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Abstract.  In this paper, an efficient and simple trigonometric shear deformation theory is presented for 
thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic 
foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and 
satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using 
shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed 
sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and 
thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power 
law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and 
stability equations of plates made of functionally graded materials are derived. The boundary conditions for 
the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by 
two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The 
effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and 
thickness ratio on the critical buckling temperature of functionally graded plates are investigated and 
discussed. 
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1. Introduction 

 
In recent years, functionally graded materials (FGMs) have gained such popularity as high 

thermal resistance materials with low thermal stresses that structural components exposed to 
high-temperature environments such as aircraft structures are made of FGMs. They are a new 
generation of composite structures first introduced by a group of Japanese scientists in 1984 
(Yamanouchi et al. 1990, Koizumi 1993). Typically, FGMs are made of a ceramic and a metal in 
such a way that the ceramic can resist the severe thermal loading from the high temperature 
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environment, whereas the metal serves to decrease the large tensile stress occurring on the ceramic 
surface at the earlier stage of cooling. Since the material properties of FGMs vary continuously 
from one interface to the other, this results in eliminating interface problems of composite 
materials and achieving smooth stress distribution. The FGM is widely used in many structural 
applications such as aerospace, nuclear, civil, automotive, optical, biomechanical, electronic, and 
chemical. 

Rectangular thick plates made of FGMs are often employed as a part of engineering structures. 
In addition, to describe the interaction between plate and foundation, various kinds of foundation 
models have been proposed. The simplest one is Winkler or one-parameter model which regards 
the foundation as a series of separated spring without coupling effects between each other. Hence, 
in this model the properties of the soil are described only by one parameter (Kw), that represents 
the stiffness of the vertical springs (Avramidis and Morfidis 2006). However, Winkler’s model is 
unable to take into account the continuity or cohesion of the soil. Also, the assumption that there is 
no interaction between adjacent springs results in ignoring the influence of the soil on either side 
of the beam. To overcome this weakness, many two-parameter elastic foundation models have 
been proposed, such as Pasternak’s elastic foundations (Pasternak 1954). The Pasternak or 
two-parameter mode is widely used to describe the mechanical behavior of structure-foundation 
interactions. Zenkour (2009) presented a thermoelastic bending analysis of a functionally graded 
(FG) plate subjected to a transverse uniform load and resting on a two-parameter elastic 
foundation using the refined sinusoidal shear deformation plate theory. Benyoucef et al. (2010) 
investigated the bending response of FG thick plates resting on Pasternak’s elastic foundations 
using a hyperbolic shear deformation plate theory. Ait Atmane et al. (2010) studied the free 
vibration behaviour of FG plates resting on Winkler-Pasternak elastic foundations. Cheng and 
Kitipornchai (1999) proposed a membrane analogy to derive exact explicit eigenvalues for 
compression buckling, hydrothermal buckling, and vibration of FG plates on a Winkler-Pasternak 
foundation based on the first-order shear deformation theory (FSDT). The same membrane 
analogy was later applied to the analyses of FG plates and shells based on a third-order plate 
theory (Cheng and Batra 2000, Reddy and Cheng 2002). Effect of the Pasternak elastic foundation 
on mechanical post-buckling of moderately thick FG plates is discussed by Yang et al. (2005a). In 
their study, four sides of plate are assumed to be clamped and formulation is based on the FSDT. 
They obtained the post-buckling equilibrium paths based on a two-dimensional differential 
quadrature approach combined with the perturbation technique. Thermo-mechanical post-buckling 
response of FG plates based on an analytical solution is presented by Woo et al. (2005). They used 
third order shear deformation plate theory (Reddy’s displacement field) and von Karman type of 
large deflections to obtain the coupled partial differential equations and used a mixed series 
solution to solve them. Their study includes four types of boundary conditions for plate. Zenkour 
and Sobhy (2010) investigated the thermal buckling behavior of various types of FG sandwich 
plates. Zenkour and Sobhy (2011) studied the thermal buckling of FG plate resting on one 
parameter elastic foundation or two-parameter ones using the trigonometric shear deformation 
plate theory. Ameur et al. (2011) proposed a new trigonometric shear deformation plate theory to 
study the bending response of FG plate resting on Pasternak elastic foundation. Zenkour and 
Sobhy (2012) examined the static response of simply supported FG viscoelastic sandwich plates 
subjected to transverse uniform loads. Zenkour and Sobhy (2013) have studied the dynamic 
bending response of thermoelastic FG plates resting on elastic foundations. Tounsi and his 
co-workers (Abdelaziz et al. 2011, El Meiche et al. 2011, Hadji et al. 2011, Benachour et al. 2011, 
Bourada et al. 2012, Kaci et al. 2012, Bachir Bouiadjra et al. 2012, Fekrar et al. 2012, Bouderba et 
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al. 2013, Tounsi et al. 2013, Kettaf et al. 2013, Bachir Bouiadjra et al. 2013, Houari et al. 2013, 
Bessaim et al. 2013, Belabed et al. 2014, Fekrar et al. 2014, Bousahla et al. 2014, Hebali et al. 
2014, Zidi et al. 2014, Klouche Djedid et al. 2014, Draiche et al. 2014, Sadoune et al. 2014, Nedri 
et al. 2014, Khalfi et al. 2014) studied the mechanical behaviors of composite and FG plates using 
new refined shear deformation theories. Sobhy (2013) studied the free vibration and the buckling 
behaviours of exponentially graded sandwich plates resting on Pasternak elastic foundation. 
Yaghoobi and Torabi (2013a) developed an exact solution for thermal buckling of FG plates 
supported by elastic foundations and various boundary conditions are considered. Yaghoobi and 
Yaghoobi (2013) studied sandwich plates with FG face sheets resting on elastic foundation. 
Yaghoobi and Torabi (2013b) investigated the post-buckling and nonlinear free vibration 
responses of geometrically imperfect FG beams resting on nonlinear elastic foundation. Recently, 
Yaghoobi and Fereidoon (2014) presented a refined nth-order shear deformation theory for the 
mechanical and thermal buckling responses of FG plates resting on elastic foundation. 

