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Abstract. In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending
analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in
addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order
shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory
(SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law
distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic
ceramic material. Comparison studies are performed to check the validity of the present results from which it
can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical
behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the
volume fraction exponent, and the loading conditions on the thermomechanical response of functionally
graded sandwich plates is also investigated and discussed.

Keywords: sandwich plate; thermomechanical; analytical modelling; functionally graded material;
stretching effect

1. Introduction

Sandwich structures are employed in a variety of engineering industries including aircraft,
construction and transportation where strong, stiff and light structures are required. The
advantages of these structures are that it provides high specific stiffness and strength for a
low-weight consideration. Due to the mismatch of stiffness properties between the face sheets and
the core, sandwich plates are susceptible to face sheet/core debonding, which is a major problem in
sandwich construction, especially under impact loading. To increase the resistance of sandwich
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plates to this type of failure, the concept of a Functionally Graded Material (FGM) is being
actively explored in sandwich structure design. FGMs are achieved by gradually changing the
composition of the constituent materials along one (or more) direction(s), usually in the thickness
direction, to obtain smooth variation of material properties and optimum response to externally
applied loading. Increased use of FGMs in various structural applications necessitates the
development of accurate theoretical models to predict their response (Yaghoobi and Torabi 2013a,
b, ¢).

In the past, a variety of plate theories have been developed to investigate the functionally
graded (FG) plate response. The Classical plate theory (CPT) neglects the transverse shear effects
and gives acceptable results for the analysis of thin plates only. However, for moderately thick
plates CPT underpredicts deflections and overpredicts buckling loads and natural frequencies. The
first-order shear deformation theories (FSDTs) are based on Reissner (1945) and Mindlin (1951)
accounts for the transverse shear deformation effect by means of a linear variation of in-plane
displacements and stresses through the thickness of the plate, but requires a correction factor to
satisfy the free transverse shear stress conditions on the top and bottom surfaces of the plate.
Although the FSDT provides a sufficiently accurate description of response for thin to moderately
thick plates, it is not convenient to use due to difficulty with determination of the correct value of
shear correction factor (Menaa et al. 2012). In order to overcome the limitations of FSDT many
higher-order shear deformation theories (HSDTs) were developed that involve higher order terms
in Taylors expansions of the displacements in the thickness coordinate, notable among them are
Reddy and Chin (1998), Matsunaga (2008, 2009), Benachour et al. (2011), Xiang and Kang
(2013), Bachir Bouiadjra et al. (2013), Bakhti et al. (2013), Bouderba et al. 2013), Zenkour and
Sobhy (2013), Sobhy (2013), Klouche Djedid et al. (2014), Yaghoobi and Fereidoon (2014) and
Zidi et al. (2014).

Studies related to FGM sandwich structures by employing HSDTs are few in numbers. Zenkour
(2005a, b) studied in detail the bending response, buckling and free vibration of a simply
supported FGM sandwich plate using the sinusoidal shear deformation plate theory. Anderson
(2003) presented an analytical three dimensional elasticity solution method for a sandwich
composite with a functionally graded core subjected to transverse loading by a rigid spherical
indentor. An exact thermo elasticity solution for a two-dimensional sandwich structures with
functionally graded coating was presented by Shodja ef al. (2007). In Bhangale and Ganesan
(2006), the buckling and vibration of a FGM sandwich beam having viscoelastic layer was studied
in thermal environment by using a finite element formulation. Yaghoobi and Yaghoobi (2013)
presented analytical solutions for the buckling of symmetric sandwich plates with FGM face
sheets resting on an elastic foundation based on the first-order shear deformation plate theory and
subjected to mechanical, thermal and also thermo-mechanical loads. In a number of recent articles
- see (Bourada et al. 2012, Bachir Bouiadjra et al. 2012, Tounsi et al. 2013, Kettaf ef al. 2013) - a
new refined and robust plate theory for mechanical response and buckling of simply supported
FGM sandwich plate with only four unknown functions has been developed. Recently, Ait Amar
Meziane et al. (2014) extended this new refined plate theory to the vibration and buckling of
exponentially graded sandwich plate resting on elastic foundations under various boundary
conditions.

Most of these above-mentioned theories neglect the thickness stretching effect (i.e., &, = 0) by
assuming a constant transverse displacement through the thickness of the plate. This assumption is
appropriate for thin or moderately thick FGM plates, but is inadequate for thick FGM plates
(Carrera et al. 2011, Bessaim et al. 2013, Houari et al. 2013, Hebali et al. 2014, Fekrar et al. 2014,
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Belabed ef al. 2014, Mantari and Guedes Soares 2014). The effect of the thickness stretching in
FG plates was studied by Carrera et al. (2011) and Bessaim et al. (2013), and it becomes
significant in thick plates. Thus, it should be taken into consideration.

