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Abstract.   In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending 
analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in 
addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order 
shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory 
(SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law 
distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic 
ceramic material. Comparison studies are performed to check the validity of the present results from which it 
can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical 
behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the 
volume fraction exponent, and the loading conditions on the thermomechanical response of functionally 
graded sandwich plates is also investigated and discussed. 
 
Keywords:    sandwich plate; thermomechanical; analytical modelling; functionally graded material; 
stretching effect 
 
 
1. Introduction 

 
Sandwich structures are employed in a variety of engineering industries including aircraft, 

construction and transportation where strong, stiff and light structures are required. The 
advantages of these structures are that it provides high specific stiffness and strength for a 
low-weight consideration. Due to the mismatch of stiffness properties between the face sheets and 
the core, sandwich plates are susceptible to face sheet/core debonding, which is a major problem in 
sandwich construction, especially under impact loading. To increase the resistance of sandwich 

                                                 
Corresponding author, Professor, E-mail: tou_abdel@yahoo.com 



 
 
 
 
 
 

Ahmed Hamidi, Mohammed Sid Ahmed Houari, S.R. Mahmoud and Abdelouahed Tounsi 

plates to this type of failure, the concept of a Functionally Graded Material (FGM) is being 
actively explored in sandwich structure design. FGMs are achieved by gradually changing the 
composition of the constituent materials along one (or more) direction(s), usually in the thickness 
direction, to obtain smooth variation of material properties and optimum response to externally 
applied loading. Increased use of FGMs in various structural applications necessitates the 
development of accurate theoretical models to predict their response (Yaghoobi and Torabi 2013a, 
b, c). 

In the past, a variety of plate theories have been developed to investigate the functionally 
graded (FG) plate response. The Classical plate theory (CPT) neglects the transverse shear effects 
and gives acceptable results for the analysis of thin plates only. However, for moderately thick 
plates CPT underpredicts deflections and overpredicts buckling loads and natural frequencies. The 
first-order shear deformation theories (FSDTs) are based on Reissner (1945) and Mindlin (1951) 
accounts for the transverse shear deformation effect by means of a linear variation of in-plane 
displacements and stresses through the thickness of the plate, but requires a correction factor to 
satisfy the free transverse shear stress conditions on the top and bottom surfaces of the plate. 
Although the FSDT provides a sufficiently accurate description of response for thin to moderately 
thick plates, it is not convenient to use due to difficulty with determination of the correct value of 
shear correction factor (Menaa et al. 2012). In order to overcome the limitations of FSDT many 
higher-order shear deformation theories (HSDTs) were developed that involve higher order terms 
in Taylors expansions of the displacements in the thickness coordinate, notable among them are 
Reddy and Chin (1998), Matsunaga (2008, 2009), Benachour et al. (2011), Xiang and Kang 
(2013), Bachir Bouiadjra et al. (2013), Bakhti et al. (2013), Bouderba et al. 2013), Zenkour and 
Sobhy (2013), Sobhy (2013), Klouche Djedid et al. (2014), Yaghoobi and Fereidoon (2014) and 
Zidi et al. (2014). 

Studies related to FGM sandwich structures by employing HSDTs are few in numbers. Zenkour 
(2005a, b) studied in detail the bending response, buckling and free vibration of a simply 
supported FGM sandwich plate using the sinusoidal shear deformation plate theory. Anderson 
(2003) presented an analytical three dimensional elasticity solution method for a sandwich 
composite with a functionally graded core subjected to transverse loading by a rigid spherical 
indentor. An exact thermo elasticity solution for a two-dimensional sandwich structures with 
functionally graded coating was presented by Shodja et al. (2007). In Bhangale and Ganesan 
(2006), the buckling and vibration of a FGM sandwich beam having viscoelastic layer was studied 
in thermal environment by using a finite element formulation. Yaghoobi and Yaghoobi (2013) 
presented analytical solutions for the buckling of symmetric sandwich plates with FGM face 
sheets resting on an elastic foundation based on the first-order shear deformation plate theory and 
subjected to mechanical, thermal and also thermo-mechanical loads. In a number of recent articles 
- see (Bourada et al. 2012, Bachir Bouiadjra et al. 2012, Tounsi et al. 2013, Kettaf et al. 2013) - a 
new refined and robust plate theory for mechanical response and buckling of simply supported 
FGM sandwich plate with only four unknown functions has been developed. Recently, Ait Amar 
Meziane et al. (2014) extended this new refined plate theory to the vibration and buckling of 
exponentially graded sandwich plate resting on elastic foundations under various boundary 
conditions. 

