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Abstract.  Repairing and strengthening structural members by bonding composite materials have received 
a considerable attention in recent years. The major problem when using bonded FRP or steel plates to 
strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which 
lead to premature failure of the structure. As a result, many researchers have developed several analytical 
methods to predict the interface performance of bonded repairs under various types of loading. In this paper, 
a numerical solution using finite – difference method (FDM) is used to calculate the interfacial stress 
distribution in beams strengthened with FRP plate having a tapered ends under thermal loading. Different 
thinning profiles are investigated since the later can significantly reduce the stress concentration. In the 
present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic 
shear stress through the thickness of both beam and bonded plate. The shear correction factor for I-section 
beams is also included in the solution. Numerical results from the present analysis are presented to 
demonstrate the advantages of use the tapers in design of strengthened beams. 
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1. Introduction 

 
Extensive research and development, over the past decades, in the field of materials 

engineering and science have been carried out with fibre-reinforced plastic (FRP) composites 
leading to a wide range of practical applications (Seible et al. 1997, Mo et al. 1998, Li and 
Ghebreyesus 2006, Panjehpour et al. 2011) as a nation’s infrastructure ages, one of the major 
challenges the construction industry faces is that the number of deficient structures continues to 
grow. The applications of using externally bonded FRP plates to reinforced concrete (RC) or steel 
structures have shown that the technique is effective, efficient and offers a practical solution to this 
pressing problem. Retrofitting using externally bonded plates is quick, easy with respect to 
material handling, causes minimal site disruption and produces only little changes in section size. 
In recent years, many studies have been carried out on the behaviour and strength of such 
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retrofitting method (Roberts 1989, Malek et al. 1998, Smith and Teng 2001, Pesic and Pilakoutas 
2005, Stratford and Cadei 2006, Benyoucef et al. 2006, Tounsi and Benyoucef 2007, Yuan and 
Lin 2009, Yang et al. 2009, Zhu and Zhang 2010, Yang and Ye 2010, Hao et al. 2012, Krour et al. 
2013). However, the disadvantage of this technique is that the strengthened members are 
susceptible to stresses concentration near the plate end, which may cause a total debonding 
between the member and the FRP plate. In additions, some experimental studies have revealed that 
the debonding failure is a common case of brittle failure in the strengthened beams with plate 
(Jones et al. 1988, Swamy et al. 1989, Oehlers 1992, Arslan et al. 2008). As a result, some 
researchers noted that reducing the FRP or steel plate thickness near the plate end is an effective 
method to minimize the interfacial stresses (Stratford and Cadei 2006, Gao et al. 2006a, b, c, 
Belakhdar et al. 2011). 

As a further development of the solutions by Stratford and Cadei (2006), Smith and Teng 
(2001), Deng et al. (2004), Tounsi (2006) and Belakhdar et al. (2010), this paper presents a simple 
numerical solution for obtaining the shear and the normal stresses in the adhesive layer of a 
retrofitted beam under thermal loads. The method can be used to design strengthened beams with 
section properties that change along the beam such as tapered plates. Finally, a parametric study 
was conducted to compare the results of models with different geometries. 
 
 
2. Theoretical formulation 

 
2.1 Basic assumptions 
 
The following assumptions were made in the analytical study: 
 

 All materials considered as linear elastic. 
 The beam is simply supported and shallow, i.e., plane sections remain plane in bending. 
 No slip is allowed at the interface of the bond (i.e., there is a perfect bond at the adhesive 

steel or FRP plate interface). 
 Bending deformations of the adhesive are neglected. 
 Stresses in the adhesive layer do not change with the thickness. 
 The shear stress analysis assumes that the curvatures in the beam and plate are equal (since 

this allows the shear stress and peel stress equations to be uncoupled). 
 A parabolic shear stress distribution through the depth of both the beam and the bonded 

plate is assumed. 
 