This research work aims to present a simple quasi-3D theory with only five unknowns for
thermomechanical bending analysis of FGM sandwich plates. The beauty of the present
formulation is that, in addition to including the thickness stretching effect (¢, # 0), the
displacement field is modeled with only 5 unknowns as the FSDT, instead of 6 as in the
well-known conventional sinusoidal plate theory (SPT). The sandwich plate faces are assumed to
have isotropic, two-constituent (metal-ceramic) material distribution through the thickness, and the
modulus of elasticity, Poisson’s ratio, and thermal expansion coefficient of the faces are assumed
to vary according to a power law distribution in terms of the volume fractions of the constituents.
The core layer is still homogeneous and made of an isotropic ceramic material. The plate’s
governing equations are obtained by using the principle of virtual work. Numerical results for
deflections and stresses are investigated. The effects of temperature field on the dimensionless
axial and transverse shear stresses of the FGM sandwich plate are studied.

2. Theoretical formulation

Consider a sandwich plate composed of three layers as shown in Fig. 1. Two FG face sheets are
made from a mixture of a metal and a ceramic, while a core is made of an isotropic homogeneous
material. The material properties of FG face sheets are assumed to vary continuously through the
plate thickness by a power law distribution as

PP (z)=B+(R-R)V" (1)

where P is the effective material property of FGM of layer n like Young’s modulus E, Poisson’s
ratio v, and thermal expansion coefficient a. P, and P, are the properties of the top and bottom
faces of layer 1, respectively, and vice versa for layer 3 depending on the volume fraction ", (n =
1, 2, 3) defined by

z—h )
yW=| =2 for ze[hy,h]
h —h,

y@® =1 for ze[h,h,] )

where p is the power law index (0 < p < +00), which dictates the material variation profile through
the thickness.

2.1 Kinematics

The displacement field of the present formulation is considered based on the following
assumptions: (1) The transverse displacement is superposed into three parts, namely: bending,
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Fig. 1 Geometry and coordinates of rectangular FGM sandwich plate

shear and stretching components; (2) the axial displacement is divided into extension, bending and
shear components; (3) the bending parts of the axial displacements are similar to those given by
CPT; and (4) the shear parts of the axial displacements give rise to the sinusoidal variations of
shear strains and hence to shear stresses through the thickness of the plate in such a way that the
shear stresses vanish on the top and bottom surfaces of the plate. Based on these assumptions, the
following displacement field relations can be obtained

o,

ow,
P AC)

u(x,y,z,t) =uy(x,y,t) -z
ow,
oy
w(x,»,2,8) = w, (x, ,0) + w (X, y,1) + g(2) p(x, y,1)

V(X ,z.0) :vo(x,y,t)—zaaﬁ—f(z) 3)
y

where uy and vy denote the displacements along the x and y coordinate directions of a point on the
mid-plane of the plate; w, and w; are the bending and shear components of the transverse
displacement, respectively; and the additional displacement ¢ accounts for the effect of normal
stress (stretching effect). The shape functions f(z) and g(z) are given as follows

f(2)=z- ﬁsin[ﬂJ 4)
V4 h
and

g(2)=1-f'(2) Q)

The non-zero strains associated with the displacement field in Eq. (3) are
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e | & k; k;
g, (=180 t+2{ k) t+ SRk 1 {7 } g(z){yﬂ}, £ =g'()e, (6)
0 b s Xz Xz
yxy 7/xy kxy kx)/
where
u, _62wb _ﬁzws
“ 5 b aaz)ii - aaz)i 7 %“LZ_(D
0| _ 0 b | _ _ b s | _ s z | 'y Y 0 _
g = — kb= Sk b= L= , & =0
> Ox i » |5 oy’ {732} ow, . 0¢ 77
Vi %_,_% v B o*w, v B *w, ox  Ox
o Ox Ox0y Ox0y
and
d z
dz
2.2 Constitutive relations
The linear constitutive relations are given as
Oy _Qu 0,05 0 0 0 ] &, —aAT
g, 0,0,0; 0 0 0 ||&,—aAT
o, _ 030,05 0 0 0 ||s.—aAT )
0o 0 09, 0 O Yy

T
sz 0 O 0 0 QSS O 7 Xz
Txy L 0 0 0 0 0 Q66 i 7 xy

where (0y, 0, 0., 7)., T, Tyy) and (&y, €, &, Pyz Pu Vi) are the stress and strain components,
respectively.
where AT =T — T, in which 7 is the reference temperature.