Most of these above-mentioned theories neglect the thickness stretching effect (i.e., εz = 0) by 
assuming a constant transverse displacement through the thickness of the plate. This assumption is 
appropriate for thin or moderately thick FGM plates, but is inadequate for thick FGM plates 
(Carrera et al. 2011, Bessaim et al. 2013, Houari et al. 2013, Hebali et al. 2014, Fekrar et al. 2014, 
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Belabed et al. 2014, Mantari and Guedes Soares 2014). The effect of the thickness stretching in 
FG plates was studied by Carrera et al. (2011) and Bessaim et al. (2013), and it becomes 
significant in thick plates. Thus, it should be taken into consideration. 

This research work aims to present a simple quasi-3D theory with only five unknowns for 
thermomechanical bending analysis of FGM sandwich plates. The beauty of the present 
formulation is that, in addition to including the thickness stretching effect (εz ≠ 0), the 
displacement field is modeled with only 5 unknowns as the FSDT, instead of 6 as in the 
well-known conventional sinusoidal plate theory (SPT). The sandwich plate faces are assumed to 
have isotropic, two-constituent (metal-ceramic) material distribution through the thickness, and the 
modulus of elasticity, Poisson’s ratio, and thermal expansion coefficient of the faces are assumed 
to vary according to a power law distribution in terms of the volume fractions of the constituents. 
The core layer is still homogeneous and made of an isotropic ceramic material. The plate’s 
governing equations are obtained by using the principle of virtual work. Numerical results for 
deflections and stresses are investigated. The effects of temperature field on the dimensionless 
axial and transverse shear stresses of the FGM sandwich plate are studied. 
 
 
2. Theoretical formulation 

 
Consider a sandwich plate composed of three layers as shown in Fig. 1. Two FG face sheets are 

made from a mixture of a metal and a ceramic, while a core is made of an isotropic homogeneous 
material. The material properties of FG face sheets are assumed to vary continuously through the 
plate thickness by a power law distribution as 
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where P(n) is the effective material property of FGM of layer n like Young’s modulus E, Poisson’s 
ratio v, and thermal expansion coefficient α. P1 and P2 are the properties of the top and bottom 
faces of layer 1, respectively, and vice versa for layer 3 depending on the volume fraction V(n), (n = 
1, 2, 3) defined by 
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where p is the power law index (0 ≤ p ≤ +∞), which dictates the material variation profile through 
the thickness. 
 

2.1 Kinematics 
 

The displacement field of the present formulation is considered based on the following 
assumptions: (1) The transverse displacement is superposed into three parts, namely: bending, 
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Fig. 1 Geometry and coordinates of rectangular FGM sandwich plate 
 
 
shear and stretching components; (2) the axial displacement is divided into extension, bending and 
shear components; (3) the bending parts of the axial displacements are similar to those given by 
CPT; and (4) the shear parts of the axial displacements give rise to the sinusoidal variations of 
shear strains and hence to shear stresses through the thickness of the plate in such a way that the 
shear stresses vanish on the top and bottom surfaces of the plate. Based on these assumptions, the 
following displacement field relations can be obtained 
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where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
mid-plane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively; and the additional displacement φ accounts for the effect of normal 
stress (stretching effect). The shape functions f(z) and g(z) are given as follows 
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and 
 zfzg 1)(                                (5) 

 
The non-zero strains associated with the displacement field in Eq. (3) are 
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where 
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2.2 Constitutive relations 
 
The linear constitutive relations are given as 
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where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the stress and strain components, 
respectively. 
where ΔT = T – T0 in which T0 is the reference temperature. 

The applied temperature distribution T (x, y, z) through the thickness are assumed to be 
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Using the material properties defined in Eq. (1), stiffness coefficients, Qij, can be expressed as 
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2.4 Governing equations 
 
The governing equations of the present theory are derived using the principle of virtual work; 

the following expressions can be obtained 
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where Ω is the top surface and q is the distributed transverse load. 

