in modern construction. 

This is primarily because of its ability to resist lateral loads and add ductility to the performance of 
the structure. SPSW has a natural tendency to buckle due to the imperfection of geometry. Once 
buckles, the load resisting mechanism changes from plane shear to inclined tension field. 
Capturing the geometric non-linearity involved in buckling has always been challenging. 
Modeling technique turn out to be more complicated and time consuming. Particularly for 
industrial design of multi-storey structures, where the local behavior of individual plate is not a 
major concern but the overall behavior of the system is important, a simplified modeling technique 
has to come up. With complicated models, repeated performance test with several ground motion 
records consumes huge amount of time and thus makes work un-economic. 

SPSWs have been put to use since 1960s, however consideration of the post-buckling strength 
in design is relatively new. The “strip model” introduced by Thorburn et al. (1983) provided a 
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simple technique to illustrate the behavior of the thin plate as a SPSW. This model has been later 
criticized for underestimating the stiffness (Driver et al. 1997). From 1990s finite element method 
gained ground for analysis of SPSW (e.g., Elgaaly et al. 1993, Driver et al. 1997, Elgaaly 1998). 
Subsequently, there are many experimental and numerical studies available in steel-plate shear 
walls (e.g., Lubell et al. 2000, Mohammad et al. 2003, Kharrazi 2005, Berman and Bruneau 2005, 
Dastfan and Driver 2008, Topkya and Atasoy 2009, Neilson 2010, Bhowmick et al. 2010, 
Vatansever and Yardimci 2011, Shahi et al. 2013, Memarzadeh et al. 2010, Choi et al. 2013, 
Bozdogan 2013). 

There have been several attempts made to develop a proper method for analysis of SPSW 
systems. The most widely accepted method of modeling SPSW systems is detailed Finite Element 
Method (FEM), where the infill-plate is modeled as shell element. Its results are mostly reliable 
(though accuracy depends on the user’s choice on modeling technique) but modeling is quiet 
complicated and analysis time is significantly high. Strip model is another popular model which 
was first proposed by Thorburn et al. (1983). However, modeling for reversal of loading is very 
cumbersome in strip model. Later, in 1998, Elgaaly presented a modified strip model for both 
welded and bolted infill plate connections. Though his model was able to predict the pushover and 
hysteric responses of the tested specimens, it was not a simple and time efficient model. One 
efficient way of modeling SPSW system would be with a strut and tie model. There has been 
counted number of attempts made to develop an equivalent braced frame (Eq.BF) model. Thorburn 
et al. (1983) proposed a truss model where the property of the equivalent braces was derived based 
on principle of least work done. While calculating the area of braces it was assumed that the 
boundary members were rigid. Another truss model was recently proposed by Topkaya and Atasoy 
(2009). Their model assumed beams to be rigid and a combination of both empirical and analytical 
relations were used to develop the model. In this truss model along with the calculation of area of 
truss brace, modified stiffness of columns were also needed to be computed. Though truss model 
by nature is time efficient, but still owing to the assumptions and approximations these models do 
not always yield reliably accurate results. Three sample specimens (Table 1) have been shown to 
compare the reliability of detailed Finite Element (FE) model with the existing truss models. These 
models can estimate the initial stiffness within acceptable limits. A more robust and reliable model 
is needed that can capture the SPSW behavior within acceptable limits of accuracy without any 
compromise in time efficiency. 

In this paper an attempt has been made to develop a simplified braced model, with varying 
properties of non-concentric cross bracings, which can successfully replace the complicated 
non-linear behavior of SPSW systems. The equivalent braced model has been tested under several 
available experimental and theoretical test results and found to have satisfactory performance. 
Pushover and hysteretic curves for several SPSW structures obtained from pre-reported 
experiments or Finite Element models have been compared with results obtained through the 
 
 
Table 1 Details for the selected single-storey SPSW specimen 

S.No Specimen 
Boundary Plate 

Beam Column Thickness E(MPa) σy(MPa) 

1 CSA-S16-09 design W530x272 W360x509 3 mm 200,000 385 

2 Lubell et al. (2000) S75x8 S75x8 1.5mm 200,00 320 

3 Neilson (2010) W200x31 W200x31 0.98mm 210,000 275 
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Equivalent Braced Frame (Eq.BF) model. 
 
 

2. Methodology 
 
To develop Eq.BF model a detailed parametric study is needed to be carried out numerically. 

