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Abstract.  The flexural behaviour of steel beams significantly affects the structural performance of the 
steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum 
bending moment and the plastic bending strength) that steel beams may experience is the key parameter 
affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is 
to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural 
network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature 
have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular 
and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams 
were formed. Nine critical prediction parameters were selected for the former while eight parameters were 
considered for the latter. These input variables used for the development of the prediction models are 
representative of the geometric properties of the sections, the mechanical properties of the material and the 
shear length of the steel beams. The prediction performance of the proposed NN model was also compared 
with the results obtained using an existing formulation derived from the gene expression modeling. The 
analysis of the results indicated that the proposed formulation provided a more reliable and accurate 
prediction capability of beam overstrength. 
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1. Introduction 

 
The flexural behaviour of beams significantly influences the nonlinear performance of steel 

structures. In particular, for seismic design of moment resisting frames (MRFs) and dual braced 
frames (namely systems having MRFs and concentric or eccentric bracing frames acting in parallel) 
steel beams are conceived as dissipative elements and should provide adequate local ductility to 
guarantee the formation of a global dissipative mechanism. This implies that steel beams should be 
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able to develop plastic hinges rotating until the collapse mechanism is completely developed, 
without dropping their moment capacity, thus assuring the required redistribution of bending 
moments. The plastic deformation of ductile beams is characterized by an amount of strain 
hardening, which is responsible for the development of bending moments larger than the plastic 
bending strength. Therefore, according to hierarchy criteria the quantification of the maximum 
bending moment experienced by the beams is fundamental to design non-dissipative elements 
(namely connections and columns). In existing codes like AISC 341-10 and EN1998-1 the 
capacity design rules may lead to underestimate the actual ultimate flexural strength of steel beams. 
According to AISC 341-10, the beam flexural overstrength is equal to 1.1Ry, being 1.1 a factor 
accounting for strain-hardening, as well as other possible sources of overstrength, whereas Ry is 
ratio between the expected yield stress and the specified minimum yield stress (Ry varies in the 
range 1.1 to 1.5, depending on steel grade), so that it accounts for the influence of random material 
variability. In EN1998-1, a similar overstrength factor is given as 1.1γov, being γov the ratio 
between the maximum actual yield strength fy.max and the nominal yield strength fy. However, all 
the current codes do not consider that the amount of strain-hardening which can be exhibited 
before the complete development of local buckling is generally larger than 1.1 for ductile beams 
(Mazzolani and Piluso 1993, D’Aniello et al. 2012) and is also related to several geometric and 
mechanical aspects, such as the width-to-thickness ratios of the plate elements constituting the 
cross section, the shear length, the presence of torsional restraints, the steel grade, etc. On the other 
hand, in thin walled or cold formed steel sections, width to thickness ratio of plate elements is 
often large and the flexural failure may occur by buckling and not by yielding, thus limiting the 
load carrying capacity of the member (Yu 2000). 

This implies that an effective estimation of the level of hardening developing in such elements 
prior than strength degradation occurs is essential at the design stage for a safe application of 
capacity design rules (Grecea et al. 2004, Della Corte et al. 2007, Tortorelli et al. 2010, D’Aniello 
et al. 2012, Güneyisi et al. 2013, Della Corte et al. 2013) and to minimize the possibility of the 
brittle failure (Brooke and Ingham 2011). 

In the recent years, there have been implementation of artificial intelligence technologies in 
modelling and optimization of the steel members and/or steel structures (Fonseca et al. 2003, 
Hayalioğlu and Değertekin 2004, Kim and Ma 2007, Gandomi et al. 2009, Kim et al. 2009a, b, 
Gholizadeh et al. 2011, Hakim and Abdul-Razak 2013, Güneyisi et al. 2013, D’Aniello et al. 
2014). For example, in the study of Fonseca et al. (2003), neural networks (NNs) were used to 
forecast steel beam patch load resistance. They compared the results with preceding models and 
existing design formulations. It was found that the networks’ percentage errors relative to the 
experimental results confirmed the possibility of using the unified methodology to generate new 
data accurately. Hayalioğlu and Değertekin (2004) proposed a genetic algorithm based on 
optimum design model for non-linear steel frames with semi-rigid connections. A genetic 
algorithm was employed as optimization method which uses reproduction, crossover and mutation 
operators. A polynomial model proposed by Frye and Morris (1975) was used for modeling of 
semi-rigid connections. They concluded that the parameters of genetic algorithm played an 
important role in the optimization of steel frames with semi-rigid connections. Kim et al. (2009a) 
studied on a system identification technique for a bridge deck with NNs. They trained NNs for 
system identification and the identified structure gave training data in return. They verified the 
proposed strategy with known systems and it was applied to a bridge deck with experimental data. 
As a result, they proved the effectiveness and applicability of the proposed method. However, no 
explicit formulation was presented. In the another study by Gholizadeh et al. (2011), finite element 
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qtrpand soft-computing techniques, namely, back-propagation neural network and adaptive neuro- 
fuzzy inference system were employed in order to propose the models for estimation of the critical 
buckling load of the web posts of castellated steel beams. 

