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Abstract.  In this paper, various four variable refined plate theories are presented to analyze vibration of 
temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into 
bending and shear parts, the number of unknowns and governing equations for the present model is reduced, 
significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, 
and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions 
on the surfaces of the plate without using shear correction factors. Power law material properties and linear 
steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and 
sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. 
Equations of motion are derived from Hamilton’s principle. Analytical solutions for the free vibration 
analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier’s method). 
Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates 
and validated with known results in the literature. Numerical investigation is conducted to show the effect of 
material composition, plate geometry, and temperature fields on the vibration characteristics. It can be 
concluded that the present theories are not only accurate but also simple in predicting the free vibration 
responses of temperature-dependent FG plates. 
 
Keywords:    functionally graded plate; higher-order plate theory; vibration; temperature-dependent 
properties 

 
 
1. Introduction 

 
Functionally graded materials (FGMs) are a class of composites that have continuous variation 

of material properties from one surface to another and thus eliminate the stress concentration 
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found in laminated composites. The concept of FGM has been widely explored in various 
engineering applications including mechanical, aerospace, nuclear, and civil engineering. The 
increase in FGM applications requires accurate models to predict their responses. Since the shear 
deformation has significant effects on the responses of functionally graded (FG) plates, shear 
deformation theories are used to capture such shear deformation effects. The first-order shear 
deformation theory (Mindlin 1951, Reissner 1945) accounts for shear deformation effects, but 
violates the equilibrium conditions at the top and bottom surfaces of the plate. A shear correction 
factor is therefore required (Yaghoobi and Yaghoobi 2013). The higher-order shear deformation 
theories (Reddy 1984, 2000, Ren 1986, Touratier 1991, Soldatos 1992, Xiang et al. 2009, Akavci 
2010, Grover et al. 2013, Karama et al. 2003, Pradyumna and Bandyopadhyay 2008, Ait Atmane 
et al. 2010, Shahrjerdi et al. 2011, Mantari et al. 2012) account for higher-order variation in the 
in-plane displacements through the thickness of the plate and satisfy the equilibrium conditions at 
the top and bottom surfaces of the plate without requiring any shear correction factors. Some of 
these HSDTs are computational costs because with each additional power of the thickness 
coordinate, an additional unknown is introduced to the theory. Although some well-known 
higher-order shear deformation theories have the same unknowns as in the first-order shear 
deformation theory (e.g., third-order shear deformation theory (Reddy 1984 and 2000), sinusoidal 
shear deformation theory (Touratier 1991), hyperbolic shear deformation theory (Xiang et al. 2009, 
Akavci 2010, Grover et al. 2013), exponential shear deformation theory (Karama et al. 2003), 
second-order shear deformation theory (Shahrjerdi et al. 2011), and trigonometric shear 
deformation theory (Mantari et al. 2012)), their equations of motion are more complicated than 
those of the first-order shear deformation theory. Recently, new refined plate theories for bending 
response, buckling and free vibration of FG plates with only four unknown functions are 
developed (Bourada et al. 2012, Fekrar et al. 2012, Bouderba et al. 2013, Kettaf et al. 2013, Ait 
Atmane Meziane et al. 2014). However, many of the above-mentioned papers deal with 
temperature-independent materials with shear deformation theories. Temperature-dependent 
materials in a constant temperature field and temperature variations with surface-to-surface heat 
flow through the thickness direction were considered in other research by applying first, third and 
higher order shear deformation theories. As a consequence, the development of simple higher- 
order shear deformation theory for temperature-dependent FG plates in the present work is necessary. 

The aim of this work is to develop a simple higher-order shear deformation theory for free 
vibration behavior of temperature-dependent FG plates. The proposed theory contains fewer 
unknowns and equations of motion than the first-order shear deformation theory, but satisfies the 
equilibrium conditions at the top and bottom surfaces of the plate without using any shear 
correction factors. The displacement fields of the proposed theories are chosen based on cubic, 
sinusoidal, hyperbolic, and exponential variation in the in-plane displacements through the 
thickness. Partitioning the transverse displacement into the bending and shear components leads to 
a reduction in the number of unknowns, and consequently, makes the present theory much more 
amenable to mathematical implementation. The temperature is assumed to be constant in the plane 
of the plate. The variation of temperature is assumed to occur in the thickness direction only. The 
FG plates are assumed to be simply supported with temperature-dependent and independent 
material properties with a power law distribution in terms of the volume fractions of the 
constituents and subjected to uniform, linear, nonlinear and sinusoidal temperature rise. Equations 
of motion are derived from Hamilton’s principle. The effects of temperature dependency of FG 
plates for some types of thermal condition are investigated. The current study is relevant to 
aero-structures. 
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2. Theoretical developments 
 
Consider a simply supported rectangular FG plate with the length a width b, and thickness h. 