In case of reinforced concrete beams, the section properties were based on the uncracked 
section, excluding the convention al steel reinforcement. 

 
2.2 Shear stress distribution along the FRP–beam interface 
 
The present stresses derivations are mainly based on Tounsi et al. (2009) method. However, the 

final governing differential equations are solved using finite difference method in order to avoid 
complex solution in case of tapered plates. 

A differential section, dx, can be cut out from the FRP-strengthened beam as shown in Figs. 1 
and 2. The strains in the beam near the adhesive interface and the external FRP reinforcement can 
be expressed, respectively as 
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Fig. 1 Simply supported beam strengthened with bonded FRP plate 

 

 

Fig. 2 Forces in infinitesimal element of a soffit – plated beam 
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where, α1 and α2 are the thermal expansion coefficients of adherends 1 and 2, respectively. ΔT is 
the temperature change. u1(x) and u2(x) are the longitudinal displacements at the base of adherend 
1 and the top of adherend 2, respectively. )(  and  )( 21 xx MM   are the strains induced by the 
bending moment at adherends 1 and 2, respectively and they are written as follows 
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where E is the elastic modulus and I the second moment of area. The subscripts 1 and 2 denote 
adherends 1 and 2, respectively. M(x) is the bending moment while y1 and y2 are the distances from 
the bottom of adherend 1 and the top of adherend 2 to their respective centroid. )(1 xN  and 

)(2 xN  are the unknown longitudinal strains of the beam and FRP reinforcement, respectively, at 
the adhesive interface and they are due to the longitudinal forces. These strains are given as 
follows 
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where )(1 xu N  and )(2 xu N  represents the longitudinal force-induced adhesive displacement at the 
interface between the upper (lower) adherend and the adhesive. 

To determine the unknown longitudinal strains )(1 xN  and ),(2 xN  shear deformations of the 
adherends are incorporated in this analysis. It is reasonable to assume that the shear stresses, which 
develop in the adhesive, are continuous across the adhesive-adherend interface. In addition, 
equilibrium requires the shear stress to be zero at the free surface. Using the same methodology 
developed by Tsai et al. (1998) and Tounsi (2006), this effect is taken into account. A cubic 
variation of longitudinal displacements ),(1 yxU N  and ),(1 yxU N  in both adherends is assumed 
 

)()()(),( 11
3

11 xCyxByxAyxU N                        (5) 
 

)()()(),( 22
3

22 xCyxByxAyxU N                        (6) 
 
where y(y′) is a local coordinate system with the origin at the top surface of the upper (lower) 
adherend (Fig. 2). 

The shear stresses in the two adherends are given by 
 

)1(1)1( xyxy G                                  (7) 

 

)2(2)2( xyxy G                                 (8) 
 

G1 and G2 are the transverse shear moduli of adherends 1 and 2, respectively. Neglecting the 
variations of transverse displacement N

iW (induced by the longitudinal forces) with the 
longitudinal coordinate x 

y

U N
i

ixy 


)(                                 (9) 

 

The shear stresses are given by 
 

 )()(3 1
2

11)1( xByxAGxy                          (10) 

 

 )(')(3 2
2

22)2(' xByxAGxy                          (11) 
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The shear stresses must satisfy the following conditions 
 

axy'xy τxτx,σtx,σ  )()0 () ( )2(1)1(                       (12) 

 
0) (,0)0 ( 2)2()1(  tx,σx,σ xy'xy                        (13) 

 
where t1 and t2 are the thickness of adherends 1 and 2, respectively. 