The applied temperature distribution 7 (x, y, z) through the thickness are assumed to be

T(x,y,2)=T(x,y)+— T(x y)+—s1n( P JT (x,¥) (10)
Using the material properties defined in Eq. (1), stiffness coefficients, O;;, can be expressed as
E (Z)

01=0,=05= _,2 (11a)

Q12:Q13 Q23 VE‘(/Z)a (11b)
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E(2)

Fm) (1o)

Q44 = st Q66

2.4 Governing equations

The governing equations of the present theory are derived using the principle of virtual work;
the following expressions can be obtained

h/2
.[[O'x§ &, +0,06,+0,06,+7,0),+7,07,, +7,0 7xz]dQ dz — jq5 wdQQ=0 (12)
Q

-h/2Q
where Q is the top surface and ¢ is the distributed transverse load.

Substituting Egs. (3), (6) and (9) into Eq. (10) and integrating through the thickness of the plate,
Eq. (10) can be rewritten as

SU= jNa‘g NS+ NS+ NSy + MGk + MG KD + ML S KD,

(13)
FMISK + MIS K + ML K, + 558 7% + 5587 — g8 wld =0
where the stress resultants (N, M’, M, S* and N.) are as follows
3 hy
(N[,M;’,Sb z J. 1 z f adz z x,y,xy)
n=1 ey
3 h,
= z Irig(z)dz, (i = xz, yz) (14)

The governing equations of equilibrium can be derived from Eq. (11) by integrating the
displacement gradients by parts and setting the coefficients duy, ovy, dw,, dw, and dp to zero
separately. Thus one can obtain the equilibrium equations associated with the present simple
quasi-3D theory

ON
Suy: N, +—2=0
ox oy
ON, ON,
ovy: ——+——=0
ox oy (15)
P oPMYL, M)
ow, 8]\{ +2 = s=+q=0
Ox Ox0y oy
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T
Me _9°MS, O’M) @S’ 0SS
Sw,: a]\/£X+2 a8 2y+aS"Z+ = 1+g=0 (15)
) Ox Ox0y oy Ox Oy
s oS!
So: aS—"ZJr—yZ—szO
Ox oy

By substituting Eq. (6) into Eq. (9) and the subsequent results into Eq. (12), the stress resultants
are readily obtained as

N A B B |[¢ L NT
M=\ B D D' {k"}+| L |e? =M}, S=A4%, (16a)
MS BS DS HS kS R MST
N, =R+ L(e0+ &)+ 1k + &)+ R(k: + &2)- N7, (16b)
where
N={NWNLN L M=t it b =, (172)
NTZ{NXT’NT }’ MO = {/V,bT MbT }, Mo = {Msr MsT O} (17b)
e={eel 0 K=K, R =Kk (17c)
All AlZ 0 Bll BIZ O Dll D12 0
A=|4,4, 0 |, B=|B,By, 0| D=|D,D,, 0 | (17d)
0 0 A 0 0 B 0 0 D
Blgl sz 0 Dlgl Dlsz O Hlvl Hlvz O
BS=|ByB) 0| D'=|\D,D5 0| H' =|H,HS, 0| (17¢)
0 0 B, 0 0 D 0 0 H.
L v
_As 0 La 3 h” V( n)
S={s0.80}) r={roy.) 4= } - o g'(2)dz, (176)
’ ’ |0 4] | R ZI e
R* g'(2)
Here the stiffness coefficients are defined as
All Bll Dll Bfl Dfl Hfl 3 h, 1
Ay By Dy By Dy Hy (=) [0 (22 @z S @2 @) v s (18a)
Ags Bgs Des Bés() Dgs H 6S6 "= e

2
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and
S N s N S S n E
(Azz,Bzz,D22,322,D22,H22)=(AH,B“,D“,B“,D“,Hu), 1(1)21_(12/)2 (18b)
L E@)
S48 2
Ay = 455 nz:,hj 2(1+V)[g(2)] dz, (18c)

The resultant efforts, N” = N 5, MT =M }bT, MT=Mm jT and N7 induced by the thermal effect
are expressed by

N 1
M7 3 My E™
O O [ <L (V) LS R 3 (19)
M S, =0 /()
NI g'(z)