Due to the importance and wide engineering applications of FGMs such as aerospace, nuclear, 
civil, automotive, the thermal buckling behavior of these materials has been addressed by many 
investigators. Indeed, with the development of new industries and modern processes, many 
machines and structures experience extreme thermal environments, resulting in various types of 
thermal loads (Noda et al. 2003). This situation has created a need for a text that is focused on the 
analysis of thermal buckling. 

The purpose of this study is to extend the new trigonometric shear deformation plate theory 
(Ameur et al. 2011) for the thermal buckling analysis of FG plates on elastic foundation. This 
theory is based on assumption that the in-plane and transverse displacements consist of bending 
and shear components in which the bending components do not contribute toward shear forces and, 
likewise, the shear components do not contribute toward bending moments. Unlike the 
conventional trigonometric shear deformation theory (Zenkour and Sobhy 2011), the proposed 
trigonometric shear deformation theory contains only four unknowns. The plate is graded in the 
thickness direction assuming a power law distribution of the constituent materials. The 
temperatures are assumed to be uniform, linear and non-linear distribution through the thickness. 
The elastic foundation is modelled as two-parameter Pasternak foundation. The results are 
compared and validated with the results of previous works which are available in the literature. 
 
 
2. Theoretical formulations 

 
Consider a rectangular plate made of FGMs of thickness h, length a, and width b, referred to 

the rectangular Cartesian coordinates (x, y, z), as shown in Fig. 1. 
Unlike the other theories, the number of unknown functions involved in the present efficient 

and simple trigonometric shear deformation theory is only four, as opposed to five in case of the 
conventional trigonometric shear deformation theory (Zenkour and Sobhy 2011) or of the other 
shear deformation theories (Reddy 1984, Karama et al. 2003). The theory presented is 
variationally consistent, does not require shear correction factor, and gives rise to transverse shear 
stress variation such that the transverse shear stresses vary parabolically across the thickness 
satisfying shear stress free surface conditions. 

 
2.1 Basic assumptions 
 
The assumptions of the present theory are as follows: 
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Fig. 1 Coordinate system and geometry for rectangular FG plates on Pasternak elastic foundation 

 
 

(1) The displacements are small in comparison with the plate thickness and, therefore, strains 
involved are infinitesimal. 

(2) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x and y only. 