Initially, detailed FE modeling (with infill plates modeled as shell element) of benchmark 
single-storey SPSW systems are developed. For example, Fig. 1 shows the details of the 
single-storey SPSW specimen tested by Neilson (2010) and the corresponding finite element 
model developed for the present study. A concentrated lateral (horizontal) load is applied at a 
corner at the top (left or right) and to simulate the test condition, nonlinear static pushover analysis 
is performed by gradually increasing the load from zero to the maximum level until the system 
fails. The pushover curve (plot of base shear or reaction at the base against the displacement of the 
top floor) for this specimen and other benchmark problems are validated with available 
experimental or numerical results. Fig. 2 shows the comparative performance of the existing 
bracing models for SPSW systems (e.g., Thorburn et al. 1983, Topkaya and Atasoy 2009) as 
compared to results of the detailed finite element models and available experimental results (e.g., 
Neilson 2010, Lubell et al. 2000). It is observed from Fig. 2 that the existing bracing models for 
SPSW systems do not capture the push curves of the systems adequately. For three dimensional 
detailed FE modeling, commercial package Abaqus (2011) has been chosen. To test the proposed 
Eq.BF model, which is essentially restricted to two dimensions for simplicity, Opensees software 
system (Mazzoni et al. 2007) has been used. In detailed FE modeling both material and geometric 
non-linearity can easily be incorporated. For simplified modeling, the modeling technique itself 
should take account of these effects. In equivalent braced frame model, beams and columns are 
modeled as beam-members rigidly connected at beam-column joints and the non-concentric 
diagonal trusses are made of truss-members. The boundary members in Eq.BF are kept unchanged 
and adjustment on the truss properties are attempted so as to achieve desired behavior. A detailed 
parametric study on SPSW systems is required to establish geometric and material property of 
truss members in Eq.BF. Failure of infill plate in any SPSW system is progressive even though its 
material property may be assumed perfectly elasto-plastic. It is because of its high degree of 
redundancy i.e., even though some part of the plate has yielded, the remaining is still capable for 
maintaining a load path. To achieve similar failure pattern equivalent truss system, its material 
 
 

(a) (b) 

Fig. 1 Sketch and FE-mesh of the specimen tested by Neilson (2010) 
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(a) 

 

 

(b) 
 

 

(c) 

Fig. 2 Performance of existing equivalent bracing models: (a) Neilson (2010) test specimen; (b) 
a newly designed single-storey specimen; and (c) Lubell et al. (2000) test specimen 

 
 
property needs to be modified from perfectly elasto-plastic to at least a tri-linear curve. Fig. 3 
shows the uniaxial hysteretic stress-strain properties of the equivalent brace material, where εt-i and 
σt-i represent the strain and stress, respectively, for the ith point in the stress-strain curve in tension. 
Similarly, on the compression segment, εc-i and σc-i represent the respective strain and stress. 
Ebrace represents the initial Young’s Modulus of brace material. In compression a bi-linear curve 
for truss is enough as the buckling of plate is almost instantaneous. 

Identifying the influencing independent parameters which characterize the behavior and 
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(a) 

 

(b) 

Fig. 3 Uniaxial Hysteretic material for braces 
 
 
strength of SPSW systems is itself a challenging task. Mohammad et al. (2003) conducted a 
dimensionless parametric study to identify these parameters. Some of those parameters like aspect 
ratio, column flexibility, etc. are considered for the development of the Eq.BF model. Additional 
parameters like the ratio of diagonal length to the thickness of plate are also observed to have 
significant importance in Eq.BF model. 

Fig. 4 shows the relationship of various parameters affecting the properties of the equivalent 
bracing system. To achieve the target behavior of SPSW system using the diagonal braces, only 
the selected properties of the equivalent truss (replacing the original infill plate) need to be 
calibrated with SPSW parameters. A change in any of these properties can be considered as the 
“cause” that will have a significant “effect” in the final performance of the structure. With the 
mentioned objective, proper methodology is developed through which the “cause” can be 
calibrated based on “effect”. An outline to establish the “cause” properties has been shown in Fig. 
5. Statistical approach has been used extensively to obtain empirical relation from SPSW 
parameters. Only shear relations has been used to develop stiffness of equivalent truss and thus it 
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Fig. 4 Property of truss braces to be adjusted to get the desired effect from the Eq.BF model 
 
 
is assumed that bending of boundary frame has no significant effect in determining plate strength. 
This assumption can be applied in most cases where aspect ratio is relatively high or the building 
is not too tall. 

 
 

3. Evolution of equivalent braced frame (Eq.BF) model 
 

To model the behavior of infill-plate in a steel plate shear wall system by equivalent truss 
bracing, a linear relation between their stiffness is established. Then the required cross-sectional 
area of truss bracing is calculated. An equivalent linear model is created by parametric study to 
establish the geometric non-linear behavior of the steel plate to equivalent bracing. Several 
parameters have been introduced to simulate the non-linear behavior of the plate in the equivalent 
behavior in the brace element. Stiffness of the brace element can be adjusted by multiplying the 
brace area with appropriate parameters obtained by linear equations to simulate the non-linear 
brace stiffness. Also, to capture the ultimate strength of a SPSW system in Eq.BF model, the 
material properties of the bracing system need to be parametrically modified. 

 
3.1 Stiffness reduction due to buckling of the plates 
 

As introduced by Topkaya and Atasoy (2009), a parameter αs which is the ratio of the post- 
buckled stiffness of the plate to the pre-buckled original stiffness is important to represent the 
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Fig. 5 Flowchart representation of Eq.BF model development methodology 
 
 
reduction of the stiffness of the plate due to buckling. It is a parameter which can capture 
geometric non-linearity of plates in SPSW system. Through a trial and error analysis, it has been 
observed that the two main dimensionless parameters responsible for the geometric non-linear 
behavior of steel plate are the thickness to panel size (the size of a plate panel expressed as the 
length of diagonal) ratio of the plate and aspect ratio of infill plate. The parameters can be 
mathematically expressed as, b / L (= β1) and l / h (= β2), which are similar to the relevant 
parameters used by Topkaya and Atasoy (2009) (b, L, h, l being thickness, diagonal length, height, 
length of infill plate respectively). Their attempt in establishing a proper relation of αs with the 
primary variable has been extended through this work. 