Recently, NN has been used on the field of steel beams by D’Aniello et al. (2014), to estimate 
the available rotation capacity of cold-formed rectangular and square hollow section (RHS-SHS) 
steel beams. In this study, the Authors described two novel mathematical models based on both 
NNs and gene expression programming (GEP), showing the different level of accuracy and the 
relevant advantages. On the other hand, estimation of the flexural overstrength factor (s) of the 
steel beam through soft-computing techniques has not yet been studied comprehensively in the 
literature. In the recent paper by the authors of this study (Güneyisi et al. 2013), the formulation of 
s for I-H and RHS-SHS steel beams was achieved through GEP, which was originated from 
genetic algorithms. The developed models were compared to the existing analytical relations 
proposed in the literature. Güneyisi et al. (2013) also reported that the developed GEP based 
models were more accurate in terms of the prediction capability than the existing ones (D’Aniello 
et al. 2012). However, in the current study, another alternative soft-computing technique for 
modelling the flexural overstrength factor of the steel beam that is NN is used for the first time. 
The explicit form of the proposed NN based models for I-H and RHS-SHS steel beams is derived 
and presented as a mathematical formulation. Moreover, the prediction performance of the 
proposed NN models are compared with the existing GEP based models suggested by Güneyisi et 
al. (2013). 
 
 
2. Definition of flexural overstrength 

 
The flexural overstrength factor (s) is used for the characterization of the structural steel beams 

having ultimate bending capacity larger than the plastic bending strength due to the strain 
hardening that can be experienced before the complete development of local buckling or fractures 
(D’Aniello et al. 2012). It is a non-dimensional parameter expressed by the following ratio 
 

y

LB

f

f
s                                    (1) 

 

where fLB is the stress corresponding to the complete development of local flange buckling or at the 
lateral torsional buckling (Rebelo et al. 2009, Da Silva et al. 2009), and fy is the yielding stress. 

Moreover, this factor can be computed through the following more practical relation 
 

pM

M
s max                                  (2) 

 

where Mmax is the maximum moment that can be reached by the beam, while Mp is the theoretical 
full plastic moment. The definition is illustrated in the generalized force displacement curve of a 
member able to withstand plastic deformation shown in Fig. 1. 

The parameter s can be used to classify steel members. This approach has been adopted by 
OPCM 3274 (2003), the late Italian code for seismic design, on the basis of concept of member 
behavioural classes (Mazzolani and Piluso 1993). The classification criterion allowed to properly 
apply capacity design criteria providing the adequate overstrength to non-dissipative members. On 
the contrary, Eurocode 3 (CEN 2005) defines the subdivisions of cross-sections in four classes, 
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s = Mmax/Mp
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Fig. 1 Generalized moment–rotation curve for a steel beam (D’Aniello et al. 2012) 

 

 
Fig. 2 EN 1993:1-1 classification criterion (D’Aniello et al. 2012) 

 
 
depending mainly on the properties of compression elements (Fig. 2), without providing 
indications to quantify the rotation capacity and the flexural overstrength. 
 
 
3. Description of the database used for derivation of the models 
 

The database used for explicit neural network formulation of the flexural overstrength factor (s) 
for I-H and RHS-SHS steel beams were collected from the available scientific literature (Lukey 
and Adams 1969, Climenhaga 1970, Grubb and Carskaddan 1979, 1981, Kemp 1985, Schilling 
1988, Schilling 1990, Wargsjö 1991, Dahl et al. 1992, Boeraeve and Lognard 1993, Suzuki et al. 
1994, Wilkinson 1999, Zhou and Young 2005, Landolfo et al. 2011, D’Aniello et al. 2012). 

The examined test configurations accounting for different load patterns (namely, bending 
moment distribution) and cross-sectional typologies are demonstrated in Figs. 3 and 4, respectively. 
The data sources presented in Table 1 contain precisely selected data samples to ensure a wide 
range of cross-sectional typologies under monotonic loading with different local slenderness ratios. 
The experimental data are reported in Tables 2 and 3 for I-H and RHS-SHS beams, respectively. 

All data samples were ordered to create a consistent sequence of the inputs to be used for the 
derivation of the models. The input nodes include the geometric properties of the section, the 
mechanical properties of the material, and the shear length of the steel beams. Thus, a total of nine 
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Fig. 3 Test configurations of the steel beams under investigation 

 
 

 
 

Fig. 4 Geometry of steel beam cross sections 
 
 
Table 1 Details of available experimental data for the steel beams 

No. Authors Profile type 
Steel 
grade 

Test 
setup 

Loading 
history 

1 Lukey and Adams (1969) I and H hot-rolled MCS a 3PBT c Monotonic

2 Climenhaga (1970) I welded MCS 3PBT Monotonic

3 Grubb and Carskaddan (1979, 1981) I welded HSS b 3PBT Monotonic

4 Kemp (1985) I and H welded + hot-rolled MCS 3PBT Monotonic

5 Schilling (1988, 1990) I welded HSS 3PBT Monotonic

6 Wargsjö (1991) I welded HSS 3PBT Monotonic

7 Dahl et al. (1992) I welded HSS 3PBT Monotonic

8 Boeraeve and Lognard (1993) I and H hot-rolled MCS 3PBT Monotonic

9 Suzuki et al. (1994) I welded MCS + HSS 3PBT Monotonic

10 
Landolfo et al. (2011) 
D’Aniello et al. (2012) 

I and H hot-rolled MCS CBT d Monotonic

11 Wilkinson (1999) Cold-formed RHS + SHS MCS 4PBT e Monotonic

12 Zhou and Young (2005) Cold-formed RHS + SHS MCS + HSS 4PBT Monotonic

13 
Landolfo et al. (2011) 
D’Aniello et al. (2012) 

Cold-formed RHS + SHS MCS CBT Monotonic

a MCS: mild carbon steel; b HSS: high-strength steel; c 3PBT: 3-point bending test; d CBT: cantilever bending 
test; e 4PBT: 4-point bending test 
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and eight input parameters were utilized for the development of NN based models for the steel 
beams with I-H and RHS-SHS profiles, respectively. 