The x-, y-, and z-coordinates are taken along the length, width, and height of the plate, respectively, 
as shown in Fig. 1. The formulation is limited to linear elastic material behavior. The FG plate is 
isotropic with its material properties vary smoothly through the thickness of the plate. 

2.1 Displacement field and strains 
 
The formulation is limited to linear elastic material behavior. The displacement fields of 

various shear deformation theories are chosen based on following assumptions: (1) The transverse 
displacement is partitioned into bending and shear components; (2) the in-plane displacements are 
partitioned into extension, bending and shear components; (3) the bending parts of the in-plane 
displacements are similar to those given by the classical plate theory (CPT); and (4) the shear 
component of axial displacement gives rise to the higher-order variation of shear strain and hence 
to shear stress through the thickness of the plate in such a way that shear stress vanishes on the top 
and bottom surfaces. Based on these assumptions, the displacement fields of various higher-order 
shear deformation theories are given in a general form as 
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where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
mid-plane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively. f(z) is a shape function determining the distribution of the transverse 
shear strain and shear stress through the thickness of the plate given in Table 1. The shape 
functions f(z) are chosen to satisfy the stress-free boundary conditions on the top and bottom 
 
 

 

Fig. 1 Schematic representation of a rectangular FG plate 
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Table 1 Shape functions 

model f(z) g(z) = 1 – f ′(z) 
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surfaces of the plate, thus a shear correction factor is not required. 

The nonzero linear strains associated with the displacement field in Eq. (2) are 
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and 
)(1)( zfzg                                 (4) 

 

2.2 Constitutive relations 
 
FGMs are composite materials made of ceramic and metal. There are some models in the 

literature that express the variation of material properties in FGMs (Chi and Chung 2006a, b).The 
most commonly used is the power law distribution of the volume fraction. According to this model, 
the material properties of FG plates are assumed to be position and temperature- dependent and 
can be expressed as the following (Kim 2005) 
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where Γ denotes a generic material property such as elastic modulus E, the Poisson’s ratio v, mass 
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density ρ and thermal expansion coefficient α of FG plates; furthermore subscripts m and c refer to 
the pure metal and ceramic plates, respectively. Vc denotes the ceramic volume fraction, where p ≥ 
0 is a namely grading index that is the volume fraction exponent. The non-linear FG plate’s 
material can be expressed as the following (Shahrjerdi et al. 2011) 
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where P denotes material property and T = T0 + ΔT(z) indicates the environmental temperature; T0 
= 300(K) is room temperature; P-1, P0, P1, P2 and P3 are the coefficients of temperature-dependent 
material properties unique to the constituent materials, and ΔT(z) is the temperature rise only 
through the thickness direction, whereas thermal conductivity k is temperature-independent. 
Temperature-dependent typical values for some functionally graded materials components such as 
silicon nitride and stainless steel are in Table 2 (Shahrjerdi et al. 2011, Kim 2005). 

The linear constitutive relations of a FG plate can be written as 
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where (σx, σy, τyz, τxz, τxy) and (εx, εy, γyz, γxz, γxy) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (5), stiffness coefficients, Cij, can be expressed as 
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2.3 Equations of motion 
 
The total strain energy of FG plate is given by 

 

Tp UUU                                    (9) 
 

where Up and UT are the strain energies due to mechanical and thermal effects, respectively. 
The strain energies Up and UT are given by (Shahrjerdi et al. 2011, Li et al. 2009, Reddy 2004) 
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Table 2 Temperature-dependent coefficients for ZrO2/Ti-6Al-4V and SI3N4/SUS304 

Material P-1 P0 P1 P2 P3 

E 

SUS304 0 201.04e+9 3.079e-3 -6.534e-7 0 

SI3N4 0 348.43e+9 -3.070e-4 2.160e-7 -8.946e-11 

Ti-6Al-4V 0 122.56e+9 -4.586e-4 0 0 

ZrO2 0 244.27e+9 -1.371e-3 1.214e-6 -3.681e-10 

V 

SUS304 0 0.3262 -2.002e-4 3.797e-7 0 

SI3N4 0 0.2400 0 0 0 

Ti-6Al-4V 0 0.2888 1.108e-4 0 0 

ZrO2 0 0.3330 0 0 0 

ρ 

SUS304 0 8166 0 0 0 

SI3N4 0 2370 0 0 0 

Ti-6Al-4V 0 4429 0 0 0 

ZrO2 0 3000 0 0 0 

α 

SUS304 0 12.330e-6 8.086e-6 0 0 

SI3N4 0 5.8723e-6 9.095e-6 0 0 

Ti-6Al-4V 0 7.5788e-6 6.638e-4 -3.147e-6 0 

ZrO2 0 12.766e-6 -1.491e-3 1.006e-5 -6.778e-11 

k 

SUS304 0 12.04 0 0 0 

SI3N4 0 9.19 0 0 0 

Ti-6Al-4V 0 7.82 0 0 0 

ZrO2 0 1.80 0 0 0 

 
 