Since, the concern here is the geometric non-linearity only all analysis for parameterizing αs is 
kept within the elastic limit. Also, no bounding beam column is considered since the study is 
related only to the panel plate. The parametric study is carried out using detailed FEM models in 
Abaqus. In that case, the modeling technique is kept close to the one used for the validation study, 
as far as possible. Shell elements (S4R from Abaqus element directory) have been used to model 
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the plate. All four edges are restrained against lateral rotation and translation out of the plane. Due 
to the presence of heavy boundary members in steel plate shear wall, the out-of-plane rotation of 
the plate elements at the edges is practically negligible. Quasi-static load was applied along the 
plane of the plate along the top edge, to represent the shear from an imaginary axially rigid beam. 
Fig. 6 shows a sample image for a bucked plate. To compare the stiffness of the perfect geometry 
(linear behavior) with that of the buckled plate (geometric non-linear behavior), the same model 
was analyzed once without imperfection and then with imperfection. The model without 
imperfection shows a much higher stiffness than the one with imperfection. Fig. 7 shows a sample 
example of the stiffness reduction with and without imperfection for plate with β2 = 0.7 and β1 = 

.23  It should be noted that no attempt was made to reach the plastic limit of the plate and 
introduce material non-linearity. After a certain limit of the lateral load (sufficiently large for the 
plate) the perfect geometry suddenly fails and an abrupt change in the load-displacement curve is 
observed. The stiffness below that limit is constant and is the one considered. As mentioned earlier, 
with and imperfection, the load-displacement curve is not linear even within the elastic limit. 
However, an approximate straight line, representing an equivalent linear relation the strength and 
displacement can be assumed in that case. For all the cases considered here the approximate 
linearization of the force-deformation curve result in R2 > 0.8. 
 
 

Fig. 6 Sample image of a buckled plate (i.e., geometric non-linearity for buckling) 

 

 

Fig. 7 Sample example of shear stiffness reduction for geometric non-linearity (achieved with 
imperfection) in plates 
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Fig. 8 Variation of αs in relation to β1 

 
 

Fig. 8 shows the sensitivity of αs to the plate thickness to diagonal length ratio, β1; and they are 
found to be linearly related. However, but depending on the aspect ratio (β2), the slope of the line 
may change. It is also observed that αs is almost constant when β1 = 0, irrespective of different 
values of β2. Thus, fitting a linear Eq. (1) with varying slope (slope given by m) of the line yielded 
an R2 > 0.99. The variation of m with β2 is then represented through a polynomial fit as shown in 
Fig. 9. The relation between m and β2 is established in Eq. (2) with the coefficient of determination 
of R2 = 0.99. 

06.0* 1   ms                               (1) 
 

0862.1)(5923.1)(1062.1)(2102.0 2
2

2
3

2  m                (2) 

 
 

 

Fig. 9 Variation of ‘m’ with aspect ratio 
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3.2 Linear stiffness relation of SPSW system and Eq.BF model 
 
The stiffness of SPSW system and Eq.BF model are equated under linear conditions to obtain 

the cross sectional area of the cross braces. In SPSW system the significant force is in the form of 
infill plate shear. Bending effect becomes significant only when the aspect ratio is very low and for 
taller SPSWs. For this study it is assumed that the bending effect on the plate is negligible. Thus, 
the stiffness of the plate can be established by shear rigidity alone. The symbols used in the 
derivation of an expression for a lateral stiffness of the SPSW system are introduced as below, and 
they are illustrated in Figs. 10 and 11. 

 
Diagonal length of brace = L = 

22 hl   
b = Thickness of plate  µ = Poisson’s ratio 

I = Moment of inertia of transverse section = 
12

* 2lb
 

 

2

*
*

4

bll
AyQ                              (3) 

 

V = Applied shear force on plate 

G = Shear modulus = 

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
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where, αs is the ratio of stiffness of the buckled plate to that of the plate with perfect geometry 
(linear), as already discussed; 

So 

linearplate

buckledplate
s K

K



  

For bracing, 

2cos*


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
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K d

brace                            (5) 

 

where, φ is the brace angle, L is the length of the brace, Ad is the equivalent cross-sectional area for 
bracing and E is Young’s modulus. 

Thus, 

bracebuckledplates KK   *                             (6) 
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
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Fig. 10 Shear load on infill plate 

 

 

Fig. 11 Shear deformation of plate frame under linear conditions 
 
 

Modulus of elasticity E is related to the shear modulus G and the Poisson’s Ratio μ, as E = 2G 

(1 + μ) 
Therefore 

L

Q
Ib

A
s

d 



2cos
)1(2

*












                            (8) 

 
The above expression for Ad is derived by assuming the absence of boundary members. A 

noticeable strength increase is observed in the presence of strong boundary members. Unless the 
boundary members are strong enough, tension field in the plate remains incomplete (Mohammad 
et al. 2003). Thus, to estimate the increase in the capacity or strength of the plate due to presence 
of boundary members another parameter (αm) is used. 
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3.3 Stiffness reduction due to buckling of the plates 
 
