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Abstract.  Due to recent advancements in the area of Artificial Intelligence (AI) and computational 
intelligence, the application of these technologies in the construction industry and structural analysis has 
been made feasible. With the use of the Adaptive-Network-based Fuzzy Inference System (ANFIS) as a 
modelling tool, this study aims at predicting the shear strength of channel shear connectors in steel concrete 
composite beam. A total of 1200 experimental data was collected, with the input data being achieved based 
on the results of the push-out test and the output data being the corresponding shear strength which were 
recorded at all loading stages. The results derived from the use of ANFIS and the classical linear regressions 
(LR) were then compared. The outcome shows that the use of ANFIS produces highly accurate, precise and 
satisfactory results as opposed to the LR. 
 
Keywords:   shear connector; channel; composite beam; shear strength; ANFIS; LR 

 
 
1. Introduction 

 
Recently, the use of channel shear connectors has become a preferred alternative over common 

shear connectors such as studs (Maleki and Mahoutian 2009). Among the many advantages of a 
channel connector are that it has a higher load carrying capacity, it allows the use of the reliable 
conventional welding system, and it does not require inspection such as the bending test which is 
needed in the use of stud connectors. Furthermore, the use of only a few channel shear connectors 
would suffice to replace the need for a huge number of headed stud shear connectors (Maleki and 
Bagheri 2008a). 

Slutter and Driscoll (1965), Pashan (2006) and Viest (1952) presented the test results of 
preliminary studies on channel shear connectors to determine these connectors’ behaviour and to 
evaluate the possibility of the use of channel profiles as shear connectors. Several equations were 
derived from the aforementioned studies to determine the capacity of channel shear connectors 
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embedded in a solid concrete slab. These equations were adopted from the building codes, such as 
the National Building Code of Canada (NBC 2005) and American Institute of Steel Construction 
(AISC) specification (AISC 2005). 

Maleki and Bagheri (2008a, b) have recently conducted strength tests on channel connectors 
embedded in different concrete materials under monotonic and low cycle fatigue loading. 
Moreover, Maleki and Mahoutian (2009) have recommended modified equations in predicting the 
capacity of channel shear connectors that are embedded in polypropylene (PP) concrete, while 
Shariati et al. (2010, 2011) have proposed such equations for channel shear connectors embedded 
in light weight aggregate concrete (LWAC). In addition, Hosain and Pashan (2009) have 
suggested two equations to determine channel capacity in solid and metal deck slabs. Current 
research has been carried out on channel shear connectors to determine their behaviour and to 
make comparisons with other type of connectors Shariati et al. (2012a, b, 2013). 

This paper aims at examining the behaviour of channel shear connectors and the effects of their 
different sizes in concrete with varying strength levels, with and without reinforcement bars under 
monotonic and low cycle fatigue loading. 

However, since the casting, curing and testing procedures of channel shear connectors involved 
high costs, the search for new effective tools which are economical is required in designing shear 
connectors with modelling. Moreover, it is essential in determining the shear strength of shear 
connectors with varying dimensions and in different levels of concrete strength. This involves the 
utilization of modern models in predicting the channel connectors’ shear capacity, emphasizing on 
their behaviour. 

 
1.1 Why use artificial intelligence (AI) system approaches 
 
Numerous engineering applications such as nuclear energy (Lali and Setayeshi 2011), concrete 

technology (Hakim et al. 2011), stability of structures (Bilgehan 2011), soil science (Yilmaz and 
Kaynar 2011), Structural damage detection (Hakim and Razak 2013a, b) and deep beam element 
(Mohammadhassani et al. 2013a) has successfully applied the Artificial intelligence (AI) system 
approaches for modelling purposes. This includes the Artificial Neural Network (ANN), Fuzzy 
Inference Systems (FIS), and Neuro-fuzzy / fuzzy-neural systems among others. 

The fuzzy logic systems make a more precise alternative and are particularly suited for 
modelling the relationship between variables in environments that are either ill-defined or very 
complex. This technique produces a more accurate decision-making process through the use of 
mathematical relationships and qualitative variables. First introduced by Zadeh (1965), Fuzzy 
logic is a self-learning technique that provides a mathematical tool which allows the conversion of 
linguistic evaluation variables based on expert knowledge into an automatic evaluation strategy. 