where dij, (i, j = 1, 2) is the nonlinear strain-displacement relationship (Shahrjerdi et al. 2011, 
Reddy 2004). By substituting dij into Eq. (10b) the following equation is obtained 
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The kinetic energy of plate is given by 
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Hamilton’s principle for an elastic body can be represented as 
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By substituting Eq. (2) into Eq. (7) and applying Eqs. (12) and (1), equations of motion for FG 
plate can be obtained as follows 
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where dij, dijl and dijlm are the following differential operatorsd 
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and stiffness components are given as 
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The inertias are also defined as 
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2.4 Temperature field 
 
In this study, four cases of one-dimensional temperature distribution through the thickness are 

considered, with T = T(z). 
 
2.4.1 Uniform temperature 
In this case, a uniform temperature field is used as followsd 

 

)()( 0 zTTzT                            (16) 
 
where ΔT(z) denotes the temperature change and T0 = 300 K is room temperature. 

 
2.4.2 Linear temperature 
Assuming temperatures Tb and Tt are imposed at the bottom and top of the plate, the 

temperature field under linear temperature rise along the thickness can be obtained as 
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where ΔT = Tt – Tb is the temperature gradient and T0 = 300 K is room temperature. 

 
2.4.3 Nonlinear temperature 
The nonlinear temperature rise across the thickness of the plate is determined by solving the 

one dimensional heat conduction equation. The one dimensional steady-state heat conduction 
equation in the z-direction is given by 
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with the boundary condition T(h / 2) = Tt and T(–h / 2) = Tb = T0. Here a stress-free state is assumed 

194



 
 
 
 
 
 

Free vibration analysis of functionally graded plates with temperature-dependent properties 

to exist at T0 = 300 K. The thermal conductivity coefficient k(z) is assumed here to obey the 
power-law relation in Eq. (5). The analytical solution to Eq. (18) is 
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In the case of power-law FG plate, the solution of Eq. (18) also can be expressed by means of a 

polynomial series (Shahrjerdi et al. 2011) 
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where ktb = kt – kb, with kt and kb are the thermal conductivity of the top and bottom faces of the 
plate, respectively. 

 
2.4.4 Sinusoidal temperature rise 
The temperature field under sinusoidal temperature rise across the thickness is assumed as 

(Shahrjerdi et al. 2011, Bouazza et al. 2009) 
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3. Analytical solutions 
 

Based on the Navier approach with simply supported boundary conditions, the displacement 
fields are expressed as 
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where Umn, Vmn, Wbmn and Wsmn are arbitrary parameters to be determined, ω is the eigen frequency 
associated with (m, n) the eigen mode, and λ = mπ / a and μ = nπ / b. 
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Substituting the displacement fields (23) into equations of motion (13), the following frequency 
equation is obtained 
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4. Numerical results 

 
4.1 Material properties in thermal conditions 
 
In Figs. 2 to 6, the variation of Young modulus in FG plates through the thickness in room 

temperature is presented by considering, uniform, linear, nonlinear and sinusoidal thermal 
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conditions, respectively. Room temperature is defined at T0 = 300 K for all thermal conditions. The 
temperature rise in linear temperature is Tb = Tt = 600 (K), the nonlinear thermal conditions are Tb 
= 0 (K)  and Tt = 600 (K) and the sinusoidal thermal conditions are Tb = 300 (K) and Tt = 300 (K). 
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Fig. 2 Variation of elastic modulus versus non-dimensional thickness of FG plate in room temperature 
field and different values of grading index (p) 
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Fig. 3 Variation of elastic modulus versus non-dimensional thickness of FG plate in linear temperature 
field and different values of grading index (p) 

 

197



 
 
 
 
 
 

Amina Attia, Abdelouahed Tounsi, E.A. Adda Bedia and S.R. Mahmoud 

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5
80

100

120

140

160

180

200

220

 p= 0.1
 p= 0.2
 p= 0.5
 p= 1
 p= 2
 p= 5
 p= 10
 p= 100

Non-dimensional thickness (z/h)

E
la

st
ic

 m
od

ul
us

 (
G

Pa
)

 

Fig. 4 Variation of elastic modulus versus non-dimensional thickness of FG plate in nonlinear 
temperature field and different values of grading index (p) 
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Fig. 5 Variation of elastic modulus versus non-dimensional thickness of FG plate in sinusoidal 
temperature field and different values of grading index (p) 

 
 

Figs. 2 and 3 show that Young’s modulus is similar for conditions with room temperature and 
linear temperature variation, but the graphs move to smaller values with the linear temperature 
case. It is seen clearly, that with increasing the power law index, the Young’s modulus decreases. 
In addition, it can be observed from Figs. 2 to 6 that the behavior of Young’s modulus in nonlinear 
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Fig. 6 Variation of elastic modulus versus non-dimensional thickness of FG plate in uniform, linear, 
nonlinear and sinusoidal temperature field 

 
 
and sinusoidal thermal loads is completely different from that in room and linear temperature cases. 
Thus, it can be concluded that the environmental conditions type has a considerable effect on 
Young’s modulus. A comparison study on Young’s modulus is carried out for uniform, linear, 
nonlinear and sinusoidal thermal conditions in Fig. 6. 