Stiffness reduction considered for buckling of plate (αs) has been computed in the absence of 

boundary frame. With inclusion of the boundary frame, tension fields start to develop in the plate 
and for optimizing the use of plate i.e., for complete development of tension field boundary 
members should be strong enough. So, a parameter αm is introduced which accounts for this 
increase of stiffness of the plate in presence of boundary frame, and thus the area of equivalent 
braces is increased. The physical entities responsible for parameter αm are the overall non-linear 
strength of the plate and the boundary frame. Size, thickness and aspect ratio of a plate are the 
primary geometric parameters that determine the strength of steel plate within the elastic limit. 
Thus, it can be safely assumed that αs is responsible for the variation in αm. However, 
standardizing the strength of the boundary members is a formidable task. Wrangler (1931) 
introduced a flange flexibility parameter wh to study the behavior of tension fields in W-sections. 
Owing to the behavioral similarity between SPSW and web girders, standard S16 of the Canadian 
Standards Association (CSA 2009) and the AISC Specification (AISC 2005) accepted this 
flexibility parameter as a measure for the strength of the boundary members in SPSW systems. 
Kuhn et al. (1952) simplified this parameter as given in Eq. (9). The same parameter was as found 
to have an effect on the overall capacity of the plate by Mohammad et al. (2003). Dastfan and 
Driver (2008) modified the parameter as wL (Eq. (10)) for the end panels (top and bottom). Thus, 
αm is studied by varying the flexibility of the boundary elements, β3 which is equal to wh for an 
intermediate storey and wL for the top storey. All other independent dimensionless parameters 
responsible for change in strength of SPSW as identified by Mohammad et al. (2003) are kept 
constant. 

4
2

**7.0
c

h LI

b
hw                              (9) 

 

where, wh is column flexibility for intermediate storey 
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


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


                          (10) 

 
where, wL is column flexibility for intermediate storey. 

For this parametric study similar plate model was created as for the study of αs. The bounding 
members were considered as beam elements (B31 in Abaqus elements library) for simplicity. The 
change in column flexibility was brought about by changing the cross sectional area of the column 
profile. As the study is done for a single storey structure, the effect of beam is indirectly accounted 
for by considering the change in column flexibility corresponding to the top storey (i.e., by using 
wL instead of wh). The cross-sectional area of the beam was never changed. Also, the ratio of the 
moment of Inertia to area of a column was kept constant throughout the computation as that ratio 
is supposed to be an independent parameter affecting the behavior of SPSW system (Mohammad 
et al. 2003). Rigid connection between boundary and plate was been assumed. The boundary 
members were restrained against lateral rotation and out of plane translation. Hinge support was 
provided at the column base. Assuming the beam to be axially rigid, a quasi-static shear force was 
applied on the top beam (as in the case of the analysis of the plate alone while computing αs). 
Imperfection was introduced in the plate such that the plate buckles with the application of load 
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and the geometric non-linear behavior is taken into account. With the variation of β3 and αs, the 
variation in the stiffness is estimated from the load displacement curves. The slope of the 
load-displacement curve is obtained by linear fitting of the curve (with co-efficient of 
determination, R2 >0.9). As an example, a sample load-deflection curve for a single-storey SPSW 
system with the aspect ratio of 1.0 and the plate thickness of 2 mm is shown in Fig. 12. An exactly 
similar analysis was carried out with the bare frame model (where the plate is absent, but all other 
parameters remain the same) and using the same process as above, the stiffness was estimated 
(with accuracy of R2 > 0.99). The difference between the stiffness of the full SPSW system and 
that of the corresponding bare frame gives the portion on the stiffness contributed by the plate in 
the SPSW system. This stiffness of the plate when analyzed with the frame as above is 
significantly higher than that of a very similar plate analyzed alone without the boundary members. 
This is primarily because of the interaction between the structural members (one supporting the 
other collectively). The ratio of the stiffness of the plate in presence of boundary members to that 
of without boundary members is expressed as αm (Eq. (11)). 
 

onlyplate

boundaryplate
m K

K

|

|                              (11) 

 

The relation between β3 and αm as shown in Fig. 13 can be best represented by a quadratic 
function as given by Eq. (12). The values of R2 for all samples are found to be more than 0.99, 
indicating a close fit. The coefficients of Eq. (12) can be further used to establish a relation with αs 
as illustrated in Fig. 14. The independent co-efficient, ‘C1’ is always found to 1.0. The variation of 
the other two coefficients (‘A1’ and ‘B1’) with αs, is given by Eqs. (13)-(14). 
 

131
2
31 ** CBAm                          (12) 

 

6184.0)ln(*497.41  sA                        (13) 
 

6997.0*2279.2*5789.7 2
1  ssB                    (14) 

 
 

 

Fig. 12 Sample stiffness comparison of bare frame and SPSW 
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Fig. 13 Relation between β3 and αm 

 

(a) (b) 

Fig. 14 Variation of co-efficient A1 and B1 with αs 
 
 

This parameter (αm), being responsible for strength increase in plate, is used as a multiplier to 
the area of the equivalent brace. Thus, the new non-concentric brace area can be represented by Eq 
(15). This area is computed based on parametric study as presented above on the single storey 
structure within elastic limit of the plate. The parameters to account for the material nonlinearity 
and multi storey effect are used to develop a suitable material property for the equivalent bracing 
system as presented later in this chapter. 