As part of an intelligent system that combines the ANNs and Fuzzy Inference System (FIS) 
significant characteristics, the fuzzy neural systems are normally used to create powerful tools for 
computing. The properties (fuzzy rules and fuzzy membership functions) of data samples in the 
learning of a fuzzy inference system are determined by ANFIS through the use of the ANN theory. 
In this research, for the purpose of modeling and predicting the shear capacity of channel shear 
connectors, the ANFIS which is based on the Takagi-Sugeno fuzzy model is applied. 

A fuzzy inference system is applied using a feed-forward network and a hybrid learning 
method. This includes the recursive least squares (RLS) method, back propagation theory from 
ANNs and clustering techniques which are combined to appropriately construct the FIS according 
to the data. Concisely, the ANFIS combines ANNs and Fuzzy logic. The ANFIS uses the 

624



 
 
 
 
 
 

Prediction of shear capacity of channel shear connectors using the ANFIS model 

mathematical properties of ANNs in tuning rule based on fuzzy inference system which 
approximates the way that human brain process information. In modeling nonlinear systems, the 
use of ANFIS has proved to be reliable due to the ability to study features of the data set and adjust 
the system characteristics accordingly to a given error criterion. Moreover, through learning the 
rules from previously seen data, the ANFIS is capable of mapping unseen inputs to their outputs. 
The use of ANFIS and ANN models have been applied by Bilgehan (2011) for the buckling 
analysis of slender prismatic columns with a single non-propagating open edge crack subjected to 
axial loads. Through this study, Bilgehan concluded that as oppose to the multilayer feed forward 
ANN learning by back propagation algorithm, the ANFIS architecture with Gaussian membership 
functions performed better. 

 
1.2 Research significance 
 
Due to expensive experimental tests and lengthy procedure of the nonlinear finite element 

analysis, the prediction of shear capacity of channel connectors in composite beam is rather 
difficult. In this research, the application of ANFIS as a non-linear tool and linear regression (LR) 
as a linear tool in predicting the shear capacity of channel connectors in composite beam are being 
examined and compared. The proposed model offers an adequate prediction of the shear capacity 
of channel connectors with varying dimensions and in concrete with different strength level, with 
and without reinforcement bars. 
 
 
2. Experimental test program 

 
2.1 Specimen details and test setup 
 
Based on the strength of concrete and the size of channel shear connector in the concrete slabs, 

push-out specimens that consist of a steel I beam with two slabs attached to each flange of the 
beam were prepared. To each beam flange, one channel was welded and for all slabs, two layers of 
steel bars with four 10 mm diameter steel bar hoops were applied in two perpendicular directions. 
All the details of the push-out specimens are in accordance with those of Maleki and Bagheri 
(2008a, b). Fig. 1 illustrates the details of a typical specimen. 

Four types of channels – 100 and 75 mm in height and 30 and 50 mm in length – were used. 
The channels with 100 mm height had a flange thickness of 6 mm and web thickness of 8.5 mm 
while the channels with 75 mm height had a flange thickness of 5 mm and a web thickness of 7.5 
mm. 

In this study, the concrete compression strength levels were also variable factors. Reinforced 
high strength and normal strength concrete were used for the purpose of this research. In both HSC 
mixes, air-dry condition aggregates were used. Graded silica sands with maximum nominal size of 
4.75 mm was used as fine aggregate, and crushed granite with maximum nominal size of 10 mm 
was used as coarse aggregate. Table 1 shows the particle size analysis of the fine aggregates. 
Ordinary Portland Cement (OPC) which corresponds to the ASTM C150 with chemical properties 
shown in Table 2 was used in all mixes. The Rheobuild 1100 was used as a Super plasticizer (SP) 
in both mixes to attain acceptable workability. The SP is dark brown in color with specific gravity 
of approximately 1.195 and a pH within the range of 6.0-9.0 (Sajedi and Razak 2011). Table 3 
shows the mix properties of the concrete materials. Short length channels are used due to the 
limitation in the size of concrete slab. In accordance with the site situations, all push-out 
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Fig. 1 Details of typical specimen used in experimental push-out test 