 
4.2 Validation of the results 
 
In this section, various numerical results for temperature-dependent FG plates computed using 

the present theories having four unknowns are compared to those of other higher-order shear 
deformation theories [15, 23] with more unknowns. The nondimensional frequency parameter is 
taken as, where and is at (Shahrjerdi et al. 2011, Huang and Shen 2004). 

 

Example 1 
In the first example, a FG ZrO2/Ti–6Al–4V plate is considered and the dimensionless 

fundamental frequencies are tabulated in Table 3. As is described in references (Shahrjerdi et al. 
2011, Huang and Shen 2004), the top surface is ceramic-rich and the bottom surface is metal-rich. 
Verification is carried out by assuming the values of different quantities in the ceramic and metal 
as: h = 0.0025 m, a = b = 0.2 m, v = 0.3, ρc = 3000 km/m3, kc = 1.80 W/mK, ρm = 4429 kg/m3, km  
7.82 W/mK. 

An identical value of Poisson's ratio v is assumed for both ceramic and metal. However, 
Young’s modulus and thermal expansion coefficient of these materials are considered to be 
temperature-dependent (Shahrjerdi et al. 2011, Huang and Shen 2004). It can be seen from Table 3 
that the results computed using various efficient higher-order shear deformation theories (TPT, 
SPT, HPT and EPT) are in a good agreement with other results from Refs (Shahrjerdi et al. 2011, 
Huang and Shen 2004) especially obtained by Huang and Shen (2004) and these for all values of 
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Table 3 Non-dimensional natural frequency parameter of simply supported (ZrO2/Ti-6Al-4V) FG plate in 
thermal environments 

Mode (1,1) 
Natural frequency of 

FGP (ZrO2 and 
Ti-6Al-4V) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 400 (K) Tt = 600 (K) 

Temperature- 
dependent 

Temperature-
independent 

Temperature- 
dependent 

Temperature-
independent 

ZrO2 

SSDT(a) 8.333 7.614 7.892 5.469 6.924 

TSDT(b) 8.273 7.868 8.122 6.685 7.686 

TPT 8.278 7.807 8.130 6.533 7.826 

SPT 8.278 7.808 8.131 6.534 7.826 

HPT 8.278 7.808 8.131 6.534 7.826 

EPT 8.280 7.809 8.132 6.536 7.828 

p = 0.5 

SSDT(a) 7.156 6.651 6.844 5.255 6.175 

TSDT(b) 7.139 6.876 7.154 6.123 6.776 

TPT 7.111 6.781 7.005 5.931 6.789 

SPT 7.112 6.782 7.006 5.931 6.789 

HPT 7.112 6.782 7.006 5.931 6.789 

EPT 7.113 6.783 7.001 5.993 6.772 

p = 1 

SSDT(a) 6 .700 6.281 6.446 5.167 5.904 

TSDT(b) 6.657 6.437 6.592 5.819 6.362 

TPT 6.657 6.375 6.565 5.664 6.378 

SPT 6.657 6.375 6.565 5.665 6.378 

HPT 6.657 6.375 6.565 5.665 6.378 

EPT 6.658 6.376 6.556 5.668 6.350 

p = 2 

SSDT(a) 6.333 5.992 6.132 5.139 5.711 

TSDT(b) 6.286 6.101 6.238 5.612 6.056 

TPT 6.287 6.047 6.208 5.467 6.049 

SPT 6.287 6.047 6.208 5.467 6.049 

HPT 6.287 6.047 6.208 5.467 6.049 

EPT 6.288 6.049 6.194 5.469 6.003 

Ti-6Al-4V 

SSDT(a) 5.439 5.103 5.333 4.836 5.115 

TSDT(b) 5.400 5.322 5.389 5.118 5.284 

TPT 5.403 5.303 5.361 5.132 5.275 

SPT 5.403 5.303 5.361 5.132 5.275 

HPT 5.403 5.303 5.361 5.132 5.275 

EPT 5.404 5.304 5.300 5.133 5.091 
(a) Shahrjerdi et al. (2011) 
(b) Huang and Shen (2004) 
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power law index p, either for the case of temperature-dependent and temperature-independent FG 
plates (FGP). 
 