L
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


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

                          (15) 

 
3.4 Compression struts in Eq.BF model 
 
Once the area of the bracing is determined, the behavior of a compression strut needs to be 

characterized. Under a cyclic lateral loads, the plate in a SPSW system may alternately develop 
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tension fields and buckling of the plate due to compression along its diagonals. When the plate is 
modeled using the equivalent diagonal braced, they will also undergo tension or compression, 
depending on the direction of the lateral load. Though a brace as s compression strut does not have 
a very significant influence in the overall behavior of a SPSW system, it is an important 
component of the Eq.BF model. When the plate was studied without the boundary members, it was 
found that only up to a small magnitude of the lateral force, the stiffness of the plate with and 
without any imperfection are close to each other. With a higher level of the lateral force, the 
stiffness of the plate with imperfection reduces significantly because of the buckling of the plate 
along the compression diagonal. A sample example of pushover curves indicating the limit of the 
compression force in the plate at which buckling occurs, is given in Fig. 15, where the plate has an 
aspect ratio of 1.0 and thickness of 2 mm. This limiting force, up to which the behavior of the plate 
is linear, is observed to depend on the aspect ratio and the thickness of the plate. The buckling 
force to thickness relation can be established by a quadratic equation (Eq. (16), Fig. 16) with R2 > 
0.98. The co-efficients X1, X2 and X3 can be related to aspect ratio as given by Eqs. (17), (18) and 
(19), respectively, which are shown in Fig. 17. 
 

32
2

1 XbXbXFbucle                            (16) 
 

where, X1, X2 and X3 are constants depending on the aspect ratio of plates 
 

)(6749.5)(2945.7 2
2

21  X                        (17) 
 

)(785.14)(265.11 2
2

22  X                        (18) 
 

4848.1
23 )(325.16 X                            (19) 

 

Once Fbuckle is known, taking its component along the brace and dividing by the area of the 
brace (Ad), the compression yield strength (i.e., buckling strength) of the brace can be calculated. 
This parameter does not have a very significant effect on the final behavior of the model except 
 
 

 

Fig. 15 Sample comparison of plate pushover with and without imperfection 
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Fig. 16 Relation between buckling force and thickness of plate 
 

 

(a) (b) (c) 

Fig. 17 Relation between coefficients X1, X2 and X3 with aspect ratio 
 
 
a slight increase in the initial stiffness. At the onset of buckling, the top displacement of the plate 
without the boundary elements can be approximately related to the thickness of the plate by Eq. 
(20). On application of the lateral force corresponding to Fbuckle (which is a very small force), the 
change in top displacement (Δbuckle) is negligibly small for different aspect ratios. However, Δbuckle 
will change appreciably if a significant variation of the overall stiffness of the system is observed. 
But that is not a concern in regard to this parametric study. Therefore, for all aspect ratios under 
consideration, the average displacement is taken and is related to the plate thickness (Fig. 18) by 
Eq. (20). Thus, for a SPSW represented using bracing, the modulus of elasticity for the 
compression strut does not remain the same as that of the brace in tension. 

Once Fbuckle is known, taking its component along the brace and dividing by the area of the 
brace (Ad), the compression yield strength (i.e., buckling strength) of the brace can be calculated. 
This parameter does not have a very significant effect on the final behavior of the model except a 
slight increase in the initial stiffness. At the onset of buckling, the top displacement of the plate 
without the boundary elements can be approximately related to the thickness of the plate by Eq. 
(20). On application of the lateral force corresponding to Fbuckle (which is a very small force), the 
change in top displacement (Δbuckle) is negligibly small for different aspect ratios. However, Δbuckle 
will change appreciably if a significant variation of the overall stiffness of the system is observed. 
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Fig. 18 Variation of average top displacement with thickness for lateral force Fbuckle 
 
 
But that is not a concern in regard to this parametric study. Therefore, for all aspect ratios under 
consideration, the average displacement is taken and is related to the plate thickness (Fig. 18) by 
Eq. (20). Thus, for a SPSW represented using bracing, the modulus of elasticity for the 
compression strut does not remain the same as that of the brace in tension. 
 

2178.00335.00934.0 2  bbbuckle                      (20) 
 
3.5 Tension strut in Eq.BF model 
 
In a multi-storey steel plate shear wall, the presence of plates above and below causes a 

neutralizing effect on yield forces in the plates. Since, the plate is distributed throughout the width 
of the bay, as compared to a bracing system connected only at the corners, the vertical forces 
during plate yielding is higher than that of the vertical component of force from the brace. The 
vertical yield force from the plate can be taken as 0.5 * σy * bl, where it is assumed that only half 
the width of the bay is responsible for tension yielding of the plate; in this case, σy is the yield 
stress of the plate. This assumption arises from the fact that if the equivalent area of the brace is 
divided by the thickness of the plate, the observed length is very close to half the width of the bay. 
At yielding the vertical component of the force from the equivalent brace in tension is σy * Ad * 