2.3 Governing equations in terms of displacements

Introducing Eq. (15) into Eq. (13), the governing equations can be expressed in terms of
displacements (duy, dvy, Owyp, oWy, 0p) and the appropriate equations take the form
Ayydyug + Aty + (A12 + Age )dlzvo - Byyd,yw,

. ) ) (20a)
- (Blz +2Bg )dlzzwb - (Biz +2Bg )dlzst - B)\d,,w, + Ld\p = p,,

Ayydyyvy + Agdy v + (Alz + Age )du”o = Byyd,5ow,

. ) (20b)
- (BIZ +2Bg )dllzwb - (BIZ +2Bg )dnzws — Byydyy,w, + Ldyp = p,,

By d,uy + (Blz +2Bg )d122u0 + (BIZ +2Bg )d112V0
+ Byyd vy = Dyydy 1wy, — 2(D12 +2Dgq )dl 122Wp = Doyl ypna Wy, (20c)
= Di\dyy W, — Z(Dlsz +2D; )dl 122Wy = D3y yy Wy + L (dl 1P+ dzz(”) =P3>

N N S S N S S
B\du + (Blz +2Bg )dlzzuo + (B12 +2Bg )dnzvo + Byd vy — Didyy Wy,
N s N N
- 2(D12 +2Dgq )d1122wb = Dyydyypyw, — Hyydy W,

S S S S S (20d)
- 2(H12 +2H g6 )y 100w, — Hoydypna Wy + Ay Wy + Assd oy, w
+ R(dl P+ dzz(”)"‘ Ayd, 0+ A55dy0 = py,
L(dluo + dzvo)_La (anb + dzzwb)+ (R — Ay )dllws + (R — Ass )d2wa (20¢)

+R 9~ Ayd, 10— A5sdy0 = ps,

where d;;, d;; and d;,, are the following differential operators
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2 3 4
i 0 7dij1= o ’dijlm 26—, dizi, (i,j,l,m=1,2). (21)
Ox;0x; Ox,0x ;0x, Ox,;0x ;0X,0X,, Ox;

1

The components of the generalized force vector {p} are given by

oNT ON;
b= o 5 P, = 8)/ 5
o*MT oM o*M:T oM’ (22)
p3=9- a2 - 62 s Py =9~ 62 - ayz B
Ps = NzTa Ps = NzT

3. Analytical solutions

Consider a simply supported rectangular plate with length ¢ and width b under transverse load
q. To solve this problem, Navier presented the transverse mechanical and temperature loads ¢, 77,
T», and T3 in the form of a double trigonometric series as

q 9
Ll |4 . .
= sin(A x)sin(u y) (23)
L |t
L] |4

where qo, t1, t; and t; are constants, L=n/a, u =7/ b.
Based on Navier solution method, we assume the following solutions form for displacements
(u()a Vo, Wp, Ws, (0)
u, U cos(A x)sin(u y)
Vo V' sin(A x)cos(u y)
wy, ¢ =1 W, sin(A4 x)sin(u y) (24)
w W, sin(A x)sin(u y)
@ @ sin(A x)sin(u )

where U, V, W,, W, and ® unknown parameters must be determined. By considered Egs. (18) and
(22), the following equation is obtained

[Chaj=1{P}, (25)
where {A} = { U, V, W,, W, ®}" and [C] is the symmetric matrix expressed by
_an Ay Q13 Ay als_

Qyy Ay Aoz Ayy Ays
[C]= i3 Aoz 33 A3y A3s | (26)

Ay Qpy Q34 Ayy Ays

| Q15 dys Q35 Qys5 dss |



244 Ahmed Hamidi, Mohammed Sid Ahmed Houari, S.R. Mahmoud and Abdelouahed Tounsi

in which
a, = _(An;tz + Aa()/uz)
ay, = =2 g1 (A + Agg)
ayy = A[B\ 2 +(By, +2Bg) 1°]
a,=A [Blsl/lz +(B), +2Bg) ﬂz]
a,s =LA
Ay = _(Aﬁéflz + Azzﬂz)
Gy = (B, +2Bgs) A + By i’
ayy = 1[(By; +2B) X+ Bgzﬂz]
ays =L
a3, =—(Dy\ 2t +2(Dy, +2Dgg) 224 + Dyt
34 = _(Dlslf14 +2(D}y +2Di) A + Di, 4)
ass ==L (/12 + ,uz)
Agq = _(H151/14 +2(Hy, + 2Hg ) P p” + Hyppt* + 4557 + Aj4/u2)
ags = (4372 + A2 + R + 112
ss = —(AMZ + Asspl” + Ra)