Substituting Eqs. (3), (6) and (9) into Eq. (10) and integrating through the thickness of the plate, 
Eq. (10) can be rewritten as 
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where the stress resultants (N, Mb, Ms, Ss and Nz) are as follows 
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The governing equations of equilibrium can be derived from Eq. (11) by integrating the 

displacement gradients by parts and setting the coefficients δu0, δv0, δwb, δws and δφ to zero 
separately. Thus one can obtain the equilibrium equations associated with the present simple 
quasi-3D theory 
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By substituting Eq. (6) into Eq. (9) and the subsequent results into Eq. (12), the stress resultants 
are readily obtained as 
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Here the stiffness coefficients are defined as 
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and 
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The resultant efforts, NT

x = NT
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z induced by the thermal effect 

are expressed by 
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2.3 Governing equations in terms of displacements 
 
Introducing Eq. (15) into Eq. (13), the governing equations can be expressed in terms of 

displacements (δu0, δv0, δwb, δws, δφ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential operators 
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The components of the generalized force vector {p} are given by 
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3. Analytical solutions 
 

Consider a simply supported rectangular plate with length a and width b under transverse load 
q. To solve this problem, Navier presented the transverse mechanical and temperature loads q, T1, 
T2, and T3 in the form of a double trigonometric series as 
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where q0, t1, t2 and t3 are constants, λ = π / a, μ = π / b. 
Based on Navier solution method, we assume the following solutions form for displacements 

(u0, v0, wb, ws, φ) 
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where U, V, Wb, Ws and Φ unknown parameters must be determined. By considered Eqs. (18) and 
(22), the following equation is obtained 
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in which 
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and the components of the generalized force vector {P} = {P1, P2, P3, P4, P5}

t are expressed by 
 

 
 

  
  

 .   

, 

, 

, 

, 

3215

321
22

04

321
22

03

3212

3211

tRtLtLhP

tFtDtBhqP

tDtDtBhqP

tBtBtAP

tBtBtAP

TTaT

TsTsTs

TaTT

TaTT

TaTT



















                   (28) 

where 

      ,  ,  ,1 21
)(1

)(
  ,  ,

3

1

2)()(
2)(

)(

1

 








n

h

h

nn
n

n
TTT

n

n

dzzz
zE

DBA 


          (29a) 

 

      








3

1

)()(
2)(

)(

1

,  ,1)( 21
)(1

)(
  ,

n

h

h

nn
n

n
TaTa

n

n

dzzz
zE

DB 


           (29b) 

 

      ,)(  ,  ,1)( 21
)(1

)(
  ,  ,

3

1

)()(
2)(

)(

1

 








n

h

h

nn
n

n
TsTsTs

n

n

dzzzzf
zE

FDB 


       (29c) 

244



 
 
 
 
 
 

A sinusoidal plate theory with 5-unknowns and stretching effect 

      , )(  ,  ,1 )( 21
)(1

)(
  ,  ,

3

1

)()(
2)(

)(

1

dzzzz 
zE

RLL
n

h

h

nn
n

n
TT

a
T g

n

n




 








        (29d) 

 

with hzz / , hzfzf /)()(   and 







h

z
z

 
sin

1
)(




. 

 
 

4. Numerical results and discussion 
 
To assess the performance of present theory under mechanical and thermal loads, simply 

supported functionally graded sandwich plates are considered with following material properties: 
 

 Metal (Titanium, Ti-6Al-4V): P2 = 66.2 GPa; v2 = 1 / 3; α2 = 10.3 (10-6 / K). 
 Ceramic (Zirconia, ZrO2): P1 = 117.0 GPa; v1 = 1 / 3; α1 = 7.11 (10-6 / K). 
 
The results are presented in the following normalized forms for displacements and stresses 

according to Saidi et al. (2013) for the purpose of presentation in this article. 
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where the reference values are taken as E0 = 1 GPa and α0 = 7.11 10-6 / K. 

It is assumed, unless otherwise stated, that a / h = 10, a / b = 1, t1 = 0, and q0 = t2 = t3 = 100. 
The shear correction factor of FSDT is fixed to be K = 5 /6. 