 
Table 1 Particle size analysis of silica sand (SS) based on BS 822: Clause 11 

Sieve size (µm) Sieve No. WSS + WS (g) WS (g) WSS (g) Ret. % Cum. Ret. % Pass %

4750 3/16 in 409.9 408.3 1.6 0.32 0.032 99.68

2360 NO.7 462.3 375.7 86.6 17.33 17.65 82.35

1180 NO.14 437.2 343.0 94.2 18.85 36.5 63.50

600 NO.25 450.7 316.2 134.5 26.93 63.42 36.58

300 NO.52 379.1 288.7 90.4 18.09 81.51 18.49

150 NO.100 322.1 274.8 47.3 9.47 90.99 9.02 

75 NO.200 309.9 275.2 34.7 6.94 97.92 2.08 

Pan - 250.8 240.4 10.4 2.08 - 0.00 

Total    499.7  388.31  

*Fineness modulus = 388.31/100 = 3.88 (Neville 2008, Neville and Brooks 2008); Water absorption for 
silica sand is 0.93%; WSS = Silica sand weight; WS = Sieve weight; Cum. Ret = Cumulative retained 

 
Table 2 Composition of cementitious materials for OPC and slag used (% by mass) 

P2O5 SiO2 Al2O3 MgO Fe2O3 CaO MnO K2O TiO2 SO3 CO2 LOI 

0.068 18.47 4.27 2.08 2.064 64.09 0.045 0.281 0.103 4.25 4.20 1.53 

 
Table 3 Mix proportions of high strength concrete materials by weight 

Mix no 
Cement 
(kg/m3) 

Coarse 
aggregate 
(kg/m3) 

Fine 
aggregate 
(kg/m3) 

Water 
(kg/m3)

Silica fume 
(kg/m3) 

SP
(%)

W/C
Modulus of 

elasticity 
(GPa) 

Compressive 
strength 
(MPa) 

H Series 460 910 825 168 40 0.5 0.37 39 82 

N series 360 940 870 180 - 1 0.50 32 63 
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specimens were cast in a horizontal position. For both sides of specimen slabs, a reliable quality of 
the concrete was assumed as well. Prior to testing, all specimens were cured in water for 28 days. 

Standard cylinders with 150 mm diameter and 300 mm length and standard cubes with 100 mm 
length were cast simultaneously with the push-out specimens in order to obtain the compressive 
strength. Prior to the day of testing, all cylinders and cubes were cured in water. With the cylinder 
and the cube compression tests combined, the concrete strength was achieved. For the purpose of 
the compressive strength test procedure, the requirements of the ASTM C39 (ASTM 2005) were 
applied and the mean values of the concrete compression strength were used in the calculations 

 
2.2 Loading and test procedure 
 
In order to develop composite action in a beam, shear connectors are utilized. The connectors 

should have the ability of transferring shear forces even under severe load reversals. For the 
purpose of developing additional data and understanding the behaviour of channel shear 
connectors embedded in the solid concrete slab, the current study was carried out. 

As shown in (Fig. 2(a)-(b)), a 600 kN capacity universal testing machine was used to apply the 
load. While loading the slabs, specific support was applied and a load control of 0.04 mm/s was 
used as the loading rate for all specimens. Prior to every loading procedure, specimens were 
rearranged to suit the unidirectional nature of the load test frame. In monotonic loading, the load is 
increased until failure. The steel I beams are positioned on the deck of the universal test machine. 
Varying the orientation of the channel connector creates a variation in the connector’s ultimate 
strength and relative stiffness (Maleki and Bagheri 2008b). This fact was considered in the push-out 
test and at the beginning of every test for all specimens (Fig. 1), where the same orientation for 

 
 

(a) Specimen sets up (b) Specimen after fracture 

Fig. 2 Push-out test setup 
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Table 4 Different parameters of testing channel shear connectors 

Input Parameters Output parameter 

Slip tf tw fcu Lc P 
 

Fig. 3 System modelling using an adaptive intelligent system (Mohammadhassani et al. 2013) 

 
 
channels was considered. The universal test machine automatically records the practical load and 
relative slip between the I-beam and the concrete block at each time step. 