Condition Eq. (12) follows from continuity and assumption of uniform shear stresses (τ(x) = τa) 
through the thickness of adhesive. Condition (Eq. (13)) states there is no shear stress at the top 
surface of the adherend 1 (i.e., at y = 0) and the bottom surface of adherend 2 (i.e., at y’ = 0). 
These conditions yield 
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Then, with a linear material constitutive relationship, the adherend shear strain γ1 for adherend 

1 and γ2 for adherend 2 are written as 
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The longitudinal displacement functions NU1  for the upper adherend and NU 2  for the lower 
adherend, due to the longitudinal forces, are given as 
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where )0(1
NU  represents the displacement at the top surface of the upper adherend (due to the 

longitudinal forces) and Nu2 is the longitudinal force-induced adhesive displacement at the 
interface between the adhesive and lower adherend. 

Note that due to the perfect bonding of the joints, the displacements are continuous at the 
interfaces between the adhesive and adherends. As a result, Nu2  should be equivalent to the lower 
adherend displacement at the interface and Nu1 (the adhesive displacement at the interface between 
the adhesive and upper adherend) should be the same as the upper adherend displacement at the 
interface. Based on Eq. (18), Nu1 can be expressed as 
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Using Eq. (20), Eq. (18) can be rewritten as 
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The longitudinal resultant forces, N1 and N2, for the upper and lower adherends, respectively, 

are 
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where N

1 and N
2 are longitudinal normal stresses for the upper and lower adherends, 

respectively. By changing these stresses into functions of displacements and substituting Eqs. (19) 
and (21) into the displacements, Eqs. (22) and (23) can be rewritten as 
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Hence, the longitudinal strains induced by the longitudinal forces (Eq. (4)) can be written as 
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Substituting Eqs. (26), (27) and (3) into Eqs. (1) and (2), respectively, these latter become 
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where N(x) is the axial force in each adherend and A is the cross-sectional area. 

The shear stress in the adhesive can be expressed as follows 
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where Ks = Ga / ta is shear stiffness of the adhesive; Ga and ta are shear modulus and thickness of 
the adhesive, respectively, and u1(x) and u2(x) are the longitudinal displacements at the base of 
adherend 1 and the top of adherend 2. Differentiating the above expression we obtain 
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Consideration of horizontal equilibrium gives 
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and b2 is the width of the FRP plate. 

Assuming equal curvature in the beam and the FRP plate, the relationship between the 
moments in the two adherends can be expressed as 
 

)()( 21 xRMxM                               (36) 
 
with 
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Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 
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where MT(x) is the total applied moment. 

The bending moment in each adherend, expressed as a function of the total applied moment and 
the interfacial shear stress, is given as 
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The first derivative of the bending moment in each adherend gives 
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Substituting Eqs. (28) and (29) into Eq. (31) and differentiating the resulting equation yields 
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Substitution of the shear forces (Eqs. (41) and (42)) and axial forces (Eqs. (34) and (35)) into 

Eq. (43) gives the following governing differential equation for the interfacial shear stress 
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and ξ is a geometrical coefficient which is given as 
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For a rectangular section (b1 = b0), ξ = 1 which corresponds to the same expression given by 

Tounsi et al. (2009) by neglecting shear deformations of the FRP plate. However, for I-beam 
section we have ξ < 1. 

 
2.3 Normal stress distribution along the FRP-beam interface 
 
The interfacial normal stress in the adhesive can be expressed as follows 
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and w1(x) and w2(x) are the normal displacement of adherends 1 and 2, respectively. 

Differentiating Eq. (47) twice results in 
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Considering the moment-curvature relationships for the beam and the external reinforcement, 

respectively, gives 
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The equilibrium of adherends 1 and 2, leads to the following relationships: 
Adherend 1: 
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Adherend 2: 
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Based on the above equilibrium equations, the governing differential equations for the 

deflection of the adherends 1 and 2, expressed in terms of the interfacial shear and normal stresses, 
are given as follows: 
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Substitution of Eqs. (53) and (54) into the fourth derivation of the interfacial normal stress 

obtainable from Eq. (47) gives the following governing differential equation for the interfacial 
normal stress 
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2.4 Finite difference solution 
 
The governing differential equations for shear stress (Eq. (44)) and normal stress (Eq. (55)) are 

valid for plated beams with geometric and material properties that are constant along its length. 
However, in case of complex plate-end geometry (taper) a closed form solution is not possible. A 
finite difference method (FDM) can be used to evaluate the adhesive stresses for cases with 
varying section properties. 