Inspection of Tables 1-4 reveals that the present theory with only five unknowns provides 
similar results to those predicted by the hyperbolic plate theory (HPT) proposed by Saidi et al. 
(2013) and the sinusoidal plate theory (SPT) developed by Zenkour and Alghamdi (2008) with six 
unknowns (εz ≠ 0). This proves that the same accuracy is achievable with the present theory using 
 
 
Table 1 Comparison of dimensionless center deflections w̅ for different FG sandwich square plates (q0 = t1 = 

t3 = 0, t2 = 100 and a / h = 10) 

p Theory 
w̅ 

tFGM / h = 1 tFGM / h = 2 / 3 tFGM / h = 1 / 2 tFGM / h = 4 / 5

0 

Present (εz ≠ 0) 0.461634 0.461634 0.461634 0.461634 

Ref (a) (εz ≠ 0) 0.449863 0.449863 0.449863 0.449863 

Ref (b) (εz ≠ 0) 0.461634 0.461634 0.461634 0.461634 

Ref (b) (εz = 0) 0.480262 0.480262 0.480262 0.480262 
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Table 1 Continued 

p Theory 
w̅ 

tFGM / h = 1 tFGM / h = 2 / 3 tFGM / h = 1 / 2 tFGM / h = 4 / 5

1 

Present (εz ≠ 0) 0.614565 0.586124 0.563416 0.599933 

Ref (a) (εz ≠ 0) 0.594840 0.565276 0.542436 0.579538 

Ref (b) (εz ≠ 0) 0.614565 0.586124 0.563416 0.599933 

Ref (b) (εz = 0) 0.636916 0.606292 0.582342 0.621098 

2 

Present (εz ≠ 0) 0.647135 0.618046 0.590491 0.633340 

Ref (a) (εz ≠ 0) 0.627934 0.596416 0.567938 0.612832 

Ref (b) (εz ≠ 0) 0.647135 0.618046 0.590491 0.633340 

Ref (b) (εz = 0) 0.671503 0.639361 0.609875 0.656142 

3 

Present (εz ≠ 0) 0.658153 0.631600 0.602744 0.646475 

Ref (a) (εz ≠ 0) 0.639690 0.610125 0.579769 0.626505 

Ref (b) (εz ≠ 0) 0.658153 0.631600 0.602744 0.646475 

Ref (b) (εz = 0) 0.683572 0.653671 0.622467 0.670275 

4 

Present (εz ≠ 0) 0.662811 0.638705 0.609560 0.652890 

Ref (a) (εz ≠ 0) 0.644833 0.617502 0.586469 0.633395 

Ref (b) (εz ≠ 0) 0.662811 0.638705 0.609560 0.652890 

Ref (b) (εz = 0) 0.688803 0.661291 0.629533 0.677321 

5 

Present (εz ≠ 0) 0.665096 0.642948 0.613842 0.656490 

Ref (a) (εz ≠ 0) 0.647421 0.621990 0.590728 0.637353 

Ref (b) (εz ≠ 0) 0.665096 0.642948 0.613842 0.656490 

Ref (b) (εz = 0) 0.691420 0.665898 0.634003 0.681343 

 
Table 2 Comparison of dimensionless center deflections w̅ for different FG sandwich square plates 

p Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1

0 

Present (εz ≠ 0) 0.748424 0.748424 0.748424 0.748424 0.748424 0.748424 

Ref (a) (εz ≠ 0) 0.771340 0.771340 0.771340 0.771340 0.771340 0.771340 

SSDT(a) (εz = 0) 0.796783 0.796783 0.796783 0.796783 0.796783 0.796783 

TSDT(a) (εz = 0) 0.808168 0.808168 0.808168 0.808168 0.808168 0.808168 

FSDT(a) (εz = 0) 0.895735 0.895735 0.895735 0.895735 0.895735 0.895735 

CPT(a) (εz = 0) 0.457873 0.457873 0.457873 0.457873 0.457873 0.457873 

1 

Present (εz ≠ 0) 0.748424 0.825607 0.891560 0.942936 0.979382 1.003408 

Ref (a) (εz ≠ 0) 0.771340 0.841759 0.906271 0.959745 0.999391 1.026070 

SSDT(a) (εz = 0) 0.796783 0.873745 0.941636 0.996334 1.036213 1.062840 

TSDT(a) (εz = 0) 0.808168 0.886067 0.954808 1.010231 1.050672 1.077690 

FSDT(a) (εz = 0) 0.895735 0.979641 1.054630 1.115684 1.160568 1.190728 

CPT(a) (εz = 0) 0.457873 0.501163 0.539886 0.571450 0.594688 0.610331 
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Table 2 Continued 

p Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1

2 

Present (εz ≠ 0) 0.748424 0.845883 0.930539 0.994421 1.035346 1.057609 

Ref (a) (εz ≠ 0) 0.771340 0.860395 0.943946 1.011993 1.058388 1.084456 

SSDT(a) (εz = 0) 0.796783 0.894003 0.981434 1.050237 1.096095 1.121608 

TSDT(a) (εz = 0) 0.808168 0.906529 0.995042 1.064791 1.111352 1.137297 

FSDT(a) (εz = 0) 0.895735 1.001204 1.097973 1.175402 1.227765 1.257304 

CPT(a) (εz = 0) 0.457873 0.512431 0.562536 0.602673 0.629859 0.645223 

3 

Present (εz ≠ 0) 0.748424 0.855272 0.948423 1.016599 1.056867 1.075460 

Ref (a) (εz ≠ 0) 0.771340 0.869136 0.961579 1.035332 1.082231 1.104836 

SSDT(a) (εz = 0) 0.796783 0.903467 0.999831 1.073875 1.119794 1.141655 

TSDT(a) (εz = 0) 0.808168 0.916083 1.013647 1.088747 1.135420 1.157693 

FSDT(a) (εz = 0) 0.895735 1.011279 1.118224 1.202080 1.255041 1.280741 

CPT(a) (εz = 0) 0.457873 0.517716 0.573152 0.616662 0.644176 0.657539 

4 

Present (εz ≠ 0) 0.748424 0.902511 0.958901 1.028393 1.067181 1.082846 

Ref (a) (εz ≠ 0) 0.771340 0.874209 0.971671 1.048073 1.094108 1.113637 

SSDT(a) (εz = 0) 0.796783 0.908934 1.010269 1.086624 1.131429 1.150192 

TSDT(a) (εz = 0) 0.808168 0.921602 1.024208 1.101684 1.147260 1.166403 

FSDT(a) (εz = 0) 0.895735 1.017115 1.129824 1.216678 1.268689 1.290961 

CPT(a) (εz = 0) 0.457873 0.520783 0.579240 0.624324 0.651345 0.662909 

5 

Present (εz ≠ 0) 0.748424 0.864347 0.943749 1.034550 1.072864 1.086419 

Ref (a) (εz ≠ 0) 0.771340 0.877515 0.978164 1.055935 1.100868 1.118027 

SSDT(a) (εz = 0) 0.796783 0.912488 1.016938 1.094427 1.137993 1.154412 

TSDT(a) (εz = 0) 0.808168 0.925190 1.030958 1.109609 1.153952 1.170720 

FSDT(a) (εz = 0) 0.895735 1.020919 1.137289 1.225706 1.276497 1.296101 

CPT(a) (εz = 0) 0.457873 0.522783 0.583160 0.629064 0.655445 0.665606 

 
 
a lower number of unknowns than other theories, and clearly highlights how the present theory is 
simpler and more easily deployed. 

Table 1 presents an assessment of the dimensionless center deflection w̅ for an FGM sandwich 
plate subjected to a linear temperature distribution within the thickness. The deflections are 
analyzed for p = 0, 1, 2, 3, 4, and 5 and different types of sandwich plates. Table 1 shows that the 
effect of the thickness stretching is to reduce the deflection. 

Table 2 compares the deflections of different types of FGM rectangular sandwich plates for p = 
0, 1, 2, 3, 4, and 5. It can be concluded that the inclusion of thickness stretching effect serves to 
make the plate stiffer, and hence, leads to a reduction of deflection. However, the inclusion of 
shear deformation effect makes the plate more flexible and consequently leads to increase the 
deflection. 