The model generated for I-H sections consists of the following parameters: bf (width of flange), 
d (depth of section), tf (thickness of flange), tw (thickness of web), Lv (shear length), fy, flange (yield 
stress of flange), fy, web (yield stress of web), E/Eh (ratio of the modulus of elasticity of steel to the 
hardening modulus), and εh/εy (ratio of the strain corresponding to the beginning of hardening to 
the yield strain) (see Table 2). 

The NN model for the RHS-SHS profiles covers the following input parameters: b (width of 
section), d (depth of section), t (wall thickness of section), r (inside corner radius), Lv (shear 
length), fy (yield stress), E/Eh, and εh/εy (see Table 3). 

In order to generate the artificial neural network based on mathematical formulation, training 
data containing input and output variables have been defined. Moreover, for verification of the 
repeatability and robustness of the developed model, another data set containing the same number 
and sequence of input and output variables has been used. Therefore, in the present study, two sets 
of available experimental data (one for I-H and one for RHS-SHS beams) were arbitrarily divided 
into two parts to obtain the training and testing databases. Approximately 1/4 of the total data 
samples were used as the test database, while the rest were utilized as the training database, as 
shown in Tables 2 and 3. Thus, 57 and 49 data samples were used as the training data for I-H and 
RHS-SHS profiles, respectively, and the testing database contained 19 data samples for the former 
and 16 for the latter. 
 
 
Table 2 Experimental data used for the model of I-H steel beams 

Ref no. 
Data
no. 

bf 
(mm) 

d 
(mm)

tf 

(mm)
tw 

(mm)
Lv 

(mm)
fy, flange

(MPa)
fy, web

(MPa)
E/Eh εh/εy s 

Lukey and  
Adams (1969) 

1 203.5 256.7 10.8 7.65 1740 283 308 42.8 11 1.38

2 176 256.7 10.8 7.65 1473 283 308 42.8 11 1.41

3 102.6 201.86 5.28 4.45 777 371 395 48.2 9.8 1.11

4 73.9 201.86 5.28 4.45 518 371 395 48.2 9.8 1.15

5 86.1 201.86 5.28 4.45 627 371 395 48.2 9.8 1.13

6 94 201.86 5.28 4.45 698 371 395 48.2 9.8 1.05

7 96.8 201.82 5.26 4.45 724 371 395 48.2 9.8 1.04

8 101.9 251.72 5.26 4.6 686 371 350 48.2 9.8 1.11

9 73.7 251.72 5.26 4.6 480 371 350 48.2 9.8 1.26

10 85.9 251.72 5.26 4.6 584 371 350 48.2 9.8 1.16

11 93.5 251.72 5.26 4.6 648 371 350 48.2 9.8 1.12

12 88.9 251.72 5.26 4.6 640 371 350 48.2 9.8 1.14

Climenhaga 
(1970) 

13 135 201 8 5.7 1956 315 344 48.2 9.8 1.09

14 134 204 9.5 6 1956 293 310 42.8 11 1.22

15 104 305.8 6.9 6 1956 357 412 48.2 9.8 0.89

16 128 352 8 6 1956 324 363 48.2 9.8 0.86

17 141 398.2 7.6 6.2 1956 303 379 42.8 11 0.92

18 135 201 8 5.7 1346 315 344 48.2 9.8 1.06

220



 
 
 
 
 
 

Prediction of the flexural overstrength factor for steel beams using artificial 

Table 2 Continued 

Ref no. 
Data
no. 

bf 
(mm) 

d 
(mm)

tf 

(mm)
tw 

(mm)
Lv 

(mm)
fy, flange

(MPa)
fy, web

(MPa)
E/Eh εh/εy s 

Climenhaga 
(1970) 

19 134 204 9.5 6 1346 293 310 42.8 11 1.26

20 104 305.8 6.9 6 1346 357 412 48.2 9.8 0.97

21 128 352 8 6 1346 324 363 48.2 9.8 0.92

22 105 308.6 10.3 6.2 1346 319 384 48.2 9.8 0.97

Grubb and 
Carskaddan 
(1979,1981) 

23 156 406.4 9.7 6.7 914 383 345 48.2 9.8 1.04

24 156 406.4 9.7 6.7 1829 383 345 48.2 9.8 1.00

25 156 406.4 9.7 6.7 2743 383 345 48.2 9.8 0.96

26 157 308.4 11.2 8.3 1219 370 337 48.2 9.8 1.31

27 150 374.4 11.2 8.4 1524 370 337 48.2 9.8 1.15

28 130 404.4 11.2 8.4 1524 370 337 48.2 9.8 1.10

29 158 407.4 11.2 8.4 1524 370 337 48.2 9.8 1.08

Kemp (1985) 