 
 

3. Numerical method 
 

3.1 Data availability 
 
In this research, the data are based on the parameters presented in Table 4 and the compression 

test of concrete used in the slab. The data set involves 1197 data points (instances) that are 
collected from the push-out tests with each instance being represented by a 5-dimensional 
real-valued vector. The vector also acts as the input parameters shown in Table 4 with the output 
being its corresponding prediction of shear capacity of the channel shear connectors. 

The applied slip between concrete block and steel I-beam, concrete cylinder strength fc, 
thickness of channel flange tf, thickness of channel web tw, and the length of channel shear 
connector (lc,) formed the input parameters, while the output is the shear capacity of the channel 
shear connector, P. 

 
3.2 System modelling 
 
In order to suit unknown actual/engineering system transfer function, system modeling alters 

the parameters of an adaptive intelligent system (like ANN, ANFIS). Fig. 3 illustrates a schematic 
of the system modeling problem utilizing the adaptive intelligent system. As can be seen from this 
figure, to ensure accurate estimation of the actual system, the parameters of the estimated 
intelligent system are tuned using proper learning methods. In brief, performance function, 
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normally the mean squared error (MSE) between the output of the intelligent system and the actual 
response is minimized. 

The objective function in system modelling problems is expressed as follows 
 

 



L

k

kyky
L

MSE
1

2)()(ˆ
1

                          (1) 

 

where y(k) is the noisy output of the actual system (measured or observed output), )(ˆ ky is the 
adaptive intelligent system output and L is the number of instances. Some cases are noise free 
where y(k) is equal to d(k) which is the desired output. When noise is present, )(ˆ ky is the 
estimation of the desired output or the semi desired output. 

 
3.3 Fuzzy expert system 
 
Uncertainties and vague concepts can be processed appropriately by human reasoning. Fuzzy 

logic enables the modelling of uncertainties and the thinking, reasoning and perception of the 
human brain (Abraham 2005). According to the Boolean logic, only two concepts were normally 
applied; ‘True’ or ‘False’, by 1 and 0 respectively. Hence, a proposition can only be true or false. 
However, in Fuzzy logic, the classical theory of binary membership in a set is extended to 
incorporate memberships between 0 and 1 and hence allows intermediate values between these 
two values. Therefore, each proposition can be either True or False to a certain degree between 
them. A classical set A, A ⊆ X with X as the space of objects and x as an element of X, is defined 
as a collection of elements x ∊ X, such that x can either belong or not belong to the set A. Eq. (2) 
below describes the set A 

 ,XxxA                                 (2) 

 
Whereas, a fuzzy set A in X is defined by Eq. (3) 

 
 ,))(,( XxxxA A                               (3) 

 
where μA(x) is the membership function for the fuzzy set A. Here, A is a linguistic term (label) that 
is determined by the fuzzy set. The membership function maps each element of x to a membership 
grade between zero and one (μA(x) ∊ [0, 1]). For example, this set can present x as ‘Medium’, 
which is a linguistic term that can be described by a fuzzy set with soft boundaries. Fig. 4 
illustrates two sets, which are based on the Boolean logic and the fuzzy logic respectively. 

 
3.4 Fuzzy Inference System (FIS) 
 
Fuzzy systems provide the means of representing the expert knowledge of the human about the 

process in terms of fuzzy (IF–THEN) rules which is the basic unit for capturing of knowledge in a 
fuzzy system. A fuzzy rule, like a conventional rule in artificial intelligence, has two components: 
an ‘IF’ part and a ‘THEN’ part, also referred to as antecedent and consequent, respectively. Eq. (4) 
shows the main structure of the fuzzy rule 
 

 consequentantecedent THENIF                     (4) 
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(a) (b) 

Fig. 4 An example of: (a) classical boolean set; and (b) fuzzy logic set (Mohammadhassani et al. 2013) 

 
 

The antecedent of a fuzzy rule can conditionally be satisfied to a degree. Using AND, OR and 
NOT logic operators, the antecedent of a fuzzy rule may combine multiple simple conditions into a 
complex string, similarly to that of conventional rules. The outcome of a fuzzy rule can be 
classified into two main categories: 

 

(a) Fuzzy consequent (Eq. (5)) where C is a fuzzy set. 
(b) Functional consequent (Eq. (6)) where p, q and r are constant 

 
CfTHENByAxIF  is  is  and  is                        (5) 