A finite difference solution using constant node spacing, h, is outlined below. The nodes are 
numbered with real nodes from x = 0 to x = L / 2, in addition to virtual nodes (1, 2, n + 3, n + 4) 
which are used to allow derivatives to be defined at nodes 3 and n+2. Subscripts are used to define 
nodes’ numbers in the following equations. According to Fig. 3, the finite difference solution 
shows a good convergence for shear and normal stresses, thus, in order to obtain accurate results, a 
fine mesh of 2000 nodes has been used for all analysis. 
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Fig. 3 Convergence of Finite difference solution 
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2.4.1 Interfacial shear stress 
The governing differential equation (Eq. (44)) for the interfacial shear stress is simplified as 
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The Eq. (56) can be written in finite difference format as 
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Considering the following boundary conditions: 
(1) Due to symmetry the shear stress at mid-span is zero 
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(2) At the end of FRP plate, the longitudinal force N1(0) = N2(0) and the moment M2(0) are zero. 

As a result, the moment in the section at the plate curtailment is resisted by the beam alone. Thus 
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Using this boundary condition in Eq. (31) 
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Eq. (62) can be written as 
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By writing Eq. (59) at the plate-end (node 3) and eliminating τ2 using Eq. (63), we get 
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Finally, by combining Eqs. (59), (60), and (64) gives 

 
















































































































0                                      

)(                             

                                     

)(                             

)0(2

 

1                                                                                         

1   )2(   1                                                               

                                                       

1   )2(     1                      

        2    )2(

    

2
2

2
2

21
11

1
12

2

2

1

4

2

2
1

2
1

2
1

xVhf

xVhf

TM
IE

y
hKfh

hf

hf

hf

T

n

n















         (65) 

 

These n simultaneous equations are solved explicitly to find the plate force at each of the n 
nodes. 

 
2.4.2 Interfacial normal stress 
A fourth order finite – difference solution is required to find the normal shear stress. The 

governing equation for normal stress (Eq. (55)) is written at each node (i = 3…n + 2) along the 
beam 
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Eq. (66) can be written in finite difference at ith node as 
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Considering the following boundary conditions: 
(1) At center the normal stress is zero 

 
0)2/( 2  nLx                             (71) 

 
(2) At the plate ends, the bending moment equals to zero. By Substituting Eq. (50) into Eq. (49) 

and expressing the result at the plate-end (x=0) yields 
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The boundary condition leads to M2(0) = 0 and M1(0) = MT(0). Thus Eq. (72) can be expressed 

as 
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Using the finite difference format the above equation becomes 
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(3) The shear force at the plate ends equals to zero. Differentiating Eq. (49) and substituting 

Eqs. (51) and (52) into the resulting which may be expressed at the plate-end as follows 
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The boundary condition leads to V2(0) = 0 and V1(0) = VT(0). Thus Eq. (75) can be expressed as 
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which can be expressed in finite difference format as 
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Eq. (70) can be written at node 3 after eliminating σ1 and σ2 using Eqs. (74) and (77) as follows 
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Also, at node 4, Eq. (70) can be written after eliminating σ2 using Eq. (74) as 
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Finally, combining Eqs. (71), (78), and (79) yields a system of n simultaneous equations as 

follows 
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These n simultaneous equations are solved explicitly for normal stress at each of the n nodes. 
The normal stress distribution follows. 

 
 

3. Results and discussion 
 

3.1 FRP Plate with constant thickness 
 
Comparison of the results 
An I-section steel beam which was carried out by Deng et al. (2004) is used for comparison 

with present method since the effect of transverse shear has been included in addition to shear 
correction factor (ξ). The span of the I-section beam is 5000 m, the distance from the support to 
the end of the plate is 500 mm. the beam is subjected to thermal loading of ΔT = 50°C. The cross 
section properties of I-beam and the material properties are listed in Table 1. 