30 150 217.8 8.09 6.65 1830 340 358 48.2 9.8 1.12

31 145 217.4 10.57 6.82 1830 285 329 42.8 11 1.14

32 106 273.9 7.05 5.85 1830 332 388 48.2 9.8 1.03

33 149 217.9 8.56 6.78 915 340 358 48.2 9.8 1.27

34 149 217.1 8.44 6.78 915 294 300 42.8 11 1.22

35 140 209.5 10.77 6.76 915 288 329 42.8 11 1.27

36 145 366.3 8.33 5.96 1830 375 403 48.2 9.8 1.01

Kemp (1985) 

37 154 120.3 9.83 7.44 1830 313 300 48.2 9.8 1.22

38 146 217.9 9.03 6.35 1830 340 358 48.2 9.8 1.09

39 105 282.2 6.92 5.82 1830 332 388 48.2 9.8 1.00

40 104 277.5 6.76 5.59 2179 317 351 48.2 9.8 1.05

41 145.54 402.2 11.11 6.84 1830 285 329 42.8 11 1.11

42 180 210 8.05 6.11 1830 332 326 48.2 9.8 1.18

43 180 210 8 6 1816 332 326 48.2 9.8 1.26

Schilling 
(1988, 1990) 

44 127 611 7 5.3 1067 410 450 48.2 9.8 0.68

45 229 622 12.5 5.3 1981 401 450 48.2 9.8 0.81

46 311 945.4 15.7 5.3 2895.5 342 450 48.2 9.8 0.89

Wargsjö (1991) 

47 131 500.8 9.9 4 1910 370 335 48.2 9.8 0.91

48 130 501.8 9.9 4 2860 370 335 48.2 9.8 0.89

49 131 457 10 4 1760 370 335 48.2 9.8 0.92

50 131 458.8 9.9 4 2640 370 335 48.2 9.8 0.95

51 132 414.6 9.8 4 1610 370 335 48.2 9.8 0.94

52 130 422 10 4 2400 370 335 48.2 9.8 0.92

53 131 379.8 9.9 4 1460 370 335 48.2 9.8 0.99

54 131 379.8 9.9 4 2160 370 335 48.2 9.8 0.97

55 131 336 10 4 1310 370 335 48.2 9.8 1.02
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Table 2 Continued 

Ref no. 
Data
no. 

bf 
(mm) 

d 
(mm)

tf 

(mm)
tw 

(mm)
Lv 

(mm)
fy, flange

(MPa)
fy, web

(MPa)
E/Eh εh/εy s 

Wargsjö (1991) 56 131 339.6 9.8 3.9 1920 370 335 48.2 9.8 0.98

Dahl et al. 
(1992) 

57 202 200 15 9.5 1500 428 456 48.2 9.8 1.36

58 202 200 15 9.5 1500 428 456 48.2 9.8 1.30

59 280 280 18 10 1500 982 984 48.2 9.8 1.09

60 280 280 18 10 1500 864 813 48.2 9.8 1.06

61 280 280 18 10 1500 468 536 48.2 9.8 1.06

62 280 280 18 10 1500 278 323 48.2 9.8 1.24

Boeraeve and 
Lognard (1993) 

63 200.7 183.3 14.1 8.8 1500 303 342 42.8 11 1.14

64 200.2 183.3 14.7 9.5 1500 375 421 48.2 9.8 1.15

65 201.5 184.6 15.1 9.5 1500 445 462 48.2 9.8 1.16

66 200.4 185.8 14.6 9.6 1500 261 291 37.5 12.3 1.13

67 199.9 189.3 14.9 9.4 1500 409 426 48.2 9.8 1.15

Suzuki et al. 
(1994) 

68 150 132 9 6 600 291 340 42.8 11 1.25

69 150 132 9 6 900 291 340 42.8 11 1.23

70 150 132 9 6 600 526 509 48.2 9.8 1.26

71 150 132 9 6 600 527 340 48.2 9.8 1.20

72 150 132 9 6 600 291 509 42.8 11 1.15

73 150 132 9 6 900 291 686 42.8 11 1.14
Landolfo et al. 

(2011) 
D’Aniello et al. 

(2012) 

74 160 152 9 6 1875 275 275 42.8 11 1.30

75 240 240 17 10 1875 275 275 42.8 11 1.36

76 150 300 10.7 7.1 1875 275 275 42.8 11 1.22

 
 
Table 3 Experimental data used for the model of RHS-SHS steel beams 

Ref no. 
Data
no. 

b 
(mm) 

d 
(mm)

t 
(mm)

r 
(mm)

Lv 

(mm)
fy 

(MPa)
E/Eh εh/εy s 

Wilkinson 
(1999) 

1 50.25 151.04 4.92 9.9 450 441 48.2 9.8 1.23

2 50.41 150.92 4.9 10.7 450 441 48.2 9.8 1.17

3 50.27 150.43 3.92 6.8 450 457 48.2 9.8 1.27

4 50.4 150.44 3.87 7.3 450 457 48.2 9.8 1.19

5 50.11 150.42 3.89 7.3 450 457 48.2 9.8 1.24

6 50.16 150.21 3.89 5.4 450 423 48.2 9.8 1.17

7 50.22 150.47 2.97 5.9 450 444 48.2 9.8 1.15

8 50.01 150.79 2.95 5.8 450 444 48.2 9.8 1.16

9 50.34 150.8 2.96 5.7 450 444 48.2 9.8 1.13

10 50.15 150.43 2.6 4.6 450 446 48.2 9.8 1.02

11 50.41 150.39 2.57 4.6 450 446 48.2 9.8 1.00
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Table 3 Continued 