Tables 3 and 4 document, respectively, the values of axial stress x  and transverse shear stress 
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Table 3 Comparison of dimensionless axial stresses x  for different FG sandwich square plates 

p Theory6 tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1

0 

Present (εz ≠ 0) -2.528819 -2.528819 -2.528819 -2.528819 -2.528819 -2.528819

SSDT (εz = 0) -2.388919 -2.388919 -2.388919 -2.388919 -2.388919 -2.388919

TSDT (εz = 0) -2.461177 -2.461177 -2.461177 -2.461177 -2.461177 -2.461177

FSDT (εz = 0) -3.597007 -3.597007 -3.597007 -3.597007 -3.597007 -3.597007

CPT -1.706393 -1.706393 -1.706393 -1.706393 -1.706393 -1.706393

1 

Present (εz ≠ 0) -2.528819 -3.913321 -3.489857 -3.138470 -2.876846 -2.700416

SSDT (εz = 0) -2.388919 -3.333300 -3.001265 -2.733086 -2.537374 -2.406806

TSDT (εz = 0) -2.461177 -3.412724 -3.076466 -2.804750 -2.606343 -2.473903

FSDT (εz = 0) -3.597007 -4.504051 -4.136892 -3.838047 -3.618476 -3.471099

CPT -1.706393 -2.193219 -2.003463 -1.848793 -1.734921 -1.658265

2 

Present (εz ≠ 0) -2.528819 -3.792865 -3.245326 -2.797887 -2.490378 -2.316178

SSDT (εz = 0) -2.388919 -3.234499 -2.806645 -2.469045 -2.243809 -2.118730

TSDT (εz = 0) -2.461177 -3.312889 -2.879670 -2.537489 -2.308903 -2.181780

FSDT (εz = 0) -3.597007 -4.398484 -3.924721 -3.545789 -3.289757 -3.145662

CPT -1.706393 -2.137999 -1.892474 -1.695789 -1.562571 -1.487285

3 

Present (εz ≠ 0) -2.528819 -3.736478 -3.130873 -2.645068 -2.332424 -2.180056

SSDT (εz = 0) -2.388919 -3.188312 -2.716593 -2.353122 -2.127496 -2.020425

TSDT (εz = 0) -2.461177 -3.266245 -2.788595 -2.420027 -2.190823 -2.081815

FSDT (εz = 0) -3.597007 -4.349165 -3.825600 -3.415261 -3.156414 -3.031283

CPT -1.706393 -2.112102 -1.840454 -1.627241 -1.492417 -1.426935

4 

Present (εz ≠ 0) -2.528819 -3.703803 -3.065266 -2.561174 -2.252973 -2.120478

SSDT (εz = 0) -2.388919 -3.161620 -2.665468 -2.290552 -2.070361 -1.978602

TSDT (εz = 0) -2.461177 -3.239292 -2.736867 -2.356554 -2.132710 -2.039172

FSDT (εz = 0) -3.597007 -4.320597 -3.768831 -3.343853 -3.089733 -2.981507

CPT -1.706393 -2.097076 -1.810621 -1.589696 -1.457288 -1.400620

5 

Present (εz ≠ 0) -2.528819 -3.682505 -3.023018 -2.509154 -2.207341 -2.090458

SSDT (εz = 0) -2.388919 -3.144264 -2.632792 -2.252244 -2.038118 -1.957968

TSDT (εz = 0) -2.461177 -3.221769 -2.703791 -2.317655 -2.099863 -2.018086

FSDT (εz = 0) -3.597007 -4.301976 -3.732298 -3.299697 -3.051612 -2.956534

CPT -1.706393 -2.087272 -1.791409 -1.566468 -1.437193 -1.387402

 
 

xz  for p = 0, 1, 2, 3, 4, and 5 and different types of sandwich plates. In addition, the results of 
different higher order shear deformation theories (HSDTs) such as sinusoidal shear deformation 
theory (SSDT), third shear deformation theory (TSDT) and first shear deformation theory (FSDT) 
are also provided to show the importance of including the thickness-stretching effect. The HSDTs 
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solutions are computed based on a nonlinear variation of in-plane displacements and a constant 
transverse displacement across the thickness (i.e., thickness-stretching effect is omitted, εz = 0). 

Fig. 2 shows the effect of the aspect ratio a / b on the dimensionless center deflection w̅ for FG 
sandwich plate. The effect of the mechanical and thermal loads is taken into consideration. It is 
found that the aspect ratio effect is more pronounced on the thermomechanical bending deflection 
w̅ (q0 = t2 = t3 = 100 and) of the FG sandwich plate. 

In Figs. 3 and 4, we have plotted the through-the-thickness distributions of the dimensionless 
axial stress x  and the transverse shear stress xz  of the FG sandwich plate for p = 2 and tFGM = 
0.6h, respectively. These figures show the great influence played by the different thermal and 
bending loads on the axial and transverse shear stresses. 