cos(γ), where γ is the angle of inclination of the brace with vertical column. The tensile force in the 
braces of the two consecutive stories also has a neutralizing effect at the corresponding beam 
column joints. The ratio of these balancing forces on a SPSW and equivalent brace is represented 
as αbal as given by Eq. (21). 
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The direct effect of this balancing of the storey forces is observable in the increased stiffness in 
case of multi-storey structures as compared to the single storey ones. To account for such increase 
in the stiffness in the corresponding braced model, the modulus of elasticity of a brace in tension is 
increased by αbal (Eq. (21)). Instead of increasing the modulus of elasticity, increasing the cross 
sectional area of the brace was considered in other models (like Thorburn et al. 1983, Topkaya and 
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Atasoy 2009). However, such strategy will make the model more complicated, as iterative 
techniques are needed to be introduced so that the behavior of the brace is represented correctly 
both in tension and in compression. For single-storey structures there is no need to increase the 
stiffness of the braces as there is no internal force balance as observed in the muti-storey systems. 
However, it is observed that if the beam web thickness is more than nearly fifteen times the 
thickness of the plate, a similar equilibrium of forces between the beam and the plate should be 
considered. In those cases, even though the external semi-supports from the upper and lower 
stories are absent, for its high stiffness as compared to plate, the beam acts as a rigid member. For 
an intermediate storey in multi-storey structure, αbal is the sum of both upper and lower storey ratio 
as both have an increasing effect on the stiffness of the plate at that storey level. 
 

EE balbrace *                               (22) 
 

where, E represents the young’s modulus of plate in SPSW systems and Ebrace is the modulus of 
elasticity of the equivalent brace. 

In the Eq.BF model, with perfectly elastic-plastic material property, the tensile yield stress 
indicates the stress beyond which the tension brace will stop taking further load. However, in case 
of a plate with the same perfectly elastic-plastic material property, the behavior is more like a 
bunch of parallel connected strips (with collective area same as that of brace). In that case, even 
though the yield stress is reached in some areas of the plate, other areas of the plate still continue 
taking further load (Fig. 19). Elgaaly (1998) reported somewhat similar increase of strength by 
indicating that the yield strain distribution in diagonal tension field is parabolic. So, a progressive 
failure curve of the material model needs to be defined in case of Eq.BF model. For a given tensile 
load, let the elongation of bracing element is Δhb, and for the same load, the maximum elongation 
in a parallel strip is Δhp (Fig. 19). Thus, the volumetric change in the brace (with area Ad) is Ad * 

Δhb and that of parallel-strips is αk * A * Δhp; where αk is a factor which depends on the shape of 
the yield area formed by the nodes of the parallel strips (Fig. 19). If energy dissipated by both 
SPSW and Eq.BF systems are equated, relationship between Δhb and Δhp can be established as Eq. 
(23). 
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Fig. 19 Arrangement of parallel strips to represent plates in SPSW system and yielding area covered 
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Fig. 20 Material properties in tension of truss braces in Eq.BF model, where σy and ε0 are yield 
stress and strain of plate in SPSW system 

 

 

Fig. 21 Sample pushover curve with enhanced material properties in Eq.BF model to match the 
SPSW system 

 
 

To achieve the same level of the final deformation in the Eq.BF model, as in the corresponding 
SPSW system, the original yield stress needs to be multiplied by factor αk. In this case, the 
enhanced material properties for the bracing are represented by tri-linear stress-strain curve as 
shown Fig. 20. Since the stress, αk * σy represents the point of final yielding point beyond which 
the stress-strain curve is perfectly plastic, a larger value of strain (ε1 > εy) corresponding to that 
stress is assumed. Through a repeated study with varying parameters, it has been observed that αk 
depends upon the ratio of the web thickness of the beam (tweb|beam) to the sum of the thickness of 
the connecting plates Eq. (24). 
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Fig. 22 Relation between αk and β4 
 
 
where, I represents the ith storey in a multi-storey system. For single storey structures bi+1 = 0. 

The relation between αk and β4 is established by carrying out parametric study with both plate 
frame model and equivalent braced model. In the braced model, the yield strength of braces in 
tension is enhanced experimentally so that both the plate model and the equivalent braced model 
have similar pushover curves. A sample pushover curve for a SPSW system with square beams (80 
mm × 80 mm), square columns (200 mm × 200 mm) and plate thickness of 3 mm is shown in Fig. 
21. Since, thickness of beam to that of plate in the sample pushover study (Fig. 22) is very large, 
an increased initial stiffness is observed in plate model as compared to equivalent bracing model. 
However, that can be neglected for this part of the study where the only concern is the 
representation of the yield strength. In this case, αk is obtained by dividing the enhanced stress 
with that of the original yield stress of plate. The relation between αk and β4 as shown in Fig. 22 
can be expressed by a power relation fitted with Eq. (25), where R2 = 0.996. 
 

12.0
4 )( k                                (25) 

 
 

4. Validation of the proposed model 
 
Three single storey samples have been subjected to pushover test for validation of the model. 

Equivalent areas for the braces are computed as 1115 mm2 and 642.3 mm2 for models of Lubell et 
al. (2000) and Neilson (2010), respectively. The third sample is designed as per NBCC 2010 and 
CSA-S16-09 (Table 1). The details of the model parameter for the designed sample and 
experimental specimen from Lubell et al. (2000) and Neilson (2010) are given in Tables 2, 3 and 4 
respectively. 