 
),(),(),,( yxwyxwzyxw sb                         (1) 

 
(3) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(4) The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

sbsb vvvvuuuu  00 ,                       (2) 
 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the sinusoidal variations of 

shear strains γxz, γyz and consequently the variation of shear stresses τxz and τyz through the thickness 
of the plate becomes also nonlinear in nature in such a way that shear stresses τxz, τyz are zero at the 
top and bottom faces of the plate. Consequently, the expression for us and vs can be given as 
(Ameur et al. 2011) 
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2.2 Kinematics 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (1)-(5) as 
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The non-linear von Karman strain-displacement equations are as follows 
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2.3 Constitutive equations 
 
The material properties of FG plate are assumed to vary continuously through the thickness of 

the plate in accordance with a power law distribution as 
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where P represents the effective material property such as Young’s modulus E and the thermal 
expansion coefficient α. Subscripts m and c represent the metallic and ceramic constituents, 
respectively; and n is the volume fraction exponent. The value of n equal to zero represents a fully 
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ceramic plate, whereas infinite n indicates a fully metallic plate. Since the effects of the variation 
of Poisson’s ratio v on the response of FG plates are very small (Yang et al. 2005b, Kitipornchai et 
al. 2006), the Poisson’s ratio v is usually assumed to be constant. The linear constitutive relations 
of a FG plate can be written as 
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. T 
(x, y, z) is the temperature rise through the thickness. Using the material properties defined in Eq. 
(9), stiffness coefficients, Qij, can be expressed as 
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Based on the present trigonometric shear deformation plate theory, the stress resultants are 

related to the stresses by equations 
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Using Eq. (10) in Eq. (12), the stress resultants of the FG plate can be related to the total strains 

by 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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2.4 Equilibrium and stability equations 
 
The equilibrium equations of the FG plate resting on the Pasternak elastic foundation under 

thermal loadings may be derived on the basis of the stationary potential energy. The total potential 
energy of the plate, V, may be written in the form 
 

FUUV                               (16) 
 

Here, U is the total strain energy of the plate, and is calculated as 
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and UF is the strain energy due to the Pasternak elastic foundation, which is given by (Benyoucef 
et al. 2006, Ait Atmane et al. 2010, Ameur et al. 2011) 
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  
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where fe is the density of reaction force of foundation. For the Pasternak foundation model 
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where KW is the Winkler foundation stiffness and Kg is a constant showing the effect of the shear 
interactions of the vertical elements. 

Using Eqs. (7), (8) and (13) and employing the virtual work principle to minimize the 
functional of total potential energy function result in the expressions for the equilibrium equations 
of plate resting on two parameters elastic foundation as 
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The stability equations for FG plates may be obtained by means of the adjacent-equilibrium 
criterion. Let us assume that the state of equilibrium of sandwich plate under thermal loads is 
defined in terms of the displacement components ,0

0u ,0
0v  

0
bw  and .0

sw  The displacement 
components of a neighbouring state of the stable equilibrium differ by ,1

0u  ,1
0v  ,1

bw  
1
sw  with 

respect to the equilibrium position. Thus, the total displacements of a neighbouring state are 
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Accordingly, the stress resultants are divided into two terms representing the stable equilibrium 

and the neighbouring state. The stress resultants with superscript 1 are linear functions of 
displacement with superscript 1. Considering all these mentioned above and using Eqs. (20) and 
(22), the stability equations becomes 
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The terms ,0

xN  0
yN  and 0

xyN  are the pre-buckling force resultants obtained as 
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2.5 Trigonometric solution to thermal buckling 
 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eq. (23) for a simply supported FG plate. The following 
boundary conditions are imposed for the present refined shear deformation theory at the side edges 
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The following approximate solution was shown to satisfy both the differential equation and the 

boundary conditions 
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where ,1

mnU  ,1
mnV  ,1

bmnW  and 1
smnW  are arbitrary parameters to be determined and λ = mπ / a and μ 

= nπ / b. Substituting Eq. (27) into Eq. (23), one obtains 
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   ,0K                              (28) 
where {Δ} denotes the column 
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and [K] is the symmetric matrix given by 
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2.6 Thermal buckling solution 
 
In the following, the solution of the equation |K| = 0 for different types of thermal loading 

conditions is presented. The temperature change is varied only through the thickness. 
 