Ref no. 
Data
no. 

b 
(mm) 

d 
(mm)

t 
(mm)

r 
(mm)

Lv 

(mm)
fy 

(MPa)
E/Eh εh/εy s 

Wilkinson 
(1999) 

12 50.23 150.4 2.59 4.8 450 446 48.2 9.8 1.10

13 50.4 150.31 2.64 5.3 450 440 48.2 9.8 1.11

14 50.64 150.65 2.25 4.6 450 444 48.2 9.8 0.98

15 50.57 150.51 2.28 4.2 450 444 48.2 9.8 1.01

16 50.7 150.37 2.26 4.8 450 444 48.2 9.8 0.98

17 50.7 100.45 2.06 3.8 450 449 48.2 9.8 1.07

18 50.55 100.49 2.07 3.9 450 449 48.2 9.8 1.01

19 50.24 100.46 2.04 4.7 450 449 48.2 9.8 1.07

20 50.22 100.45 2.04 3.4 450 423 48.2 9.8 1.08

21 50.1 75.48 1.94 4.4 400 411 48.2 9.8 1.04

22 50.31 75.63 1.95 4.4 400 411 48.2 9.8 1.02

23 25.28 75.31 1.98 3.7 400 457 48.2 9.8 1.11

24 25.23 75.33 1.95 4 400 457 48.2 9.8 1.13

25 25.12 75.24 1.54 3.1 400 439 48.2 9.8 1.08

26 25.2 74.9 1.54 3.4 400 439 48.2 9.8 1.13

27 25.08 74.98 1.56 3.9 400 439 48.2 9.8 1.09

28 25.12 75.27 1.55 3.4 400 422 48.2 9.8 1.03

29 25.25 75.19 1.56 3.4 400 422 48.2 9.8 1.00

30 50.13 150.46 3 6.2 450 370 48.2 9.8 1.21

31 50.19 150.5 2.96 6.5 450 370 48.2 9.8 1.15

32 50.51 150.45 3 6.8 450 382 48.2 9.8 1.18

33 50.51 150.38 3 6.3 450 382 48.2 9.8 1.21

34 50.43 100.91 2.06 3.6 450 400 48.2 9.8 1.00

35 50.52 100.83 2.05 3.8 450 400 48.2 9.8 1.00

36 75.84 125.56 2.92 6.6 450 397 48.2 9.8 1.03

37 75.74 125.4 2.93 6.9 450 397 48.2 9.8 1.04

38 75.56 125.4 2.91 7.1 450 397 48.2 9.8 1.03

39 75.1 125.4 2.53 3.9 450 374 48.2 9.8 1.06

40 100.27 100.43 2.88 5.2 450 445 48.2 9.8 1.02

41 100.33 100.53 2.91 5 450 445 48.2 9.8 0.95

42 100.25 100.53 2.86 5.2 450 445 48.2 9.8 1.03

43 50.21 150.32 3.9 7.9 450 349 48.2 9.8 1.28

44 50.57 150.39 3.85 7.5 450 410 48.2 9.8 1.19

Zhou and 
Young (2011) 

45 40.1 40.1 1.96 2 480.7 447 48.2 9.8 1.29

46 40 40.1 3.88 4 480.3 565 48.2 9.8 1.31

47 80.5 80.4 1.91 4 480.7 398 48.2 9.8 0.98

48 79.9 79.8 4.77 7.5 481 448 48.2 9.8 1.49
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Table 3 Continued 

Ref no. 
Data
no. 

b 
(mm) 

d 
(mm)

t 
(mm)

r 
(mm)

Lv 

(mm)
fy 

(MPa)
E/Eh εh/εy s 

Zhou and 
Young (2011) 

49 49.8 99.9 1.97 2 480 320 48.2 9.8 1.51

50 49.6 99.7 3.88 4 479.7 378 48.2 9.8 1.71

51 59.9 120.2 1.84 2.5 480.7 361 48.2 9.8 1.14

52 59.7 120 3.89 5.5 480.7 392 48.2 9.8 1.80

53 40.2 40 1.94 2 414.3 707 48.2 9.8 1.21

54 50.1 50.3 1.54 1.5 414 622 48.2 9.8 1.05

55 150.6 150.7 2.78 4.8 546.7 448 48.2 9.8 0.78

56 150.7 150.5 5.87 6 550 497 48.2 9.8 1.23

57 80.5 140.3 3.09 6.5 480 486 48.2 9.8 1.19

58 80.9 160.6 2.9 6 480 536 48.2 9.8 1.07

59 109.1 197.7 4 8.5 548 503 48.2 9.8 1.07

Landolfo 
et al. (2011) 
D’Aniello 

et al.(2012) 

60 100 150 5 10 1875 275 42.6 11 1.29

61 80 160 4 8 1875 275 42.6 11 1.25

62 100 250 10 20 1875 275 42.6 11 1.44

63 160 160 6.3 12.6 1875 355 48.2 9.8 1.05

64 200 200 10 20 1875 355 48.2 9.8 1.28

65 250 250 8 16 1875 355 48.2 9.8 1.14

 
 
 
4. Overview of artificial neural networks (NNs) 

 
Soft-computing is defined as a collection of methodologies aiming to exploit the tolerance for 

imprecision and uncertainty to achieve tractability, robustness and low solution cost. Fuzzy logic, 
genetic programming, artificial neural networks and probabilistic reasoning are the main 
components of soft-computing (Zadeh 1994). Soft-computing plays a critical role in various fields 
of application. Human mind is the basic model for soft-computing. 