27)

and the components of the generalized force vector {P} = {P,, P,, P3, P,, Ps}' are expressed by

B=a(4"t, + B't,+B™,),
Py = ulA"t + B'1,+°B"1,),
P, =—q, h(ﬂ? + ;ﬂXBTtl +DTt2+"DTt3),
P, =gy — W2 + 12| BTt +D 1, +°F 1, ),
P=—h("t+L"t, + R's,).

where

(AT, B, DT)=ZS: ]. %(1+2v("))a(”)(1, z, Ez)dz,

h, n
(487, D)= 23: j %(nzv("))a("@(z)(l, 2 )z,

(8", D", SFT):th“ | f(n)(Z)) (1+20")a ™ 7 ()1, 2, B(2) .

(28)

(29a)

(29b)

(29¢)
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hy, n
(o RT)=Z3: | %(ﬁzw’”)a(") g (1, 2, ¥(2))dz, (29d)
-(v

with z=z/h, f(z)= f(z)/h and @@):lsin(%j.
T

4. Numerical results and discussion

To assess the performance of present theory under mechanical and thermal loads, simply
supported functionally graded sandwich plates are considered with following material properties:

 Metal (Titanium, Ti-6A1-4V): P, = 66.2 GPa; v, =1/3; a, = 10.3 (10°/ K).
* Ceramic (Zirconia, ZrO,): P, =117.0 GPa; v; =1/3; a; =7.11 (10° / K).

The results are presented in the following normalized forms for displacements and stresses
according to Saidi ef al. (2013) for the purpose of presentation in this article.

I 10° ab
o center deflection w=— 3 3 W = |
qoa” I(Eh)+10°ayt, a” /h \2 2
. — 10 a b h
e axialstress o, =———— 720 | T |
qgoa” 'h™ +10E,apt, a” / h 222
e shearstress 7, = ! T, (0,2,0)
qoa!h+ Eyayt,a/(10h) 2

where the reference values are taken as £, = 1 GPa and ag=7.11 10°/ K.

It is assumed, unless otherwise stated, thata / A =10, a/b=1,¢ =0, and go = t, = t; = 100.
The shear correction factor of FSDT is fixed to be K =5 /6.

Inspection of Tables 1-4 reveals that the present theory with only five unknowns provides
similar results to those predicted by the hyperbolic plate theory (HPT) proposed by Saidi ef al.
(2013) and the sinusoidal plate theory (SPT) developed by Zenkour and Alghamdi (2008) with six
unknowns (¢, # 0). This proves that the same accuracy is achievable with the present theory using

Table 1 Comparison of dimensionless center deflections w for different FG sandwich square plates (go = #; =
t3:0,12: 100anda/h= 10)

w
P Theory ol h=1  tromlh=213  trow/h=1/2  traw/h=4/5
Present (e, # 0) 0.461634 0.461634 0.461634 0.461634
0 Ref® (e, # 0) 0.449863 0.449863 0.449863 0.449863
Ref® (. £ 0) 0.461634 0.461634 0.461634 0.461634

Ref® (.= 0) 0.480262 0.480262 0.480262 0.480262
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P Theory s
tFGM/hZI tFGM/h:2/3 tFGM/hzl/Z tFGM/h:4/5
Present (. # 0) 0.614565 0.586124 0.563416 0.599933
| Ref® (e, #0) 0.594840 0.565276 0.542436 0.579538
Ref® (e, # 0) 0.614565 0.586124 0.563416 0.599933
Ref® (e, = 0) 0.636916 0.606292 0.582342 0.621098
Present (g. # 0) 0.647135 0.618046 0.590491 0.633340
5 Ref® (e, #0) 0.627934 0.596416 0.567938 0.612832
Ref® (e, # 0) 0.647135 0.618046 0.590491 0.633340
Ref® (e, = 0) 0.671503 0.639361 0.609875 0.656142
Present (e, # 0) 0.658153 0.631600 0.602744 0.646475
3 Ref® (e, # 0) 0.639690 0.610125 0.579769 0.626505
Ref® (e, # 0) 0.658153 0.631600 0.602744 0.646475
Ref® (e, = 0) 0.683572 0.653671 0.622467 0.670275
Present (& # 0) 0.662811 0.638705 0.609560 0.652890
A Ref® (¢. # 0) 0.644833 0.617502 0.586469 0.633395
Ref® (e, # 0) 0.662811 0.638705 0.609560 0.652890
Ref® (.= 0) 0.688803 0.661291 0.629533 0.677321
Present (¢. # 0) 0.665096 0.642948 0.613842 0.656490
Ref® (e, #0) 0.647421 0.621990 0.590728 0.637353
Ref® (¢, # 0) 0.665096 0.642948 0.613842 0.656490
Ref® (e, =0) 0.691420 0.665898 0.634003 0.681343