 
, is  and  is rqypxfTHENByAxIF                     (6) 

 
Essentially, fuzzy inference systems are composed of 4 blocks (Fig. 5) and incorporate an 

expert’s experience into the system design. A FIS comprises of a ‘fuzzifier’ which, through 
membership functions that represent fuzzy sets of input vectors, transforms the ‘crisp’ inputs into 
fuzzy inputs. Besides, it contains knowledge-base which includes the information given by the 
expert in the form of linguistic fuzzy rules. An inference-system (Engine) uses them together 
through a reasoning method and a ‘defuzzifier’ through which the fuzzy results of the inference 
were transformed into a crisp output using a ‘defuzzification’ method (Mohammadhassani et al. 
2013). 

The knowledge-based comprises of two components: the membership functions of the fuzzy 
sets used in the fuzzy rules which are known as database, and a collection of linguistic rules that 
are combined by a specific operator which is known as a rule - base. Fig. 5 illustrates the generic 
structure of a FIS. The two common types of FIS differ in accordance with the differences between 
the specifications of the consequent part of fuzzy rules (Eqs. (5) and (6)). In the first fuzzy system, 
the inference method proposed by Mamdani and Assilian (1975) was used in which fuzzy sets 
defined the rule consequent and has the structure of Eq. (5). 

Takagi and Sugeno (1985) proposed TSK, the second fuzzy system which contains an inference 
engine, where instead of a fuzzy set, a weighted linear combination of the crisp inputs was used for 
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Fig. 5 A flow diagram of a fuzzy inference system (FIS) (Mohammadhassani et al. 2013) 
 
 
the conclusion of a fuzzy rule Eq. (6) presents the structure of the TSK system. For the purpose of 
approximating large nonlinear systems, the use of the TSK models is suitable. 

Based on an expert’s knowledge, the knowledge-base containing the database and rule-base of 
a FIS can be constructed. For this purpose, the membership functions and rules were to be selected 
by the expert. This enables fuzzy models to help in extracting expert knowledge at an appropriate 
level. Since the fuzzy systems can also be constructed from data, the problem of knowledge 
acquisition can be alleviated. In order to analyse the data with the best possible accuracy, a variety 
of techniques have been used. With the use of available data, there are two common approaches 
for constructing a FIS. In the first approach, the rules of the fuzzy system are often designated a 
priori and during the learning process, the parameters of the membership functions are adapted 
from input to output data using an evolutionary algorithm (e.g., genetic algorithm). Meanwhile, the 
second approach is where the fuzzy system can be generated using hybrid neural nets that define 
the shape of the membership functions of the premises. This learning procedure and architecture is 
being referred as an adaptive network-based fuzzy inference system (Jang 1993). 

 
 

 

Fig. 6 ANFIS architecture (Mohammadhassani et al. 2013) 
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3.5 Adaptive network-based fuzzy inference system (ANFIS) 
 
A multilayer feed-forward network in which each node performs a particular function on 

incoming signals and a set of parameters pertaining to this node is called the ANFIS (Jang 1993). 
ANFIS has the ability to map unseen inputs to their outputs by learning the rules from previously 
seen data, just like the ANN. Fig. 6 illustrates a simple structure of this type of network having just 
two inputs of x and y and one output of f is. 

ANFIS contains five layers in its architecture which include the fuzzify layer, product layer, 
normalized layer, defuzzifier layer, and total output layer, as shown in Fig. 6. It is emphasized here 
that the general form of a first-order TSK type of fuzzy if–then rule has been given by Eq. (7) by 
assuming just two membership functions for each of the input data x and y. Here the rule i  of the 
ANFIS is re-written as 
 

niryqxpfTHENByAxIFi iiiiii ,,2 ,1   , is  and  is    : Rule          (7) 
 
where n is the number of rules and pi, qi and ri are the parameters determined during the training 
process. At the first stage of the learning process, the membership function (µ) of each of the 
linguistic labels Ai and Bi are calculated as follows 
 

nixO Aii ,2, 1,   ),(1                             (8) 
 

niyO Bii ,2, 1,   ),(1                             (9) 
 

At the second layer which is the product layer, the previously calculated membership degrees 
of linguistic variables are multiplied as shown in Eq. (10) 
 

niyxwO BiAiii ,2, 1,   ),()(2                       (10) 
 