Results obtained from both the models are shown in Figs. 23 and 24. For both the models the 
initial stiffness is correctly estimated by the Eq.BF model. For Neilson’s specimen (Fig. 24) the 
ultimate strength and the sequence of yielding match almost perfectly with shell-plate model and 
with Eq.BF model. The amount of error estimated with Eq.BF model for experimental validation 
is less than 2% in term of ultimate strength. The results from the Eq.BF model are in excellent 
agreement with those from the detailed three dimensional FE model with shell elements. With the 
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Table 2 Details of EQ.BF model parameters for designed single storey SPSW validation 

αs 0.31 Compression Tension 

αm 3.82 Stress -16.2 σy (MPa) 385 αkσy 486.5 

Area of brace 7982.3 Strain 0.00016 ε0 (mm/mm) 0.00193 αkε0 0.00243

 
Table 3 Details of EQ.BF model parameters for validation of Lubell’s (2000) specimen 

αs 0.56 Compression Tension 

αm 1.25 Stress -10 σy (MPa) 320 αkσy 363.1 

Area of brace 642.3 Strain 0.00032 ε0 (mm/mm) 0.0016 αkε0 0.00182

 
Table 4 Details of EQ.BF model parameters for validation of Neilson’s (2010) specimen 

αs 0.22 Compression Tension 

αm 4.87 Stress -5.7 σy (MPa) 275 αkσy 344.5 

Area of brace 1115 Strain 0.0001 ε0 (mm/mm) 0.0013 αkε0 0.00164

 
 
specimen tested by Lubell et al. 2000 (Fig. 23), the agreement of pushover curves for Eq.BF 
model is satisfactory with approximately 6% error in ultimate strength. The initial stiffness is 
correctly estimated. The sequence of yielding is predicted correctly (as observed from the 
push-over curves) by both the models. However, the experimental pushover curve shows a slightly 
higher degree of strain hardening than those produced by the numerical models (both FEA and 
Eq.BF models. 

Comparing the pushover curves from the designed single-storey sample (Fig. 25), it can be said 
that with Eq.BF model predicts accurately until the first yielding and the ultimate strength is 
estimated with less than 2% error. In the zone between first yielding and the yield plateau, the 
stiffness is over estimated by nearly 8%. Since, the Eq.BF model is an approximate model, 
 
 

 

Fig. 23 Pushover curves from different models based on Lubell et al. (2000) specimen 

731



 
 
 
 
 
 

Arghya Kamal Chatterjee, Anjan Bhowmick and Ashutosh Bagchi 

 

 

Fig. 24 Pushover curves from different models based on Neilson (2010) specimen 
 

 

Fig. 25 Pushover curves from different numerical models for single-storey specimen 
 
 
a perfect agreement with detailed FE model may not entirely achievable. However, the 
performance of the Eq.BF model in reproducing the pushover curve is adequate for assessing the 
overall behavior of a SPSW system. 

Comparing the pushover curves from the designed single-storey sample (Fig. 25), it can be said 
that with Eq.BF model predicts accurately until the first yielding and the ultimate strength is 
estimated with less than 2% error. In the zone between first yielding and the yield plateau, the 
stiffness is over estimated by nearly 8%. Since, the Eq.BF model is an approximate model, a 
perfect agreement with detailed FE model may not entirely achievable. However, the performance 
of the Eq.BF model in reproducing the pushover curve is adequate for assessing the overall 
behavior of a SPSW system. 

Three multistory sample structures (4-storey, 6-storey and 10-storey) were designed based on 
NBCC 2010 and CSA S16-09. All buildings have identical plan with a total plan area of 2,014 m2 
and represent hypothetical office buildings which are assumed to be located in Vancouver. The 
building has two identical shear walls to resist lateral forces in each direction and thus each shear 
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wall will resist one half of the design seismic loads. For simplicity, torsion is neglected. Each 
shear wall panel is 7.6 m wide, measured from centre to centre of columns, and has an aspect ratio 
of 2.0 (i.e., storey height of 3.8 m). 

The boundary members are designed according to CSA S16-09 (CSA 2009) to develop full 
capacity of infill plates. For 4-storey and 6-storey shear walls, a beam size of W610 × 372 is 
selected at the base of SPSW walls to anchor the forces developed due to yielding of bottom storey 
infill plates. For all other storeys, the beam section of W460 × 158 has been selected. For the 
10-storey structure the base beam is selected as W690 × 419. For the 10-storey SPSW, similar 
beam sections of W610 × 372 are selected for first to sixth storey and for the top four storeys 
similar beam sections of W460 × 286 are selected. CAN/CSA-S16-09 (CSA 2009) also has 
provisions for the stiffness of the columns to ensure the development of an essentially uniform 
tension field in the infill plate. Table 5 presents the final columns sections and plate thicknesses 
for the four, six and ten storey SPSWs. 
 