According to 2 and Fig. 4 it is noted that the results of the present method show a lower 
maximum stresses compared to results obtained by Deng et al. (2004). Therefore, the inclusion of 
shear deformation effect decreases the interfacial maximum stresses, noting that the present 
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Table 1 Dimensions and material properties of the I-section composite beam 

Component 
Width 

b, [mm] 
Depth 

t, [mm] 
Young’s modulus 

E, [GPa] 
Poisson’s ratio 

Shear modulus
G, [Gpa] 

Beam 
b0 = 211.9 
b1 = 12.7 

t0 = 544.5
t1 = 21.3 

210 0.3 - 

Adhesive layer 211.9 2 10 0.3 3.7 

FRP plate 211.9 12 310 0.3 3.7 

 
Table 2 comparison of maximum interfacial stresses for the I-section beam 

 
Thermal loading ΔT = 50°C 

Shear stress (MPa) Normal stress(MPa) 

Deng et al. (2004) 34.50 25.60 

Present FDM 17.31 13.58 
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Fig. 4 Comparaison of interfacial normal and shear stresses forFRP-plated I-section steel beam 
 
 
method takes into account a parabolic shear distribution while Deng et al. (2004) method has not 
included the shear deformation effect. This later phenomenon has been already confirmed by 
Tounsi et al. (2009) and Belakhdar et al. (2011) for beams under mechanical loading. 

 
Effect of FRP plate thickness 
The thickness of the FRP plate is an important design variable in practice. Fig. 5 shows the 

effect of the thickness of the FRP plate on the maximum interfacial stresses. It is shown that the 
level and concentration of interfacial stress are influenced considerably by the thickness of the 
FRP plate. The interfacial stresses increase as the thickness of FRP plate increases. Noting that, in 
the practice, FRP plates have generally a small thickness compared to that of steel plates. 
Therefore, in terms of stress concentration due to plate thickness, the use of FRP plates is more 
advantageous than the use of steel plates. 
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Fig. 5 Effect of FRP plate thickness on the maximum interfacial stresses 
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Fig. 6 Effect of adhesive layer thickness on the maximum interfacial stresses 
 
 

Effect of adhesive layer thickness 
The effect of adhesive layer thickness is shown in Fig. 6. It is noted that as the thickness of the 

adhesive layer increases, the maximum shear and normal stress decrease. This relation between 
adhesive layer thickness and the maximum stresses is expected since the adhesive layer is 
relatively soft and has a smaller stiffness, in addition to the fact that as the thickness increases, the 
layer become more softer which reduces the stress concentration in the layer. 

 
3.2 FRP Plate with taper 
 
Effect of taper shape 
Herein the effect of FRP plate with a generally variable thickness is presented. The thickness of 

the FRP plate t2 = t2(x) is described by arbitrary function of the longitudinal coordinate x; hence 
the cross-sectional area and the second moment of area of the FRP plate, A2(x) and I2(x), are also 
functions of the coordinate x. three particular cases are examined as shown in Fig. 7. Noting that in 
this parametric study, the I-section steel beam is chosen to be studied where its geometric and  
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Fig. 7 Taper patterns of FRP plate 
 
 
materials properties are kept fixed. Thus, only the taper geometric properties are studied according 
to the following patterns: 
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Type B: Tangent – parabolic variation 
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Type C: Parabolic variation 
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The FRP plate with constant thickness (type 0) will be regarded as the reference case. A 

numerical study is then conducted to supply information on the contribution of the shape of the 
thickness profile on the reduction of edge interfacial stresses. In this study, the plated beam is 
subjected to thermal load of ΔT = 50°C, the length of the taper is a = 200 mm and the thickness at 

617



 
 