The third layer, the normalized layer, where the ratio of each weight to the total weights is 
calculated 

ni
w

w
wO

n

i i

i
ii ,2, 1,   ,

1

3 





                     (11) 

 
The fourth layer is the defuzzification layer with adaptive nodes where their outputs depend on 

the parameter(s) pertaining to these nodes and the learning rule specifies how these parameters are 
altered to minimize the measure of prescribed error (Jang 1993). The relationship for these nodes 
is as follows 

nirxqxpwfwO iiiiiii ,2, 1,   ,)(4                  (12) 

 
Finally in the fifth layer, the summation of all the incoming signals is performed where the 

output of the system is the final result 
 

nifwO i

n

ii ,2, 1,   ,
1 1

5  
                       (13) 
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4. Results and discussion 
 
4.1 Experimental results 
 
Normally, the behaviour of shorter channels differs than that of the longer channels. Slabs with 

longer channels experience concrete cracking on the sides of the slabs when channel fracture 
occurs, but such is not the case with slabs with shorter channels. Hence, it can be assumed that in a 
similar condition, concrete cracks more in specimens with longer channel embedded into it. In 
recent studies conducted by Maleki and Bagheri (2008a), Maleki and Mahoutian (2009) and 
Shariati et al. (2010), this matter was also observed in other types of concrete. 

The effect of channel height can be assessed not only by taking into consideration the height of 
the channel but by considering pairs of similar specimens as well. In this case, there are two 
different types of HSCs, each with two similar pairs of channel embedded into it. For each series, 
the height of the connector changed from 75 mm to 100 mm. The specimen with the 100 mm high 
channel connectors carried a slightly higher load compared to the specimens with 75 mm high 
channel connectors as can be seen from the load-slip curves of monotonic loading (Fig. 7). 

This might be due to the fact that the shorter channel connectors have a tendency of 
concentrating the applied load on a smaller area. It can also be seen from the curves that the 
specimen with 100 mm high channels is more flexible than the one with 75 mm high channels. For 
the 100 mm high channels, the amount of slip at the ultimate load level was 6.5-9 mm as compared 
to 4-8 mm for that of the 75 mm high channels. 

For the design of shear connector, static strength is necessary and ductility is an essential 
assumption which is then confirmed throughout the ultimate slip (displacement) (Shim 2004). The 
load-slip for the monotonic load of all specimens is shown in Fig. 3. For the purpose of extracting 
 
 

Fig. 7 Load-slip curves of the specimens under monotonic loading 
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the mechanical properties of the channel connector, the load-slip curve for one channel is used. 
The slip occurs between the I-beam and the concrete block under monotonic and cyclic loading. 
Since the slip is larger than 4 mm in all cases, it can be concluded based from the static curve that 
there is sufficient ductility for all channel connectors in HSC. For all specimens, the relative slip is 
between 4-9 mm at the peak load for the monotonic loading. Consequently, the different levels of 
HSC are not significant for the connector ductility in the HSC push-out test. In all specimens, as 
illustrated by the load-slip curve, the load capacity reduces quickly beyond the peak load and the 
load-slip curve comes to a sudden termination. This shows that all specimens have a yield plateau 
which means that when the load reaches its peak, there is an increase in slip. 

 
4.2 Numerical results (Developing the ANFIS model for the prediction of shear capacity 

of channel shear connectors) 
 
First of all, the data are normalized through the use of a Gaussian normalization technique. 

Subsequently, a random selection was conducted where 80% of the normalized data were chosen 
as training data and the remainder of 20% as testing data. With reference to Fig. 8, the ANFIS 
models with different parameters (total five) as inputs are implemented with the use of the 
MATLAB programming language version R2010a. 

For the purpose of generating the FIS structures, Genfis2 function based on subtractive 
clustering method is used. In order to determine the best structure with the appropriate 
membership function parameters, two processes are involved namely ‘Learning’ and ‘Testing’. 
Throughout the learning process, the membership functions of the inputs are primarily generated 
using subtractive clustering. Then, a back propagation algorithm in combination with a recursive 
least squares method are used for the tuning of the membership function parameters. This is 
followed by the testing step where the generalization capability of the generated model is 
inspected. The number of membership functions was gradually increased to reduce the Mean 
Square Error (MSE) obtained by this method. This is done by lowering the range of influence of 
cluster centres in a trial and error and step by step manner. 