Table 2 Comparison of dimensionless center deflections w for different FG sandwich square plates

p Theory tram/h=0 treu/h=0.2 trey/h =04 trey/h=0.6 tpey/h=0.8 troy/h=1
Present (¢, #0)  0.748424 0.748424 0.748424 0.748424 0.748424 0.748424
Ref® (¢, #0) 0.771340 0.771340 0.771340 0.771340 0.771340 0.771340

0 SSDT® (¢.=0)  0.796783 0.796783 0.796783 0.796783 0.796783 0.796783
TSDT® (¢,=0) 0.808168 0.808168 0.808168 0.808168 0.808168 0.808168
FSDT® (e,=0)  0.895735 0.895735 0.895735 0.895735 0.895735 0.895735
CPT® (¢,=0)  0.457873 0.457873 0.457873 0.457873 0.457873 0.457873
Present (¢, #0)  0.748424 0.825607 0.891560 0.942936 0.979382 1.003408
Ref® (e, # 0) 0.771340 0.841759 0.906271 0.959745 0.999391 1.026070

) SSDT® (¢,=0)  0.796783 0.873745 0.941636 0.996334 1.036213 1.062840
TSDT® (e,=0)  0.808168 0.886067 0.954808 1.010231 1.050672 1.077690
FSDT® (e,=0)  0.895735 0.979641 1.054630 1.115684 1.160568 1.190728
CPT® (e,=0)  0.457873 0.501163 0.539886 0.571450 0.594688 0.610331
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Table 2 Continued

)4 Theory tram/h =0 treu/h =02 trgyu/h =04 trgu/h=0.6 treu/h=0.8 trgu/h=1
Present (¢, #0)  0.748424 0.845883 0.930539 0.994421 1.035346 1.057609
Ref® (e, # 0) 0.771340 0.860395 0.943946 1.011993 1.058388 1.084456
SSDT® (¢,=0)  0.796783 0.894003 0.981434 1.050237 1.096095 1.121608

2 TSDT® (¢.=0)  0.808168 0.906529 0.995042 1.064791 1.111352 1.137297
FSDT® (e,=0)  0.895735 1.001204 1.097973 1.175402 1.227765 1.257304
CPT® (¢,=0)  0.457873 0.512431 0.562536 0.602673 0.629859 0.645223
Present (e, #0)  0.748424 0.855272 0.948423 1.016599 1.056867 1.075460
Ref® (¢, #0) 0.771340 0.869136 0.961579 1.035332 1.082231 1.104836

3 SSDT® (6,=0)  0.796783 0.903467 0.999831 1.073875 1.119794 1.141655
TSDT® (¢.=0) 0.808168 0.916083 1.013647 1.088747 1.135420 1.157693
FSDT® (e.=0)  0.895735 1.011279 1.118224 1.202080 1.255041 1.280741
CPT® (¢,=0)  0.457873 0.517716 0.573152 0.616662 0.644176 0.657539
Present (e, #0)  0.748424 0.902511 0.958901 1.028393 1.067181 1.082846
Ref® (¢, #0) 0.771340 0.874209 0.971671 1.048073 1.094108 1.113637

4 SSDT® (¢.=0)  0.796783 0.908934 1.010269 1.086624 1.131429 1.150192
TSDT® (¢,=0) 0.808168 0.921602 1.024208 1.101684 1.147260 1.166403
FSDT® (e,=0)  0.895735 1.017115 1.129824 1.216678 1.268689 1.290961
CPT® (e,=0)  0.457873 0.520783 0.579240 0.624324 0.651345 0.662909
Present (¢, #0)  0.748424 0.864347 0.943749 1.034550 1.072864 1.086419
Ref® (e. # 0) 0.771340 0.877515 0.978164 1.055935 1.100868 1.118027

s SSDT® (¢,=0)  0.796783 0.912488 1.016938 1.094427 1.137993 1.154412

TSDT® (¢.=0) 0.808168 0.925190 1.030958 1.109609 1.153952 1.170720
FSDT® (e.=0)  0.895735 1.020919 1.137289 1.225706 1.276497 1.296101
CPT® (¢,=0)  0.457873 0.522783 0.583160 0.629064 0.655445 0.665606

a lower number of unknowns than other theories, and clearly highlights how the present theory is
simpler and more easily deployed.

