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Abstract.  This paper addresses theoretically the bending and buckling behaviors of size-dependent 
nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The 
size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal 
elastic behavior is described by the differential constitutive model of Eringen, which enables the present 
model to become effective in the analysis and design of nanostructures. The present model incorporates the 
length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore 
accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all 
displacements through the thickness without using shear correction factor. The material properties of FGM 
nanobeams are assumed to vary through the thickness according to a power law. The governing equations 
and the related boundary conditions are derived using the principal of minimum total potential energy. A 
Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are 
proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and 
various material compositions on the static and stability responses of the FGM nanobeam are discussed in 
detail. The study is relevant to nanotechnology deployment in for example aircraft structures. 
 
Keywords:   nanobeam; nonlocal elasticity theory; bending; buckling; stretching effect; functionally 
graded materials; navier solution; aspect ratio 
 
 
1. Introduction 

 
Structural beams fabricated from nanomaterials (Harik and Salas 2003) and of nanometer 

dimensions are referred to as nanobeams (nanowires, nanotubes, nanorods). These nano-structural 
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elements are extensively utilized as nanostructure components for nanoelectromechanical (NEMS) 
and microelectromechanical systems (MEMS) (Mukherjee and Aluru 2006), which arise 
frequently in the aerospace industry. Hence, the understanding of mechanical behavior of 
nanobeams is critical for optimizing the performance of such structures. In such applications, the 
size effect plays major role which should be addressed to properly quantify the behavior of such 
small scale structures. It has now been generally established that classical continuum mechanics 
fails to predict the size-dependent response of the structures at micro-and nano-scales since the 
classical theory framework does not feature intrinsic length scales. In order to overcome this 
problem, many higher order continuum (nonlocal) theories have been proposed. These 
formulations contain additional material constants, such as the modified couple stress theory 
(Yang et al. 2002), the strain gradient theory (Aifantis 1999), the micropolar theory (Eringen 
1967), the nonlocal elasticity theory (Eringen 1972), and the surface elasticity model (Gurtin et al. 
1998). Such theories aim to robustly characterize the size effect in micro, nano-scale structures by 
introducing an intrinsic length scale in the constitutive relations. Among these theories, the 
nonlocal elasticity theory has emerged as a very promising and accurate approach. Introduced by 
Eringen (1983), nonlocal elasticity can successfully account for the scale effect in elasticity and 
has been shown to effectively simulate many complex phenomena in multi-scale mechanics 
including lattice dispersion of elastic waves, wave propagation in composites, dislocation 
mechanics, fracture mechanics and surface tension effects in fluids. Peddieson et al. (2003) first 
applied the nonlocal Eringen elasticity theory (Eringen 1983) to nanotechnology and derived 
expressions for the static deformations of beam structures based on a simplified nonlocal beam 
model. Subsequently, based on the nonlocal constitutive relation of Eringen, numerous studies 
have appeared which have developed nonlocal beam models for predicting the responses of 
nanostructures. These investigations include static analysis (Wang and Liew 2007, Pijaudier-Cabot 
and Bažant 1987, Lim and Wang 2007, Reddy and Pang 2008), buckling calculations (Zhang et al. 
2004, 2006, Wang et al. 2006, Murmu and Pradhan 2009a, Amara et al. 2010, Narendar and 
Gopalakrishnan 2011a, Tounsi et al. 2013a, b, Semmah et al. 2014, Zidour et al. 2014), vibration 
modelling (Yoon et al. 2003, Zhang et al. 2005a, b, Benzair et al. 2008, Murmu and Pradhan 
2009b, Hemmatnezhad and Ansari 2013, Boumia et al. 2014, Baghdadi et al. 2014), wave 
propagation simulations (Lu et al. 2007, Tounsi et al. 2008, Heireche et al. 2008a, b, c, Song et al. 
2008, Narendar and Gopalakrishnan 2011b, Besseghier et al. 2011, Naceri et al. 2011, Gafour et al. 
2013) and thermo-mechanical (Mustapha and Zhong 2010a, Maachou et al. 2011, Zidour et al. 
2012) computations of nanostructures. Recently, Mustapha and Zhong (2010b) investigated the 
free vibration of an axially-loaded non-prismatic single-walled carbon nanotube embedded in a 
two-parameter elastic medium with a Bubnov-Galerkin method. Roque et al. (2011) used the 
nonlocal elasticity theory of Eringen to study bending, buckling and free vibration of Timoshenko 
nanobeams with a meshless numerical method. Reddy (2007) implemented a range of different 
beam theories including those of Euler-Bernoulli, Timoshenko, Levinson (1981) and Reddy (1984) 
to simulate bending, buckling and vibration of nonlocal beams. Benguediab et al. (2014) proposed 
a comprehensive nonlocal shear deformation beam theory for bending, buckling and vibration 
analysis of homogeneous nanobeams founded on Eringen’s nonlocal elasticity theory. 