2.6.1 Buckling of FG plates under uniform temperature rise 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT = Tf ‒ Ti. Substituting Eq. (31) 
into the equation |K| = 0, the critical buckling temperature change is obtained as 
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2.6.2 Buckling of FG plates subjected to a graded temperature change across the 

thickness 
For FG plates, the temperature change is not uniform. The temperature is assumed to be varied 

according to the power law variation through-the-thickness as follows 
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where the buckling temperature difference ΔT = Tc ‒ Tm and Tc and Tm are the temperature of the 
top surface which is ceramic-rich and the bottom surface which is metal-rich, respectively. β is the 
temperature exponent (0 < β < ∞). Note that the value of β equal to unity represents a linear 
temperature change across the thickness. While the value of β excluding unity represents a 
non-linear temperature change through-the-thickness. 

Similar to the previous loading case, the critical buckling temperature difference ΔTcr can be 
determined as 
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3. Results and discussion 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 
of present theory in predicting the critical buckling temperature of simply supported FG plates 
resting on Pasternak elastic foundation. For numerical results, an Al/Al2O3 plate composed of 
Aluminum (as metal) and Alumina (as ceramic) is considered. The Young’s modulus and the 
thermal expansion coefficient of Aluminum are Em = 70 GPa and αm = 23.10-6/°C, respectively, 
and those of Alumina are Ec = 380 GPa and αc = 7.410-6/°C, respectively. For verification purpose, 
the obtained results are compared with those predicted using various plate theories. The 
description of various displacement models is given in Table 1. In all examples, a shear correction 
factor of 5/6 is used for FSDT. The Poisson’s ratio of the plate is assumed to be constant through 
the thickness and equal to 0.3. For the linear and non-linear temperature rises through the  
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Table 1 Displacement models 

Model Theory Unknown functions

CPT Classical plate theory 3 

FSDT First-order shear deformation theory (Whitney and Pagano 1970) 5 

PSDT Parabolic shear deformation theory (Reddy 1984) 5 

TSDT Trigonometric shear deformation theory (Zenkour and Sobhy 2011) 5 

Present Present refined plate theory 4 

 
Table 2 Comparison of the critical buckling temperature of a square FG plate under uniform temperature 

N Theory b / h = 10 b / h = 20 b / h = 40 b / h = 60 b / h = 80 b / h = 100

0 

CPT (Javaheri and
Eslami 2002) 

1709.911 427.477 106.869 47.497 26.717 17.099 

HPT (Javaheri and
Eslami 2002) 

1617.484 421.516 106.492 47.424 26.693 17.088 

Present 1618.820 421.544 106.495 47.423 26.694 17.089 

1 

CPT (Javaheri and
Eslami 2002) 

794.377 198.594 49.648 22.066 12.412 7.943 

HPT (Javaheri and
Eslami 2002) 

757.891 196.257 49.500 22.037 12.402 7.939 

Present 758.451 196.269 49.502 22.037 12.403 7.9400 

5 

CPT (Javaheri and
Eslami 2002) 

726.571 181.643 45.410 20.182 11.352 7.265 

HPT (Javaheri and
Eslami 2002) 

678.926 178.528 45.213 20.144 11.340 7.260 

Present 678.949 178.510 45.212 20.143 11.340 7.261 

10 

CPT (Javaheri and
Eslami 2002) 

746.927 186.732 46.682 20.747 11.670 7.469 

HPT (Javaheri and
Eslami 2002) 

692.519 183.141 46.455 20.703 11.657 7.462 

Present 692.544 183.133 46.455 20.703 11.656 7.463 

 
 
thickness, the temperature rises 5 °C in the metal-rich surface of the plate (i.e., Tm 5°C). 

The following dimensionless expressions of Winkler’s and Pasternak’s elastic foundation 
parameters, as well as the critical buckling temperature difference are used in the present analysis 
 

crcrgW TTK
D

a
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where D = EC h

3 / [12(1 ‒ v
2)]. 
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Table 3 Comparison of the critical buckling temperature of a square FG plate (a / h = 10) under uniform, 
linear and nonlinear (β = 3) temperature load 