Neural network (NN) is a functional simulation of the biological neural structures of the central 
nervous system (Aleksander and Morton 1993, Arbib 1995, Anderson 1995, Gao et al. 2011). It 
can exhibit a number characteristic of human brain, such as learn from experience and generalize 
from previous cases to new problems. In NNs, there are many cells and connections between 
inputs and outputs. These connections between neurons get a transmission value as for the relation 
and this is called weight. The weights can be renewed for every new data. After realizing the 
weights, a present database teaching system is easily updated with the data to be obtained later 
(Mukherjee and Biswas 1997, Topçu and Sarıdemir 2008). The NNs are systems composed of 
many simple processing elements operating in parallel whose functions are determined primarily 
by the pattern of connectivity. These systems are capable of high level functions, such as 
adaptation or learning, and lower level functions such as data pre-processing for different kinds of 
inputs. The NNs have been inspired both by biological nervous systems and mathematical theories 
of learning, information processing, and control (Gao et al. 2011). 
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In this study, neural network fitting tool (nftool) provided as a soft-computing tool in 
MatlabV.R2012a was utilized to perform neural network modeling. In fitting problems, a neural 
network was used to map between a data set of numeric inputs and a set of numeric targets. The 
nftool helps create and train a network, and evaluate its performance using mean square error and 
regression analysis. A two-layer feed-forward network, with sigmoid hidden neurons and linear 
output neurons, can fit multi-dimensional mapping problems arbitrarily well, given consistent data 
and enough neurons in its hidden layer. The network was trained with Levenberg-Marquardt 
(Levenberg 1944) back propagation algorithm. 

An artificial neuron consists of three main components, namely weights, bias, and an activation 
function. Each neuron receives inputs I1, I2, . . . ,In attached with a weight wi which shows the 
connection strength for that input for each connection. Each input is then multiplied by the 
corresponding weight of the neuron connection. A bias can also be defined as a type of connection 
weight with a constant nonzero value added to the summation of weighted inputs, as given in Eq. 
(3). Generalized algebraic matrix operation is provided in Eq. (4) to clearly indicate the 
mathematical operations in an artificial neuron 
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Since nftool uses the normalized values in the range of [–1, 1], the input parameters are 
normalized by means of Eq. (5) in order to get the prediction results after execution of the training 
process of the NN. Since the obtained results are also in the normalized form, considering the Eq. 
(5) and the normalization coefficients a and b for outputs, de-normalization process is applied and 
the results are monitored. 

bnormalized                               (5) 
 

where β is the actual input parameter or output values given in Tables 2 and 3. βnormalized is the 
normalized value of input parameters or outputs ranging between [–1,1]. a and b are normalization 
coefficients given in the following equations (Eqs. (6)-(7)). 
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Table 4 The normalization coefficients for the I-H data given in Table 2 

Normalization 
Parameters 

Input and output variables 

bf 
(mm) 

d 
(mm) 

tf 
(mm)

tw 

(mm)
Lv 

(mm)
fy, flange 

(MPa)
fy, web 

(MPa)
E/Eh εh/εy s 

βmax 311 945.4 18 10 2895.5 982 984 48.2 12.3 1.41 

βmin 73.7 120.3 5.26 3.9 480 261 275 37.5 9.8 0.68 

a 0.00843 0.00242 0.15699 0.32787 0.00083 0.00277 0.00282 0.18691 0.8 2.73972

b 1.62116 1.29160 1.82575 2.27869 1.39743 1.72399 1.77574 8.00934 8.84 2.86301

 
Table 5 The normalization coefficients for the RHS-SHS data given in Table 3 

Normalization 
Parameters 

Input and output variables 

b 
(mm) 

d 
(mm) 

t 

(mm) 
r 

(mm) 
Lv 

(mm) 
fy 

(MPa)
E/Eh εh/εy s 

βmax 250 250 10 20 1875 707 48.2 11 250 

βmin 25.08 40 1.54 1.5 400 275 42.6 9.8 25.08 

a 0.00889 0.00952 0.23641 0.10811 0.00136 0.00463 0.35714 1.66667 0.00889

b 1.22301 1.38095 1.36407 1.16216 1.54237 2.27315 16.21429 17.3333 1.22301

 
 
where βmax and βmin are the maximum and minimum actual values of either input or output, 
respectively. The normalization coefficients for both input and output variables are given in Tables 
4 and 5. 