Table 1 presents an assessment of the dimensionless center deflection w for an FGM sandwich
plate subjected to a linear temperature distribution within the thickness. The deflections are
analyzed for p =0, 1, 2, 3, 4, and 5 and different types of sandwich plates. Table 1 shows that the
effect of the thickness stretching is to reduce the deflection.

Table 2 compares the deflections of different types of FGM rectangular sandwich plates for p =
0, 1, 2, 3, 4, and 5. It can be concluded that the inclusion of thickness stretching effect serves to
make the plate stiffer, and hence, leads to a reduction of deflection. However, the inclusion of
shear deformation effect makes the plate more flexible and consequently leads to increase the
deflection.

Tables 3 and 4 document, respectively, the values of axial stress o, and transverse shear stress
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Table 3 Comparison of dimensionless axial stresses &, for different FG sandwich square plates

P Theory6 trau! h =0 trgu/h =02 trgu/h=0.4 tpy/h=0.6 trou/h=0.8 trey/h=1
Present (¢, #0) -2.528819  -2.528819  -2.528819  -2.528819  -2.528819  -2.528819
SSDT (e,=0) -2.388919  -2.388919  -2.388919  -2.388919  -2.388919  -2.388919

0 TSDT (e,=0) -2.461177 -2.461177  -2.461177  -2.461177  -2.461177  -2.461177
FSDT (e,=0) -3.597007  -3.597007  -3.597007  -3.597007  -3.597007  -3.597007
CPT -1.706393  -1.706393  -1.706393  -1.706393  -1.706393  -1.706393

Present (¢, #0) -2.528819  -3.913321  -3.489857  -3.138470  -2.876846  -2.700416
SSDT (e,=0) -2.388919  -3.333300  -3.001265  -2.733086  -2.537374  -2.406806

1  TSDT (e,=0) -2.461177 -3.412724  -3.076466  -2.804750  -2.606343  -2.473903
FSDT (e,=0) -3.597007  -4.504051  -4.136892  -3.838047 -3.618476  -3.471099
CPT -1.706393  -2.193219  -2.003463  -1.848793  -1.734921  -1.658265

Present (¢, #0) -2.528819  -3.792865  -3.245326  -2.797887  -2.490378  -2.316178
SSDT (e,=0) -2.388919  -3.234499  -2.806645  -2.469045  -2.243809  -2.118730

2 TSDT (e,=0) -2.461177 -3.312889  -2.879670  -2.537489  -2.308903  -2.181780
FSDT (e,=0) -3.597007  -4.398484  -3.924721  -3.545789  -3.289757  -3.145662
CPT -1.706393  -2.137999  -1.892474  -1.695789  -1.562571  -1.487285

Present (¢, #0) -2.528819  -3.736478  -3.130873  -2.645068  -2.332424  -2.180056
SSDT (e,=0) -2.388919  -3.188312  -2.716593  -2.353122  -2.127496  -2.020425

3 TSDT (e,=0) -2.461177 -3.266245  -2.788595  -2.420027  -2.190823  -2.081815
FSDT (e,=0) -3.597007 -4.349165  -3.825600 -3.415261  -3.156414  -3.031283
CPT -1.706393  -2.112102  -1.840454  -1.627241  -1.492417  -1.426935

Present (¢, #0) -2.528819  -3.703803  -3.065266  -2.561174  -2.252973  -2.120478
SSDT (e,=0) -2.388919  -3.161620  -2.665468  -2.290552  -2.070361  -1.978602

4 TSDT (e,=0) -2.461177  -3.239292  -2.736867  -2.356554  -2.132710  -2.039172
FSDT (e,=0) -3.597007  -4.320597  -3.768831  -3.343853  -3.089733  -2.981507
CPT -1.706393  -2.097076  -1.810621  -1.589696  -1.457288  -1.400620

Present (¢, #0) -2.528819  -3.682505  -3.023018  -2.509154  -2.207341  -2.090458
SSDT (e,=0) -2.388919  -3.144264  -2.632792  -2.252244  -2.038118  -1.957968

5 TSDT(e,=0) -2.461177 -3.221769  -2.703791  -2.317655  -2.099863  -2.018086
FSDT (e,=0) -3.597007  -4.301976  -3.732298  -3.299697  -3.051612  -2.956534

CPT -1.706393  -2.087272  -1.791409  -1.566468  -1.437193  -1.387402

7, forp=0,1, 2,3, 4, and 5 and different types of sandwich plates. In addition, the results of
different higher order shear deformation theories (HSDTs) such as sinusoidal shear deformation
theory (SSDT), third shear deformation theory (TSDT) and first shear deformation theory (FSDT)

are also provided to show the importance of including the thickness-stretching effect. The HSDTs
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solutions are computed based on a nonlinear variation of in-plane displacements and a constant
transverse displacement across the thickness (i.e., thickness-stretching effect is omitted, ¢, = 0).