The structure of implemented ANFIS is illustrated in Fig. 8. 
 
4.3 Results of numerical analysis 
 
Linear Regression (LR) is a scheme that is excellent, simple and yet effective and is used to 

predict domains with numeric attributes. The linear models operate as building blocks for learning 
tasks that are more complex. In order to establish a relationship between the input and output data 
for the proposed ANFIS modelling, LR analysis is carried out. 

The MSE and Correlation Coefficient (R) values are used to evaluate the comparative methods 
in this study. MSE is a risk function which corresponds to the expected value of the squared error 
 
 
Table 4 Comparison of MSE and R values from ANFIS and LR 

 Training Set Testing set 

Methods Instances MSE R2 Instances MSE R2 

LR 947 0.3949 0.7779 141 0.3357 0.8167 

ANFIS 947 0.0687 0.9650 141 0.1271 0.9346 
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Fig. 8 Structure of implemented ANFIS 
 
 
loss or quadratic loss while R is the degree of success in reducing standard deviation (SD). It is 
used extensively in the sciences as a measure of the strength of linear dependence between two 
variables. The MSE and R2 are calculated in Eq. (1) as follows 
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where ),(ˆ ky  y(k) and yave is the output predicted by ANFIS, actual (observed) output and averaged 
actual output, respectively, and L is the total number of training/testing instances. The results of 
MSE and R2 obtained using the ANFIS and the LR separately for training and testing data are 
summarized in Table 5. 

The MSE values derived from ANFIS are more than 2 times smaller compared to the values 
from the classical linear regression as shown in Table 5. Moreover, the R2 value derived from 
ANFIS from train data is 0.9650 which is an exciting value nearest to 1 for a scientist. The 
outcome of the experiments demonstrates that the difference between the two comparative 
methods is more evident in the test set. The prediction of shear capacity of channel shear 
connectors provided by LR and ANFIS for the test data is shown in Fig. 9. The actual and 
predicted data are represented by the horizontal and vertical axes respectively. A direct linear 
relation between the actual and predicted data should be the outcome of a precise modelling. For 
the prediction of shear capacity of channel shear connectors, the proposed ANFIS method is 
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highly accurate and precise compared to the classical LR as revealed in Fig. 9. 
The modelled fuzzy surfaces shown in Figs. 10 and 11 can be used to visualize the relation 

between input variables and output. The output surface of a FIS model can be examined through 
the use of a Graphical User Interface (GUI) tool. The GUI offers a visual impression of the 
possible combinations of the two input variables and the output in 3-D which is a fast visual 
method of analysing and predicting the shear capacity of channel shear connectors. 

Based on the data shown in Table 4, the FIS provides a mathematical solution to determine the 
shear capacity of channel shear connectors. 

Figs. 10 and 11 illustrate the input-output surfaces, namely the nonlinear and monotonic 
surfaces, which demonstrate the response of the ANFIS model to varying values on ‘strain in tie 
section’ prediction. 
 
 

(a) (b) 

Fig. 9 The prediction of shear capacity of channel shear connectors from: (a) linear regression; (b) ANFIS

 

Fig. 10 Fuzzy surface: slip and tf versus load prediction 
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Fig. 11 Fuzzy surface: Tw and compressive strength of concrete versus load prediction 

 
 
5. Conclusions 

 
Due to its complex behaviour and lack of valid approaches, the prediction of shear capacity of 

channel shear connectors is very difficult. In this study, the researchers examined and compared 
the use of ANFIS as a non-linear tool with LR as a linear tool in predicting the shear capacity of 
channel shear connectors. The outcome showed that the proposed model offers an adequate 
prediction of the shear capacity of channel shear connectors at varying slip, flange of web and 
thickness, length and concrete compression strength. For both training and testing sets, the value 
of MSE derived from ANFIS is more than two times times lesser than that of LR and thus more 
accurate than the classical LR. In conclusion, for the purpose of predicting the shear capacity of 
channel shear connectors, the performance comparison of both ANFIS and LR for the test data 
shows that the proposed ANFIS method is more accurate than the classical LR. 
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