Example 2 
In the next example, a FG Si3N4/SUS304 plate is analyzed. For this materials, the Poisson’s 

ratio is taken v = 0.28. The dimensionless fundamental frequencies obtained by all present theories 
are compared with the previously published results of Shahrjerdi et al. (2011) and Huang and Shen 
(2004) in Table 4 for different values of power law index p. It can be seen that the fundamental 
frequency values computed from all proposed theories are in a good agreement with those given 
by Refs (Shahrjerdi et al. 2011, Huang and Shen 2004) especially obtained by Huang and Shen 
(2004). 

 
Example 3 
In this example, a ZrO2/Ti–6Al–4V and Si3N4/SUS304 plates are considered and the obtained 

 
 
Table 4 Non-dimensional natural frequency parameter of simply supported (Si3N4/SUS304) FG plate in 

thermal environments 

Mode (1,1) 
Natural frequency of 

FGP (Si3N4 and 
SUS304) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 400 (K) Tt = 600 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

Si3N4 

SSDT(a) 12.506 12.175 12.248 11.461 11.716 

TSDT(b) 12.495 12.397 12 .382 11.984 12.213 

TPT 12.507 12.307 12.376 11.886 12.113 

SPT 12.507 12.307 12.378 11.887 12.114 

HPT 12.507 12.307 12.378 11.886 12.114 

EPT 12.509 12.309 12.380 11.889 12.116 

p = 0.5 

SSDT(a) 8.652 8.361 8.405 7.708 7.887 

TSDT(b) 8.675 8.615 8.641 8.269 8.425 

TPT 8.609 8.453 8.498 8.117 8.272 

SPT 8.609 8.453 8.499 8.118 8.273 

HPT 8.609 8.453 8.499 8.118 8.273 

EPT 8.611 8.455 8.500 8.120 8.274 

p = 1 

SSDT(a) 7.584 7.306 7.342 6.674 6.834 

TSDT(b) 7.555 7.474 7.514 7.171 7.305 

TPT 7.544 7.399 7.437 7.082 7.217 

SPT 7.544 7.399 7.437 7.082 7.218 

HPT 7.544 7.399 7.437 7.082 7.218 

EPT 7.546 7.401 7.439 7.083 7.219 
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Table 4 Continued 

Mode (1,1) 
Natural frequency of 

FGP (Si3N4 and 
SUS304) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 400 (K) Tt = 600 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

p = 2 

SSDT(a) 6.811 6.545 6.575 5.929 6.077 

TSDT(b) 6.777 6.693 6.728 6.398 6.523 

TPT 6.771 6.631 6.664 6.323 6.447 

SPT 6.770 6.631 6.665 6.323 6.447 

HPT 6.770 6.631 6.665 6.323 6.447 

EPT 6.772 6.633 6.665 6.324 6.448 

SUS304 

SSDT(a) 5.410 5.161 5.178 4.526 4.682 

TSDT(b) 5.405 5.311 5.335 4.971 5.104 

TPT 5.410 5.272 5.295 4.922 5.055 

SPT 5.410 5.278 5.300 4.945 5.071 

HPT 5.410 5.278 5.299 4.945 5.071 

EPT 5.411 5.279 5.301 4.946 5.073 
 (a) Shahrjerdi et al. (2011) 
(b) Huang and Shen (2004) 
 
 
results are compared to those of Shahrjerdi et al. (2011) and Huang and Shen (2004) as shown in 
Tables 5 and 6, respectively. It can be seen that the computed results are in good agreement with 
the previously published results (Shahrjerdi et al. 2011, Huang and Shen 2004) and these for 
different considered shape mode. 
 
 
Table 5 Non-dimensional frequency parameter of simply supported (ZrO2/Ti-6Al-4V) FG plate in thermal 

environments (p = 2) 

Mode numbers of FGP 
(ZrO2 and Ti-6Al-4V) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 300 (K) Tt = 300 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

(1,1) 

SSDT(a) 6.333 5.992 6.132 5.139 5.711 

TSDT(b) 6.286 6.101 6.238 5.612 6.056 

TPT 6.287 6.047 6.208 5.467 6.049 

SPT 6.287 6.047 6.208 5.467 6.049 

HPT 6.287 6.047 6.208 5.467 6.049 

EPT 6.288 6.049 6.194 5.469 6.003 
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Table 5 Continued 

Mode numbers of FGP 
(ZrO2 and Ti-6Al-4V) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 300 (K) Tt = 300 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

(1,2) 

SSDT(a) 14.896 14.383 14.684 13.260 14.253 

TSDT(b) 14.625 14.372 14.655 13.611 14.474 

TPT 14.665 14.265 14.581 13.416 14.412 

SPT 14.666 14.267 14.583 13.416 14.414 

HPT 14.665 14.265 14.581 13.413 14.413 

EPT 14.672 14.273 14.589 13.421 14.420 

(2,2) 