Developments in the field of materials engineering have stimulated a new class of high- 
performance materials with smooth and continuous variation of the material properties, which can 
be strategically manipulated for specific applications such as aerospace structures, solar power 
collectors, bridges, machine components etc. These materials are designated as functionally graded 
materials (FGMs). Yaghoobi and his co-workers (Yaghoobi and Torabi 2013a, b, Yaghoobi and 
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Yaghoobi 2013, Yaghoobi and Fereidoon 2014) studied the buckling behavior of FGM structures. 
Tounsi and his co-workers (Klouche Djedid et al. 2014, Ait Amar Meziane et al. 2014, Tounsi et 
al. 2013c, Zidi et al. 2014, Bouderba et al. 2013, Bachir Bouiadjra et al. 2012, 2013, Bouremana 
et al. 2013, Bourada et al. 2012, Fekrar et al. 2012, El Meiche et al. 2011, Benachour et al. 2011, 
Mahi et al. 2010, Sallai et al. 2009, Benatta et al. 2008) investigated the mechanical response of 
FGM structures. They used a through-the-thickness variation of the material properties according 
to a power law. Recently, the application of FGMs has expanded to the realm of nano-structures 
and typical examples in this regard are nano-electromechanical systems (NEMS), thin films in the 
form of shape memory alloys, atomic force microscopes (AFMs), nano-implants in medical 
engineering, nanotubes in aircraft wings, nanobeams for spacecraft chassis structures etc. All these 
applications achieve high sensitivity and enhanced performance. However, thusfar, relatively 
sparse research has been communicated on FGM nanobeam structural mechanics, based on the 
nonlocal elasticity theory. Janghorban and Zare (2011) investigated nonlocal free vibration of 
axially FGM nanobeams by using the differential quadrature computational method. Eltaher et al. 
(2012) studied free vibration of FGM nanobeam based on the nonlocal Euler-Bernoulli beam 
theory. The static bending and buckling of FGM nanobeam has also been examined based on the 
nonlocal Timoshenko and Euler-Bernoulli beam theory by Şimşek and Yurtçu (2013). A recent 
review of applications of nonlocal Eringen elasticity in a range of nanobeam problems is provided 
by Murmu and Adhikari (2012). 

In this paper, a nonlocal beam theory is proposed for bending and buckling of FGM nanobeams. 
Contrary to the other theories elaborated in (Roque et al. 2011, Reddy 2007, Benguediab et al. 
2014, Şimşek and Yurtçu 2013, Berrabah et al. 2013), where the stretching effect is neglected, in 
the current investigation this so-called ‘‘stretching effect’’ is taken into consideration. The 
displacement field of the proposed theory is chosen based on the following assumptions (Bousahla 
et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, Hebali et al. 2014, Houari et al. 2013, Bessaim 
et al. 2013, Saidi et al. 2013): (1) The transverse displacement is partitioned into bending, shear 
and stretching components; (2) the axial displacement consists of extension, bending and shear 
components; (3) the bending component of axial displacement is similar to that given by the 
Euler-Bernoulli beam theory; and (4) the shear component of axial displacement gives rise to the 
sinusoidal variation of shear strain and hence to shear stress through the thickness of the beam in 
such a way that shear stress vanishes on the top and bottom surfaces. The material properties of the 
FGM nanobeam are assumed to vary in the thickness direction. Based on the nonlocal constitutive 
relations of Eringen (1983), the governing equations are derived using the principal of minimum 
total potential energy. To illustrate the accuracy of the present theory, the obtained results are 
compared with those predicted by the Euler-Bernoulli beam theory and Timoshenko beam theory. 
Finally, the influences of nonlocal parameter, power law index, and aspect ratio on the bending, 
buckling and vibration responses of FGM nanobeam are discussed. 
 
 
2. Theoretical formulations 

 
2.1 Material properties 
 
A functionally graded material, simply-supported nanobeam, of length L, width b, and 

thickness h, is shown in Fig. 1. It is assumed that material properties of the FGM nanobeam, such 
as Young’s modulus (E), Poisson’s ratio (v), and the shear modulus (G), vary continuously  
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Fig. 1 Gradation of material properties through the thickness of the FG beam 
 
 
through the nanobeam thickness according to a power-law form (Eltaher et al. 2012, Şimşek and 
Yurtçu 2013), which can be described by 
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where Pt and Pb are the corresponding material property at the top and bottom surfaces of the 
nanobeam, k is a non-negative number that dictates the material variation profile through the 
thickness of the nanobeam. 