 

 

Fig. 26 Pushover curves from different models for 4-storey SPSW system 

 

 

Fig. 27 Pushover curves from different models for 6-storey SPSW system 
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Fig. 28 Pushover curves from different models for 10-storey SPSW system 
 
Table 5 Details of structural elements for 4-storey, 6-storey and 10-storey SPSW systems 

Storey 

10-storey wall 6-storey wall 4-storey wall 

Plate thickness
(mm) 

Column 
Plate thickness

(mm) 
Column 

Plate thickness 
(mm) 

Column 

1 5 W360 × 900 3 W360 × 744 2.75 W360 × 634

2 5 W360 × 900 3 W360 × 744 2.5 W360 × 634

3 5 W360 × 677 2.75 W360 × 382 2 W360 × 382

4 4.5 W360 × 677 2 W360 × 382 1 W360 × 382

5 4 W360 × 509 1.5 W360 × 262

6 3.5 W360 × 509 1 W360 × 262

7 3 W360 × 463 

8 2.5 W360 × 463 

9 1.5 W360 × 463 

10 1 W360 × 463 
 
 

These multi-storey structures are modeled both in Abaqus (detailed FE model with shell-plate 
element) and Opensees (simplified Eq.BF model). Six-storey model parameters are given in Table 
6 as sample calculation. Pushover curve corresponding to each storey level displacement and base 
shear are compared. It’s worth mentioning that the time required for developing and analyzing the 
Eq.BF models is significantly less as compared to the detailed FE models. For all three 
multi-storey structures, pushover curves (Figs. 26, 27 and 28) obtained by the two types of models 
are in excellent agreement. The initial stiffness is very accurately estimated by Eq.BF model. Also, 
for all three cases, the ultimate strengths obtained from the simplified equivalent braced frame 
models are in excellent agreement with that from the detailed FE models. In addition, the sequence 
of hinge development in columns and the progress of material non-linearity induced in members 
also have a reasonably good match. The pushover analysis time using Eq.BF was less than a 
minute whereas, whereas in detailed FE using Abaqus, it took almost two hours. Thus, it can be  
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Table 6 Calculated Eq.BF model properties for 6-storey 

Storey 1 2 3 4 5 6 

αs 0.42 0.41 0.37 0.32 0.23 0.15 

αm 3.68 3.70 3.72 4.39 5.72 6.08 

Area (mm2) 15206.16 15172.03 11991.05 10667.15 6771.65 2262.47 

σcomp (MPa) 30.86 29.34 26.93 20.12 10.04 5.79 

εcomp 0.000202 0.000201 0.000157 0.000121 6.6E-05 3.5E-05 

αkσy (MPa) 186.55 188.01 191.26 197.38 209.86 239.43 

αkε0 0.000402 0.000191 0.000185 0.000187 0.000154 0.000262 
 

 

Fig. 29 Validation of hysteretic curve result for Driver et al. (1997) specimen 
 
 
concluded that time efficient Eq.BF model is reasonably accurate and advantageous in terms of the 
modeling ease and analysis time to study the overall behavior SPSW systems. At every storey 
level pushover curves are in good agreement for all three multi-stories. 

It must be noted that Eq.BF model is significantly more efficient in time and effort than any 
detailed FE model. A normal pushover analysis of single storey using detailed FE model takes 
about an hour, while using an Eq.BF model the analysis takes less than a minute in same computer. 
With less elements and parameters to deal with in Eq.BF model than in a detailed FE analysis, it is 
not only easier to model the structure, but also saves significant amount of time for repeated 
analysis. The real efficiency in the Eq.BF model is in its ability to develop response curves in 
cyclic loadings. For multi-storey cyclic analysis, Eq.BF took less than 5 minutes whereas, detailed 
the FE model took approximately 45 hours in the same computing hardware. A sample validation 
for cyclic curve has been shown with Driver et al. (1997) specimen of four storey SPSW structure 
(Fig. 29). The hysteric behavior is very accurately estimated by Eq.BF. Stability of the hysteretic 
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curve shows stability of the model performance. However, in terms of pinching effect there is still 
scope for further improvement. There is excellent agreement of initial stiffness and ultimate 
strength both in positive and negative side. 

 
 

5. Conclusions 
 
An Equivalent Braced Model (Eq.BF) has been proposed in this research to study the behavior 

of steel plate shear walls. A series of nonlinear validations has been carried out to check the 
accuracy and efficiency of the proposed model. The proposed model provided excellent estimation 
of initial stiffness, final strength with an average error of less than 5%. Calculating the model 
parameters from the configuration of a given SPSW system is easy and not at all cumbersome. The 
main efficiency of the model lies in its time for analysis. A huge saving of time and effort is 
possible by using Eq.BF model rather than detailed FE models. Particularly, for industries dealing 
with performance based design, repeated analysis is required. So, this model can help speeding the 
design process since analysis is short and reliable. However, it must always be accounted that 
Eq.BF model is a simplified modeling technique shown to be an excellent approximation only for 
predicting the overall global performance of structure. Where detailed structural behavior is a 
concern, it is recommended that analysis with full scale detailed FE model is carried out. There is 
also scope for improvement in this simplified model like introducing factors that accounts the 
bending action of the bounding frame, introducing a proper calibration for the pinching effect of 
infill plates, etc. The parametric study for modeling involved through this study has also 
introduced a statistical method for modeling equivalent linear models when complex non-linearity 
is involved in structures. Development of simplified FE models that can estimate the complex 
behavior of SPSW systems in a global sense has been successfully achieved through this research. 
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