SSDT(a) 22.608 21.942 22.386 20.557 21.935 

TSDT(b) 21.978 21.653 22.078 20.652 21.896 

TPT 22.123 21.584 22.034 20.489 21.855 

SPT 22.127 21.589 22.038 20.494 21.860 

HPT 22.123 21.584 22.034 20.489 21.855 

EPT 22.140 21.602 22.052 20.507 21.873 

(1,3) 

SSDT(a) 27.392 26.630 27.163 25.077 26.700 

TSDT(b) 26.454 26.113 26.605 24.961 26.435 

TPT 26.704 26.081 26.612 24.837 26.427 

SPT 26.711 26.089 26.619 24.845 26.435 

HPT 26.704 26.081 26.612 24.837 26.427 

EPT 26.731 26.108 26.639 24.865 26.454 

(2,3) 

SSDT(a) 34.106 33.211 33.867 31.425 33.384 

TSDT(b) 32.659 32.239 32.840 30.904 32.664 

TPT 33.109 32.371 33.013 30.920 32.819 

SPT 33.121 32.384 33.025 30.933 32.831 

HPT 33.109 32.370 33.013 30.919 32.819 

EPT 33.151 32.413 33.055 30.964 32.862 
 (a) Shahrjerdi et al. (2011) 
(b) Huang and Shen (2004) 
 
 

Example 4 
Table 7 shows the natural frequencies in Si3N4/SUS304 for large value of volume fraction 

index (p) and different values of thermal loads. Again, a good agreement between the present 
results and those of Shahrjerdi et al. (2011) is observed. The little difference observed in the 
results between the present theories (TPT, SPT, HPT and EPT) and the second-order shear 
deformation theory (SSDT) of Shahrjerdi et al. (2011) is due to the displacement fields assumed 
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Table 6 Non-dimensional frequency parameter of simply supported (Si3N4/SUS304) FG plate in thermal 
environments (p = 2) 

Mode numbers of FGP
(Si3N4/SUS304) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 300 (K) Tt = 300 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

(1,1) 

SSDT(a) 6.811 6.445 6.575 5.929 6.077 

TSDT(b) 6.777 6.693 6.728 6.398 6.523 

TPT 6.770 6.631 6.664 6.323 6.447 

SPT 6.770 6.631 6.664 6.323 6.447 

HPT 6.770 6.631 6.664 6.323 6.447 

EPT 6.770 6.631 6.665 6.325 6.448 

(1,2) 

SSDT(a) 16.017 15.708 15.769 15.002 15.262 

TSDT(b) 15.809 15.762 15.836 15.384 15.632 

TPT 15.812 15.628 15.699 15.229 15.472 

SPT 15.814 15.631 15.702 15.231 15.474 

HPT 15.812 15.628 15.699 15.229 15.472 

EPT 15.820 15.636 15.707 15.237 15.480 

(2,2) 

SSDT(a) 24.307 23.958 24.047 23.154 23.517 

TSDT(b) 23.806 23.786 23.893 23.327 23.685 

TPT 23.874 23.652 23.755 23.167 23.517 

SPT 23.879 23.657 23.760 23.173 23.522 

HPT 23.874 23.652 23.755 23.167 23.516 

EPT 23.893 23.671 23.774 23.187 23.536 

(1,3) 

SSDT(a) 29.446 29.071 29.177 28.204 28.632 

TSDT(b) 28.687 28.686 28.816 28.185 28.609 

TPT 28.831 28.586 28.709 28.049 28.463 

SPT 28.839 28.594 28.717 28.057 28.471 

HPT 28.831 28.586 28.709 28.049 28.462 

EPT 28.860 28.614 28.738 28.078 28.491 

(2,3) 

SSDT(a) 36.657 36.247 36.376 35.290 35.809 

TSDT(b) 35.466 35.491 35.648 34.918 35.436 

TPT 35.768 35.489 35.640 34.879 35.383 

SPT 35.782 35.503 35.654 34.893 35.397 

HPT 35.768 35.489 35.640 34.878 35.383 

EPT 35.814 35.535 35.686 34.925 35.429 
(a) Shahrjerdi et al. (2011) 
(b) Huang and Shen (2004) 
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by these theories. It should be noted that the present theories require only four unknowns as 
against seven in the case of SSDT (Shahrjerdi et al. 2011). It can be concluded that the present 
theory is not only accurate but also efficient in predicting the vibration response of FG plates. 
 