 
2.2 Kinematics 
 
Based on the assumptions made above, the displacement field of the present theory can be 

obtained as 
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where u0 is the axial displacement along the midplane of the nanobeam; wb, ws and wst are the 
bending, shear and stretching components of transverse displacement along the midplane of the 
beam. Furthermore 
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The component due to the stretching effect wst can be given as 
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The additional displacement φ accounts for the effect of normal stress is included and g (z) is 

given as follows 
 

 zfzg 1)(                               (2e) 
 

The nonzero strains of the proposed beam theory are 
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2.3 Nonlocal theory and constitutive relations 
 
Response of materials at the nanoscale is different from those of their bulk counterparts. In the 

theory of nonlocal elasticity Eringen (1983), the stress at a reference point x is considered to be a 
functional of the strain field at every point in the body. For example, in the non - local elasticity, 
the uniaxial constitutive law is expressed as (Eringen 1983) 
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The Qij expressions in terms of engineering constants are 
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And μ = (e0a)2 is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams, 
e0 is a constant appropriate to each material and a is an internal characteristic length. 

 
2.4 The governing equations based on the nonlocal elasticity theory 
 
The governing equations will be derived by using principal of the minimum total potential 

energy as follows 
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where Π is the total potential energy. δUint is the virtual variation of the strain energy; and δWext is 
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where N, Mb, Ms, Nz and Q are the stress resultants defined as 
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The first variation of the work done by the axial compressive force is given by 
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where q and N0 are the transverse and axial loads, respectively. 
Substituting the expressions for δUint, and v from Eqs. (7) and (9) into Eq. (6) and integrating 

by parts, and collecting the coefficients of δu0, δwb, δws and δφ, the following governing equations 
of the FGM nanobeam are obtained 
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By virtue of Eqs. (3), (5), and (8), the force-strain and the moment-strain relations of the 
present nonlocal beam theory can be obtained as follows 
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By substituting Eq. (11) into Eq. (10), the nonlocal governing equations can be expressed in 

terms of displacements (u0, wb, ws, φ) as 
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The equations of motion of local beam theory can be retrieved from Eq. (13) by setting the 

nonlocal parameter μ equal to zero. 
 
2.5 Analytical solution 
 
The equations of motion admit Navier analytical solutions for simply supported beams. The 

variables u0, wb, ws, and φ can be written by assuming the following variations 
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where Um, Wbm, Wsm and Φstm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with mth eigenmode, and λ = mπ / L. The transverse load q is also expanded in the 
Fourier sine series as 
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The Fourier coefficients Qn associated with some typical loads are given 
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Substituting Eqs. (14) and (15) into Eq. (13), the analytical solutions can be obtained by 
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3. Numerical results and interpretation 
 

In this section, analytical solutions obtained in the previous sections are utilized for numerical 
examples. The obtained results are compared with those reported by Şimşek and Yurtçu (2013) 
based on nonlocal Timoshenko beam theory (TBT) for a wide range of nonlocal parameter (e0a), 
the material distribution parameter (k) and thickness ratio (L / h). The FGM nanobeam has the 
following prescribed material properties: Et = 0.25 TPa, Eb = 1 TPa, vt = vb = 0.3. A conservative 
estimate of the nonlocal parameter 0 ≤ e0a ≤ 2 nm for single walled carbon nanotubes (SWCNTs) 
has been provided by Wang (2005). Therefore, in this study, the nonlocal parameter is taken as e0a 
= 0, 0.5, 1, 1.5, 2 nm to investigate nonlocal effects on the responses of FGM nanobeam. For 
convenience, the following dimensionless quantities are defined 
 

load uniformfor 100
4

0Lq

IE
ww b                      (19a) 
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parameter load buckling critical i.e.,
2

IE

L
NN

b
cr                (19b) 