 
 
 
 

Benaoumeur El Mahi et al. 

the end of the tape is te = 2 mm. 
From the results presented in Table 3, we can observe that the decrease of the thickness of the 

FRP plate in the edge region leads to a reduction in the edge stresses. We can also conclude that 
FRP plate with tangent-parabolic profile i.e., type (B) gives an important reduction in edges 
interfacial stresses, where a reduction of about 49% and 66% in shear and normal stresses, 
respectively, is obtained (with respect to the reference case). Fig. 8 describes the typical stress 
field to clarify the comparison of the results with those of the reference case. Hence, reducing the 
thickness of the FRP plate in the edge region may be considered as an effective way for reducing 
the magnitude of the edge stresses involved. 
 
 
Table 3 Maximum interfacial stresses and percent of reduction in maximum stresses for different taper 
profiles 

 
Max shear stress 

τ, [MPa] )0(

)0( )(

ype

Type


   [%] Max normal stress

σ, [MPa] )0(

)0( )(

Type

Type


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[%] 

Type (0) 17.31 - -13.58 - 

Type (A) 10.08 42% -5.52 59% 

Type (B) 8.91 49% -4.57 66% 

Type (C) 11.04 36% -6.42 53% 
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Fig. 8 Interfacial stresses for different types of taper profile of FRP plate 

618



 
 
 
 
 
 

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams 

Effect of taper profiles geometry 
Various parameters influence the maximum values of the shear and normal stresses in the 

bonding region. In this section of study we used the all types of profiles given in Fig. 7. For 
retrofitted beams, the most important ones are the thickness and shear modulus of the adhesive, 
and the thickness and the elastic modulus of the FRP plate. These parameters were studied by 
several authors (Yang et al. 2007, Benyoucef et al. 2007, Tounsi et al. 2009). In the present study, 
we intend to show how the maximum interfacial stresses are influenced by the dimension of the 
taper. The important parameters of the taper are: the length of the taper (a) and the thickness at the 
end of the taper (te). Figs. 9 and 10show the maximum interfacial stresses at the tapered end of the 
plate versus the length of the taper and the thickness end, respectively. 

Generally, the parametric study indicates the beneficial effect of having a thin tapered end and 
a long taper. For the latter, the benefit appears to have saturated when the length of the taper is 
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Fig. 9 Maximum interfacial stresses in terms of taper length for different taper profiles 
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beyond 400 mm. 
According to type of taper, it can be noted that the shape of taper has a sensible effect on 

maximum interfacial stresses. However it seems that the taper shape has a negligible effect on the 
maximum stresses when length of the taper (a) is grater that 400 mm or the plate-end thickness is 
greater than 60% of the plate thickness. 

 
 

4. Conclusions 
 
The present study has developed a relatively simple procedure for evaluating the shear and 

normal stress concentrations that occur at the edges of the FRP plate in externally strengthened 
beams under thermal loading. Finite difference method has been employed to solve problems of 
beams strengthened with plates have complex geometrical extremities. 

High stress concentrations occur at the free ends of adhesively bonded plates. Using the tapered 
edges, however, reduce the maximum shear stresses by at least 15% the maximum stresses. In 
addition, it has been shown that the shape of the taper has an important effect on the reduction of 
such stresses, where tangent parabolic stepped taper can reduce better the maximum stresses 
compared to other taper shapes, where a reduction of about 49% and 66% in shear and normal 
stresses, respectively, is obtained. Hence, the taper is very beneficial for avoiding debonding of the 
FRP plates from the beams as long as the taper length is less that 400 mm and the plate-end 
thickness is less than 60% of the FRP-plate thickness. 

The dimensions of the taper also have an influence on the interfacial edge stresses. The 
maximum shear and normal stresses decrease as the thickness of the end of the taper decreases and 
the length of the taper increases. However, there is no further change in stress if the length of the 
taper is increased beyond 400 mm. 
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