 
Table 7 Non-dimensional natural frequency of temperature dependent (Si3N4/SUS304) FG plate for different 

volume fraction index p in thermal environments, Mode (1, 1) 

Thermal loads 
T0 = 300 (K), b = a = 0.2, h = 0.025 

Tb = 300 (K) 
Tt = 300 (K) 

Tb = 300 (K) 
Tt = 400 (K) 

Tb = 300 (K) 
Tt = 600 (K) 

Si3N4 

SSDT(a) 12.506 12.175 11.461 

TPT 12.506 12.306 11.886 

SPT 12.507 12.307 11.887 

HPT 12.507 12.307 11.887 

EPT 12.509 12.309 11.889 

p = 0.5 

SSDT(a) 6.200 5.936 5.328 

TPT 6.151 6.014 5.703 

SPT 6.151 6.015 5.704 

HPT 6.151 6.015 5.704 

EPT 6.152 6.016 5.705 

p = 10 

SSDT(a) 5.907 5.645 5.031 

TPT 5.862 5.725 5.405 

SPT 5.862 5.725 5.405 

HPT 5.862 5.725 5.405 

EPT 5.863 5.723 5.407 

p = 20 

SSDT(a) 5.711 5.450 4.825 

TPT 5.671 5.532 5.203 

SPT 5.671 5.532 5.203 

HPT 5.671 5.532 5.203 

EPT 5.672 5.534 5.204 

p = 40 

SSDT(a) 5.591 5.329 4.694 

TPT 5.552 5.414 5.076 

SPT 5.552 5.414 5.076 

HPT 5.552 5.414 5.076 

EPT 5.553 5.416 5.077 

SUS304 

SSDT(a) 5.410 5.161 4.526 

TPT 5.410 5.273 4.926 

SPT 5.410 5.273 4.926 

HPT 5.410 5.273 4.926 

EPT 5.411 5.274 4.927 
(a) Shahrjerdi et al. (2011) 
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4.3 Results of present study 
 
The effects different parameters such as the power law index, the mode numbers, plate 

geometry, and temperature fields on the frequency of FG plates are investigated here. All predicted 
results are carried out using TPT. 

The non-dimensional frequencies values are listed in Tables 8 and 9 for FG ZrO2/Ti–6Al–4V 
and Si3N4/SUS304 plates, respectively. The non-dimensional natural frequency parameter is 
defined as   ,/)1()/(

2/122
bb Eha   where Eb and ρb are at T0 = 300 (K) (Shahrjerdi et al. 

2011). The effect of power law index p on the frequencies can be seen by considering the same 
value of thermal load and shape mode. The result for FG plates is in between those for pure 
material plates, because Young’s modulus increases from pure metal to pure ceramic. The 
frequencies are decreased by increasing the temperature difference between top and bottom 
surfaces for the same value of power law index and shape mode that represent the effects of 
thermal loads. The comparison between temperature-dependent and independent FG plates in 
Tables 8 and 9 reveals the smaller frequencies in temperature-dependent FG plates, which proves 
the accuracy and effectiveness of temperature-dependent material properties. 

The variation of the first four frequencies as a function of uniform, linear, nonlinear and 
sinusoidal temperature fields in simply supported FG plate is plotted in Figs. 7-10. The 
combination of ZrO2/Ti-6Al-4V (Table 2) is assumed with material and geometric parameters of 
 
 
Table 8 Non-dimensional natural frequency parameter of simply supported (ZrO2/Ti-6Al-4V) FG plate in 

thermal environments and for different modes of vibration 

Mode numbers of FGP 
(ZrO2 and Ti-6Al-4V) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 400 (K) Tt = 600 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

ZrO2 

(1,1) 8.278 7.808 8.131 6.534 7.826 

(1,2) 19.344 18.577 19.054 16.842 18.867 

(2,2) 29.217 28.185 28.911 26.002 28.714 

(1,3) 35.292 34.095 34.975 31.632 34.472 

(2,3) 43.794 42.368 43.462 39.509 43.250 

p = 0.5 

(1,1) 7.112 6.782 7.006 5.931 6.789 

(1,2) 16.631 16.093 16.518 14.902 16.367 

(2,2) 25.138 24.415 25.019 22.908 24.779 

(1,3) 30.376 29.540 30.159 27.837 30.006 

(2,3) 37.713 36.720 37.486 34.744 37.326 

p = 1 

(1,1) 6.657 6.375 6.565 5.664 6.378 

(1,2) 15.558 15.095 15.392 14.084 15.264 

(2,2) 21.596 22.882 23.329 21.596 23.194 

(1,3) 26.221 27.676 28.213 26.221 28.074 

(2,3) 35.243 34.389 35.052 32.698 34.907 
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Table 8 Continued 