 
 

5. Proposed NN models 
 
In order to select the optimum number of the nodes in hidden layer, a preliminary study was 

conducted. The mean square errors (MSE) and correlation coefficients (R) were evaluated for 
training and testing databases. The trials between 3 to 25 nodes indicated that the lowest MSE 
values associated with the highest R values were obtained at 20 nodes for both datasets formed for 
I-H and RHS-SHS beams. Based on this preliminary result, NN models of 9-20-1 and 8-20-1 NN 
architectures were used for I-H and RHS-SHS steel beams, respectively. The structure of the 
networks are graphically depicted in Fig. 5 for the former and Fig. 6 for the latter, where it can be 
noted that the number of nodes for the input layer is different from each other, while the nodes in 
the hidden layer were kept constant as a result of trial and error process. Single node in the output 
layer corresponds to the flexural overstrength factor. It should be noticed that all variables were 
normalized to a range of [–1, 1] before being introduced to the NN. Therefore, the normalized 
values must be entered in the mathematical operations given for NN model within the maximum 
and minimum limits specified in Tables 4 and 5. The developed NN models are given in Eqs. (8) 
and (9) for I-H and RHS-SHS steel beams, respectively. Um values in these equations are 
calculated according to the matrix operation given in Eq. (4). The Eq. (4) uses input weights (wmn) 
and input bias values (Biasm) given in Tables 6 and 7 for I-H and RHS-SHS beams, respectively. 
In Eqs. (8) and (9), s is the flexural overstrength of steel beam in normalized form, and the 
activation function in these equations is hyperbolic tangent (tanh(Um)). Since the obtained results 
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Fig. 5 Structure of the proposed NN model to predict the flexural overstrength of I-H steel beams 
 
 

 
 

Fig. 6 Structure of the proposed NN model to predict the flexural overstrength of RHS-SHS steel beams 
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in Eqs. (8) and (9) are in the normalized form, they need to be de-normalized according to Eq. (5) 
and normalization coefficients given in Tables 4-5. 
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The comparison between the experimental and predicted overstrength factors for I-H section 

and RHS-SHS steel beams are graphically illustrated in Figs. 7 and 8. The correlation is 
demonstrated via the correlation coefficient “R” (Eq. (10)), which defines the fit of the model’s 
output variable approximation curve to the actual test data output variable curve. Higher R 
coefficients indicate a model with better output approximation capability. 

 
 

(a) (b) 
 

Fig. 7 Performance of the proposed NN model for I-H beams: (a) train set; and (b) test set 
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Table 6 Weight values and biases for the proposed NN model of I-H steel beams 

Input weights * 
Input 

Bias **

0.041657 -0.90154 -1.0866 -0.94637 -0.39161 0.13773 -0.42352 0.56915 -0.2423 2.0249

1.6859 -0.54162 -1.1497 -1.6087 0.39812 -0.88377 -0.04785 -0.79379 0.42555 -1.4617

-2.3032 1.6864 -0.57757 -0.6147 0.45779 0.43369 -0.27217 0.18581 0.41933 0.66585

-0.28665 -1.3649 -0.1111 -0.61298 0.72778 -0.73832 -0.03057 -0.00327 -0.63737 1.6282

-0.9583 -0.79403 0.44856 0.43979 0.75513 -0.37764 -0.2402 -0.15523 -1.1497 1.1957

1.3844 0.56091 1.1142 -0.46406 -1.3896 1.9486 -0.35268 0.99487 -0.31188 -0.78386

-1.1721 -0.73018 0.12399 0.68655 -0.3997 -0.8356 0.37759 0.28531 0.31213 0.38886

0.18385 -0.71209 0.78371 -1.245 -0.12173 -0.4008 -0.67795 -0.14643 -1.7585 -0.20061

0.026684 -0.51626 -0.13029 -1.0956 0.57925 -0.07661 1.9422 -0.98027 0.46407 -0.80835

0.42153 -0.83027 -1.1412 1.7517 -0.8373 -1.4284 0.054601 -0.26967 -0.97369 0.70776

-1.4394 -0.57849 -1.4776 -2.1018 0.26219 0.89764 -0.2169 0.99349 -0.29114 -0.2548

1.702 -0.8268 -1.0168 0.32446 -1.0136 -0.21416 0.51016 -0.57122 0.035776 0.05775

-0.37871 -0.51883 -1.3641 0.19538 2.6559 0.020797 0.093415 0.46335 -0.67929 -0.3706

-0.59323 1.24 0.99135 0.7448 0.93057 0.055864 -1.3544 -0.25385 1.3514 0.59234

0.2604 -2.576 -0.00313 0.84301 0.90486 0.78172 0.97406 -0.56116 1.568 -0.91773

-1.3106 -0.50056 -1.6593 0.012347 -0.42598 2.6055 0.25507 0.45708 -0.75461 -0.35207

1.2329 -1.9208 -1.6012 -2.1951 0.030366 -0.94574 -1.1289 0.37469 0.75439 0.49444

-0.49615 2.0711 -2.4371 -0.03646 -0.5021 -1.9122 -0.15914 0.16786 0.25537 2.4053

-2.2362 3.257 -1.3274 2.4596 1.1411 -1.3176 0.88908 -0.7693 -0.72177 -1.2384

0.5074 0.50908 -0.33472 0.54841 -0.01365 0.41063 -0.44725 -0.22524 -0.07511 2.824 

* Weight matrix with dimension of 20 × 9 in Eq. (4) 
** Bias matrix with dimension of 20 × 1 in Eq. (4) 
 
 

(a) (b) 
 

Fig. 8 Performance of the proposed NN model for RHS-SHS beams: (a) train set; and (b) test set 
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Table 7 Weight values and biases for the proposed NN model of RHS-SHS steel beams 