Fig. 2 shows the effect of the aspect ratio a / b on the dimensionless center deflection w for FG
sandwich plate. The effect of the mechanical and thermal loads is taken into consideration. It is
found that the aspect ratio effect is more pronounced on the thermomechanical bending deflection
w (qo = t, = t; = 100 and) of the FG sandwich plate.

In Figs. 3 and 4, we have plotted the through-the-thickness distributions of the dimensionless
axial stress o, and the transverse shear stress 7, of the FG sandwich plate for p = 2 and trgy =
0.64, respectively. These figures show the great influence played by the different thermal and
bending loads on the axial and transverse shear stresses.

Table 4 Comparison of dimensionless transverse shear stresses 7 for different FG sandwich square plates

D Theory tFGM/h =0 tFGM/h =0.2 tFGM/h =04 tFGM/h =0.6 tFGM/h =0.8 tFGM/h =1
Present (¢, #0)  0.193097 0.193097 0.193097 0.193097 0.193097 0.193097
SSDT (e, =0) 0.171604 0.171604 0.171604 0.171604 0.171604 0.171604

0 TSDT (e,=0)  0.174481 0.174481 0.174481 0.174481 0.174481 0.174481
FSDT (¢,=0)  0.173624 0.173624 0.173624 0.173624 0.173624 0.173624
Present (¢, #0)  0.193097 0.313620 0.349534 0.341568 0.324311 0.317474
1 SSDT (e.=0)  0.171604 0.271618 0.300347 0.293865 0.280890 0.277019
TSDT (e,=0)  0.174481 0.264677 0.289538 0.284236 0.274133 0.272347
FSDT (e,=0)  0.173624 0.181504 0.190134 0.199626 0.210115 0.221768
Present (¢, #0)  0.193097 0.338091 0.370811 0.346355 0.315647 0.308622
) SSDT (e,=0)  0.171604 0.292205 0.317892 0.298078 0.275130 0.272583
TSDT (e,=0)  0.174481 0.282950 0.304910 0.288355 0.270427 0.270952
FSDT (e,=0)  0.173624 0.184293 0.196359 0.210115 0.225945 0.244354
Present (¢, #0)  0.193097 0.348104 0.376236 0.341227 0.304511  0.3023266
3 SSDT (e,=0)  0.171604 0.300600 0.322239 0.294047 0.267073 0.269608
TSDT (e,=0)  0.174481 0.290349 0.308697 0.285154 0.264327 0.270110
FSDT (¢,=0)  0.173624 0.185719 0.199626 0.215785 0.234789 0.257465
Present (¢, #0)  0.193097 0.353399 0.377769 0.336004 0.296906 0.300779
4 SSDT (e.=0)  0.171604 0.305016 0.323396 0.289951 0.261729 0.270017

TSDT (e,=0)  0.174481 0.294226 0.309711 0.281837 0.260366 0.271755
FSDT (e,=0)  0.173624 0.186586 0.201639 0.219335 0.240436 0.266029
Present (e, #0)  0.193097 0.356625 0.378076 0.331797 0.292004 0.301729
SSDT (e,=0)  0.171604 0.307694 0.323573 0.286687 0.258433 0.272071
TSDT (e,=0)  0.174481 0.296571 0.309879 0.279200 0.258029 0.274512
FSDT (e,=0)  0.173624 0.187168 0.203004 0.221768 0.244354 0.272062
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FG andwich plate (¢xgy = 0.6h, p = 2)

5. Conclusions

A new 5-unknowns quasi-3D sinusoidal plate theory with stretching effect for the
thermomechanical bending of FG sandwich plates is presented in this work. The main assumption
of this formulation is the decomposition of the transverse displacement into bending and shears
components. This theory is free of the zero in-plane resultant forces assumption used in
developing the other four variables shear deformation theories and hence have the potential to be
used for modeling of the nonlinear FG plate problems. Results demonstrate that the proposed
theory is able to provide very accurate results compared with the CPT, FSDT and other HSDTs
with higher number of unknowns and so deserve special attention and offer potential for future
research. The main point that can be outlined from the present study is that the thickness stretching
effect is more pronounced for thick plates and it needs to be taken in consideration in the
modeling.
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