Mode numbers of FGP 
(ZrO2 and Ti-6Al-4V) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 400 (K) Tt = 600 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

p = 2 

(1,1) 6.287 6.047 6.208 5.467 6.049 

(1,2) 14.666 14.267 14.583 13.416 14.414 

(2,2) 22.127 21.589 22.038 20.494 21.860 

(1,3) 26.711 26.089 26.619 24.845 26.435 

(2,3) 33.121 32.384 33.025 30.933 32.831 

Ti-6Al-4V 

(1,1) 5.403 5.303 5.361 5.132 5.275 

(1,2) 12.625 12.440 12.580 12.096 12.489 

(2,2) 19.069 18.811 19.022 18.314 18.926 

(1,3) 23.035 22.730 22.985 22.142 22.886 

(2,3) 28.584 28.217 28.532 27.499 28.428 

 
 
Table 9 Non-dimensional natural frequency parameter of simply supported (Si3N4/ SUS304) FG plate in 

thermal environments and for different modes of vibration 

Mode numbers of FGP 
(Si3N4 and SUS304) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 300 (K) Tt = 300 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

Si3N4 

(1,1) 12.507 12.307 12.377 11.887 12.114 

(1,2) 29.260 28.964 29.121 28.371 28.843 

(2,2) 44.236 43.853 44.090 43.103 43.796 

(1,3) 53.460 53.024 53.309 52.176 53.005 

(2,3) 66.382 65.310 66.240 64.886 65.906 

p = 0.5 

(1,1) 8.609 8.453 8.498 8.118 8.272 

(1,2) 20.137 19.921 20.020 19.473 19.784 

(2,2) 30.441 30.172 30.318 29.621 30.070 

(1,3) 36.788 36.485 36.661 35.871 36.405 

(2,3) 45.680 45.331 45.547 44.627 45.281 

p = 1 

(1,1) 7.544 7.399 7.437 7.082 7.217 

(1,2) 17.641 17.444 17.528 17.029 17.298 

(2,2) 26.661 26.420 26.542 25.913 26.301 

(1,3) 32.215 31.946 32.092 31.384 31.970 

(2,3) 39.995 39.688 39.867 39.046 39.608 
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Table 9 Continued 

Mode numbers of FGP 
(Si3N4 and SUS304) 

Tb = 300 (K) 

Tt = 300 (K) 

Tt = 300 (K) Tt = 300 (K) 

Temperature- 
dependent 

Temperature- 
independent 

Temperature- 
dependent 

Temperature- 
independent 

p = 2 

(1,1) 6.770 6.631 6.664 6.323 6.447 

(1,2) 15.814 15.631 15.702 15.231 15.474 

(2,2) 23.879 23.657 23.760 23.173 23.522 

(1,3) 28.839 28.594 28.717 28.057 28.471 

(2,3) 35.782 35.503 35.654 34.893 35.397 

SUS304 

(1,1) 5.410 5.278 5.300 4.945 5.071 

(1,2) 12.657 12.495 12.539 12.054 12.301 

(2,2) 19.135 18.947 19.012 18.407 18.760 

(1,3) 23.126 22.920 22.908 22.320 22.738 

(2,3) 28.715 28.487 28.581 27.803 28.310 
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Fig. 7 First four Non-dimensional frequency parameters versus uniform temperature field for simply 
supported (ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 
 
p = 1, a = b = 0.2 and a / h = 10. The non-dimensional natural frequency parameter is defined as 

  2/1
00

22 /)/( DIb   , where I0 = ρh and D0 = Eh3 / 12(1 – v2) and it is noted that ρ, v and E 
are chosen to be the values of Ti-6Al-4V evaluated at the room temperature. As expected, the 
frequencies are reduced with increasing temperature and this is due to the decrease of Young’s 
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modulus with rising temperatures. It can be seen that the decreasing slope of frequencies in lower 
modes is smaller than those in higher modes. At the same temperature, we note that the difference 
between two consecutive lower modes is greater than that in two consecutive higher modes. 
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Fig. 8 First four Non-dimensional frequency parameters versus linear temperature field for simply 
supported (ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 
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Fig. 9 First four Non-dimensional frequency parameters versus non-linear temperature field for simply 
supported (ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 
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Fig. 10 First four Non-dimensional frequency parameters versus sinusoidal temperature field for 
simply supported (ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 
 
5. Conclusions 

 
In this research study, temperature-dependent free vibration of FG plates subjected to uniform, 

linear, nonlinear, and sinusoidal temperature fields is presented by using various efficient 
higher-order shear deformation theories. The main advantage of the proposed theories over the 
existing higher-order shear deformation theories is that the present ones involve fewer variables as 
well as equations of motion. The computational cost can therefore be reduced. Material properties 
of FG plates are assumed to be temperature-dependent and graded through the thickness according 
to a power-law distribution in terms of volume fractions of constituents. Numerical results show 
that all proposed theories give results close to each other, and their solutions are in good 
agreement with those of existing higher-order shear deformation theories such as the second-order 
shear deformation theory (SSDT) and third-order shear deformation theory. The formulation lends 
itself particularly well to nonlinear vibration of FG structures (Yaghoobi and Torabi 2013a, b), 
which will be considered in the near future. 
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