n Theory 
k1 = 0, k2 = 0 k1 = 10, k2 = 0 k1 = 10, k2 = 10 

Uniform Linear Non-linear Uniform Linear Non-linear Uniform Linear Non-linear

0 
Present 1.61882 3.22764 6.45528 1.66270 3.31541 6.63082 2.52896 5.04791 10.09582

TSDT(a) 1.61882 3.22764 6.45528 1.66270 3.31541 6.63082 2.52896 5.04791 10.09582

1 
Present 0.75845 1.41307 2.82696 0.79935 1.48978 2.98043 1.60674 3.00402 6.00978 

TSDT(a) 0.75845 1.41307 2.82696 0.79935 1.48978 2.98043 1.60674 3.00402 6.00978 

5 
Present 0.67895 1.16006 2.01520 0.73564 1.25765 2.18472 1.85472 3.18391 5.53091 

TSDT(a) 0.67895 1.16006 2.01520 0.73564 1.25765 2.18472 1.85472 3.18391 5.53091 

10 
Present 0.69254 1.21837 2.09718 0.75653 1.33176 2.29235 2.01955 3.56992 6.14487 

TSDT(a) 0.69254 1.21837 2.09718 0.75653 1.33176 2.29235 2.01955 3.56992 6.14487 

 
 

3.1 Comparison studies 
 
In Table 2, a comparative study is carried out between the results obtained in this study and 

those reported by Javaheri and Eslami (2002) based on both higher plate theory (HPT) and the 
classical plate theory (CPT). Results are presented for square FG plate under uniform temperature 
rise. The results of the present theory show very good agreement with HPT both for thin and thick 
FG plates and for all values of power law index n. 

Another comparative study for the critical buckling temperature difference of FG plate on 
elastic foundation obtained by the proposed theory and those reported by Zenkour and Sobhy 
(2011) is illustrated in Table 3. It can be seen that the proposed theory and conventional TSDT 
(Zenkour and Sobhy 2011) give identical results of the critical buckling temperature for all values 
of power law index n. It should be noted that the proposed trigonometric theory involves four 
unknowns as against five in case of conventional TSDT (Zenkour and Sobhy 2011) and HPT 
(Javaheri and Eslami 2002). 

To illustrate the accuracy of present theory for wide range of thickness ratio a / h, the variations 
of the critical buckling temperature of FG plate on elastic foundation and under a uniform, linear 
and non-linear temperature load with respect to thickness ratio a / h are illustrated in Fig. 2. The 
obtained results are compared with those predicted by CPT, FSDT, PSDT and TSDT. It can be 
seen that the results of present theory and the other shear deformation theories are almost identical, 
and the CPT overestimates the critical buckling temperature of plate especially for the case of 
thick plates. Hence, in order to obtain accurate results for thick FG plates, it is necessary to 
consider the transverse shear deformation effects by using shear deformation theories. 

Fig. 3 shows the effects of the aspect ratio a / b on the critical buckling temperature Tcr of FG 
plates (n = 2) under a uniform, linear and non-linear temperature loads. The effect of elastic 
foundation is considered by employing k1 = 10 and k2 = 10. It is observed that, with increasing the 
plate aspect ratio a / b, the critical buckling temperature difference also increases gradually, 
regardless of the theory used. Results show the accuracy of proposed theory. 

It should be noted that the number of unknown functions in the present theory is four, while 
that in TSDT (Zenkour and Sobhy 2011), HPT (Javaheri and Eslami 2002), PSDT and FSDT is 
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Fig. 2 Comparison of the variation of critical thermal buckling temperature Tcr of square FG 
plate (n = 2) on elastic foundation (k1 = k2 = 10) versus thickness ratio a / h: (a) Uniform 
temperature; (b) Linear temperature; (c) Non-linear temperature (β = 3) 
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Fig. 3 Comparison of the variation of critical thermal buckling temperature Tcr of FG plate (a / h 
= 10 and n = 2) on elastic foundation (k1 = k2 = 10) versus a / b: (a) Uniform temperature; 
(b) Linear temperature; (c) Non-linear temperature (β = 3) 
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Fig. 4 Effect of power law index on the critical buckling temperature difference Tcr of FG plates 
with or without elastic foundations: (a) Uniform temperature; (b) Linear temperature; (c) 
Non-linear temperature (β = 3) 
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Fig. 5 Effect of elastic modulus of Winkler foundation k1 on critical buckling temperature of 
square FG plate (n = 0.5 and a / h = 10) under uniform (U), linear (L) and non-linear (NL) 
temperature load (β = 3) 
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Fig. 6 Effect of Pasternak shear modulus parameter k2 on critical buckling temperature of square 
FG plate (n = 0.5 and a / h = 10) under uniform (U), linear (L) and non-linear (NL) 
temperature load (β = 3) 

 
 
five. It can be concluded that the present theory is not only accurate but also relatively simple for 
use in predicting critical buckling temperature of FG plates. 