 
Table 1 shows the non-dimensional maximum deflections w  of a simply supported FGM 

nanobeam subjected to uniform load. The calculated values are obtained using 100 terms in series 
in Eqs. (14) and (15) with Maple software. It should be noted that the case, e0a = 0 corresponds to 
local beam theory. The obtained results (Models 1 and 2) are compared with those predicted by 
TBT (Şimşek and Yurtçu 2013). Since the effect of thickness stretching is neglected in Model 1 (εz 
= 0), it leads to the solutions close to TBT (Şimşek and Yurtçu 2013) for all values of thickness 
ratio, L / h, material distribution parameter k and nonlocal parameter e0a. The slight difference 
between the results obtained by Model 1 (εz = 0) and TBT is due to the use of a constant shear 
correction factor for any values of the material distribution parameter k (Menaa et al. 2012). In 
addition, the results of Model 2 (εz ≠ 0) are also provided to show the importance of including the 
thickness stretching effect. Indeed, it is evident from inspection of Table 1 that the inclusion of the 
thickness stretching effect leads to a reduction in the magnitudes of deflection of FGM nanobeams. 
In other words, with the thickness stretching effect incorporated, FGM nanobeams exhibit greater 
stiffness, and this characteristic is particularly important in applications. 

Table 2 documents the values for the computed non-dimensional critical buckling loads.  The 
present computations are benchmarked with the earlier results of Şimşek and Yurtçu (2013) and 
good correlation is observed with Model 1 (εz = 0). The results obtained using Model 2 (εz ≠ 0) 
show that the inclusion of the thickness stretching effect manifests in an enhancement in the 
critical buckling loads. According to this table, buckling loads decrease with increasing nonlocal 
parameter (e0a). However, the increase of power law index k leads to an increase of critical 
buckling loads. 

Fig. 2 shows the variation of the non-dimensional deflection and the buckling load of the FGM 
nanobeam with geometrical aspect ratio. The local and nonlocal results are given for e0a = 0 and 
e0a = 1 nm, respectively. The material distribution parameter is assumed to be constant i.e., k = 1. 
In this example, the aspect ratio varies from L / h = 10 to L / h = 50. It is apparent that deflections 
predicted by the nonlocal theory exceed in magnitude those computed with the local (classical) 
continuum theory. On the other hand, the nonlocal solution of the buckling load is lower in 
magnitude than the local buckling load due to the small scale effects. Also, it can be observed that 
the inclusion of the thickness stretching effect leads to a marked reduction in nanobeam deflection 
and an increase in buckling load values for FGM nanobeams. These results effectively 
demonstrate that the inclusion of small scale parameter softens the nanobeam (reduces stiffness), 
whereas the inclusion of thickness stretching effect makes it stiffer. As such both small scale and 
thickness stretching effects exert a significant influence on nanobeam structural performance. 

Fig. 3 shows the effect of the nonlocal parameter on dimensionless deflections and critical 
buckling loads. The results in this figure are obtained by using the present nonlocal shear 
deformation beam theory including the thickness stretching effect (Model 2). The material 
distribution parameter is assumed to be constant (i.e., k = 1). These figures show that the responses 
vary in a nonlinear fashion with the nonlocal parameter. It can be seen that the effect of nonlocal 
parameter e0a on deflections and critical buckling loads of FGM nanobeams is significant, 
especially at relatively higher aspect ratios. Therefore, it can be concluded that FGM nanobeam 
responses are aspect ratio-dependent based on nonlocal elasticity. 
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Fig. 2 Effect of the aspect ratio on (a) dimensionless deflection for uniform load; and (b) 
dimensionless buckling load for k = 1, e0a = 1 nm 
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Fig. 3 Effect of nonlocal parameter on (a) dimensionless deflection for uniform load; and (b) 
dimensionless buckling load for k = 1 
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4. Conclusions 
 
The bending and buckling analyses of FGM size-dependent nanoscale beams has been 

investigated on the basis of a nonlocal thickness-stretching sinusoidal shear deformation beam 
theory. The present model is capable of capturing small scale, shear deformation and thickness 
stretching effects of nanobeams, and additionally satisfies the zero traction boundary conditions on 
the top and bottom surfaces of the nanobeam without requiring a shear correction factor. Based on 
the nonlocal differential constitutive relation of Eringen, the nonlocal governing equations are 
derived using the principal of minimum total potential energy. The computations demonstrate that 
the inclusion of both small scale and thickness stretching effects elevates nanobeam stiffness, and 
hence, leads to a reduction of deflections and a corresponding increase of buckling loads. 
Therefore, the small scale and thickness stretching effects should be considered in the analysis of 
mechanical behavior of nanostructures. Further, it is found that, the material-distribution profile 
may be manipulated to select a specific design deflection and buckling load. The present 
computations also provide a solid benchmark for verification of finite element and other numerical 
simulations of FGM nanobeam mechanics. 
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