 
 
Table 4 Comparison of dimensionless transverse shear stresses xz  for different FG sandwich square plates 

p Theory tFGM / h = 0 tFGM / h = 0.2 tFGM / h = 0.4 tFGM / h = 0.6 tFGM / h = 0.8 tFGM / h = 1

0 

Present (εz ≠ 0) 0.193097 0.193097 0.193097 0.193097 0.193097 0.193097 

SSDT (εz = 0) 0.171604 0.171604 0.171604 0.171604 0.171604 0.171604 

TSDT (εz = 0) 0.174481 0.174481 0.174481 0.174481 0.174481 0.174481 

FSDT (εz = 0) 0.173624 0.173624 0.173624 0.173624 0.173624 0.173624 

1 

Present (εz ≠ 0) 0.193097 0.313620 0.349534 0.341568 0.324311 0.317474 

SSDT (εz = 0) 0.171604 0.271618 0.300347 0.293865 0.280890 0.277019 

TSDT (εz = 0) 0.174481 0.264677 0.289538 0.284236 0.274133 0.272347 

FSDT (εz = 0) 0.173624 0.181504 0.190134 0.199626 0.210115 0.221768 

2 

Present (εz ≠ 0) 0.193097 0.338091 0.370811 0.346355 0.315647 0.308622 

SSDT (εz = 0) 0.171604 0.292205 0.317892 0.298078 0.275130 0.272583 

TSDT (εz = 0) 0.174481 0.282950 0.304910 0.288355 0.270427 0.270952 

FSDT (εz = 0) 0.173624 0.184293 0.196359 0.210115 0.225945 0.244354 

3 

Present (εz ≠ 0) 0.193097 0.348104 0.376236 0.341227 0.304511 0.3023266

SSDT (εz = 0) 0.171604 0.300600 0.322239 0.294047 0.267073 0.269608 

TSDT (εz = 0) 0.174481 0.290349 0.308697 0.285154 0.264327 0.270110 

FSDT (εz = 0) 0.173624 0.185719 0.199626 0.215785 0.234789 0.257465 

4 

Present (εz ≠ 0) 0.193097 0.353399 0.377769 0.336004 0.296906 0.300779 

SSDT (εz = 0) 0.171604 0.305016 0.323396 0.289951 0.261729 0.270017 

TSDT (εz = 0) 0.174481 0.294226 0.309711 0.281837 0.260366 0.271755 

FSDT (εz = 0) 0.173624 0.186586 0.201639 0.219335 0.240436 0.266029 

5 

Present (εz ≠ 0) 0.193097 0.356625 0.378076 0.331797 0.292004 0.301729 

SSDT (εz = 0) 0.171604 0.307694 0.323573 0.286687 0.258433 0.272071 

TSDT (εz = 0) 0.174481 0.296571 0.309879 0.279200 0.258029 0.274512 

FSDT (εz = 0) 0.173624 0.187168 0.203004 0.221768 0.244354 0.272062 
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Fig. 2 Effect of mechanical and temperature loads on the dimensionless center deflection of FG 
sandwich plate versus a / b (tFGM = 0.6h, p = 2) 
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Fig. 3 Effect of mechanical and temperature loads on the dimensionless axial stress of FG 
sandwich plate (tFGM = 0.6h, p = 2) 
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Fig. 4 Effect of mechanical and temperature loads on the dimensionless transverse shear stress of 
FG andwich plate (tFGM = 0.6h, p = 2) 

 
 
5. Conclusions 

 
A new 5-unknowns quasi-3D sinusoidal plate theory with stretching effect for the 

thermomechanical bending of FG sandwich plates is presented in this work. The main assumption 
of this formulation is the decomposition of the transverse displacement into bending and shears 
components. This theory is free of the zero in-plane resultant forces assumption used in 
developing the other four variables shear deformation theories and hence have the potential to be 
used for modeling of the nonlinear FG plate problems. Results demonstrate that the proposed 
theory is able to provide very accurate results compared with the CPT, FSDT and other HSDTs 
with higher number of unknowns and so deserve special attention and offer potential for future 
research. The main point that can be outlined from the present study is that the thickness stretching 
effect is more pronounced for thick plates and it needs to be taken in consideration in the 
modeling. 
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