 
3.2 Parametric studies 
 
Parameter studies are carried out to investigate the effects of thermal loading types and 

variations of power of FGM, elastic foundation stiffnesses, thickness ratio, and aspect ratio on the 
critical buckling temperature of FG plates. 

In Fig. 4, the effect of power law index n on the critical buckling temperature Tcr of FG plate 
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Fig. 7 Effect of the side-to-thickness ratio for different kinds of thermal loads on the critical 
buckling temperature difference of square FG plate (n = 0.5, β = 3 and k1 = k2 = 10) 
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Fig. 8 Effect of the aspect ratio for different kinds of thermal loads on the critical buckling 
temperature difference of FG plate (n = 0.5, β = 3, a / h = 10 and k1 = k2 = 10) 

 
 
without elastic foundation or resting on Winkler’s or Pasternak’s elastic foundations is depicted 
using the present simple trigonometric theory. Results are presented for rectangular FG plate (a / b 
= 3 and a / h = 10) under uniform, linear and nonlinear (β = 3) temperature change across the 
thickness. It is noted that Tcr decreases rapidly to reach its minimum values and then increases 
slowly as the power law index n increases. However, for the plate without elastic foundation or 
resting on one-parameter Winkler’s foundation, the variation of the dimensionless critical buckling 
temperature Tcr is almost independent of the power law index n when this latter is higher than 4. It 
can be also seen that the presence of elastic foundations lead to an increase of the dimensionless 
critical buckling temperature Tcr. 

Fig. 5 shows the effect of Winkler modulus parameter on the critical buckling temperature Tcr 
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Fig. 9 Effect of the non-linearity parameter β on the critical buckling temperature difference of 
FG plate (n = 0.5 and k1 = k2 = 10) versus: (a) the side-to-thickness ratio a / h (a / b = 1); 
(b) the aspect ratio a / b (a / h = 10) 

 
 
of square FG plate with or without the shear foundation layer. Irrespective of the type of the 
temperature load, Tcr increases linearly as the Winkler modulus parameter k1 increases with the 
presence or the absence of the shear foundation layer. 

Fig. 6 shows the effect of Pasternak shear modulus parameter on the critical buckling 
temperature Tcr of square FG plate with the presence or the absence of the Winkler foundation 
layer. Whatever the type of temperature load is, Tcr increases linearly as the shear stiffness of 
elastic foundation k2 increases with the presence or the absence of Winkler foundation layer.  
From the results presented in Figs. 5 and 6, it can be observed that the results are more sensitive to 
the variation of k2 than that of k1 especially in the case of non-linear temperature change across the 
thickness. 
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The effects of the side-to-thickness ratio a / h and the aspect ratio a / b for different kinds of 
thermal loads on the critical buckling temperature difference are presented in Figs. 7 and 8, 
respectively. It is noticed that a decrement occurs for Tcr as a / h increases, whereas the opposite is 
the case a / b increases. Also, the critical buckling temperature difference of the FG plate under 
linear temperature distribution across the thickness is greater than the one under uniform 
temperature raise and less than the one under nonlinear temperature distribution across the 
thickness. 

The effect of the temperature exponent β on the critical buckling temperature Tcr of the FG 
plate is depicted in Fig. 9. It is seen that Tcr is very sensitive to the variation of β. Indeed, it is 
noticed from Fig. 9 that the Tcr increases with the increase of the non-linearity parameter β. 

 
 

4. Conclusions 
 
Thermal buckling behavior of simply supported FG plates under different types of thermal 

loading (uniform, linear and higher order temperature distribution through the thickness) and 
resting on a Winkler-Pasternak elastic foundation has been analyzed by using an efficient and 
simple trigonometric shear deformation theory. Unlike the conventional trigonometric shear 
deformation theory, the proposed trigonometric shear deformation theory contains only four 
unknowns. All comparison studies show that the critical buckling temperature obtained by the 
proposed theory with four unknowns is almost identical with those predicted by other shear 
deformation theories containing five unknowns. It can be concluded that the proposed theory is 
accurate and efficient in predicting the thermal buckling responses of FG plates resting on elastic 
foundation. The formulation lends itself particularly well in analysing FG plates under various 
boundary conditions (Sobhy 2013, 2014, Ait Amar Meziane et al. 2014, Heireche et al. 2008) 
which will be considered in the near future. 
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