Input weights * 
Input 

Bias **

1.4371 -0.6966 1.1441 0.87245 0.16689 0.25051 0.21754 -0.38116 -2.0913

0.12168 -2.164 0.8206 0.96659 0.93793 -1.1317 0.48383 1.23 1.9637 

-0.99876 1.453 1.105 1.202 3.0054 -0.51489 0.75842 -0.032 2.4677 

1.4739 -0.72638 -0.16866 1.3323 0.52427 -1.443 1.0522 -0.38292 -0.86367

1.3832 -1.2802 -1.4574 -1.028 0.030363 0.2247 0.63666 0.72227 -1.4952

-0.27406 -1.111 -1.211 -0.98338 -0.08354 -0.37516 -0.00648 -0.25804 1.2168 

0.26259 2.1929 0.88772 0.82825 -0.15923 -2.5098 1.2825 -1.3526 0.20848

0.10092 -1.0093 -1.3078 -0.39398 -0.1231 -1.426 -0.87251 1.7508 0.054752

-0.38372 -1.5667 -0.21441 -1.6534 0.20193 0.83785 -1.1318 -0.7997 0.29624

0.11806 -0.53034 0.71511 -0.27177 -1.6241 1.0442 -1.1232 -0.15105 -0.7559

-0.04135 -1.0881 -0.54399 1.5707 0.21348 -1.1648 0.048174 0.55675 -0.12949

0.24856 -2.2743 1.1574 2.0344 -0.06197 0.98297 -0.84237 -0.63722 0.99472

-0.48477 0.043324 -0.33926 1.4309 -0.88885 -1.1258 -0.2084 -1.3935 -0.055261

0.98772 -1.4566 0.25477 -0.79961 1.4398 0.89651 -0.91906 -0.33111 0.94382

-1.1277 1.1023 0.1829 -1.7934 -0.30382 0.96667 0.58786 -0.66188 -1.4683

0.93953 1.6584 -0.40056 -0.31274 -0.43015 -0.80886 0.55026 -2.2802 -0.36972

-2.3609 2.479 2.3218 0.95136 -0.62959 -1.0651 -0.32484 -0.39974 -1.4977

-0.39601 0.046466 -1.1181 -0.15761 -1.333 3.1105 -1.1098 0.41319 1.5804 

-0.68124 0.1594 -0.91027 0.48644 0.39971 -0.80434 -1.0165 1.1397 -1.6838

0.54603 0.18214 0.54405 0.091099 0.30832 -1.5864 0.11351 -1.078 2.5421 

* Weight matrix with dimension of 20 × 8 in Eq. (4) 
** Bias matrix with dimension of 20 × 1 in Eq. (4) 
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where m’ and p’ are mean values of measured (mi) and predicted (pi) values, respectively. 
As shown in Figs. 7 and 8, there is strong correlation between actual and predicted values for 

both train and test dataset. The correlation coefficients (R) are very close to 1, which indicates the 
perfect correlation. Close values of the correlation coefficients may be considered as a proof for 
the consistency and good fitness of the proposed models. Moreover, the best fit lines and bisector 
lines drawn in Figs. 7 and 8 are almost coincident, which demonstrates the accuracy of the 
prediction capability of the proposed models. 

 
 

6. Performance of the proposed model 
 

Even though NN and GEP methods are both originated from artificial intelligence philosophy 
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to develop simulations for the real life problems, the two methods substantially differ. Indeed, the 
main peculiarity of the GEP method is to create an analytical model comprising of various 
mathematical operations to provide the best fitness. On the contrary, the NN model proposed in 
this study uses a fixed mathematical procedure with the aid of assigned weights to the input 
parameters and hidden layers. 

The proposed NN based formulation for s values proved to be more accurate than the GEP 
based formulations presented by Güneyisi et al. (2013), where the correlation coefficients obtained 
for testing and training datasets for steel beams ranged between 0.909 and 0.929, depending 
mainly on the section typology. In order to compare the prediction performances of the proposed 
NN models and the GEP models by Güneyisi et al. (2013), the normalized values were calculated 
by dividing predicted results by actual ones, as shown in Figs. 9 and 10. 
 
 

 
 

Fig. 9 Comparison of the prediction accuracy of the proposed NN model and GEP model by 
Güneyisi et al. (2013) for the flexural overstrength of I-H steel beams 

 

 
 

Fig. 10 Comparison of the prediction accuracy of the proposed NN model and GEP model by 
Güneyisi et al. (2013) for the flexural overstrength of RHS-SHS steel beams 
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According to the normalized values (spredicted/sexperimental), the perfect estimation performance is 
equal to 1. Figs. 9 and 10 show that the closest trend in variation of the normalized values around 
1 was observed for the NN model. The normalized s values of I-H sections ranged between 0.85 
and 1.18 for the GEP model and 0.99 and 1.03 for NN model. However, when considering the 
normalized s values of RHS-SHS, these ranges were observed as 0.86-1.18 and 0.99-1.03 for the 
former and latter, respectively. Thus, it can be pointed out that the performance of NN models is 
better than that of GEP models for both types of sections. Moreover, the fluctuation of the 
normalized data seems to be irregular for the GEP model since there is an irregular scatter of 
underestimated and overestimated data. However, the normalized values obtained from the 
proposed NN model for I-H sections revealed almost uniform distribution with very low 
fluctuations around 1 while the NN data for RHS-SHS demonstrated slightly underestimation 
between actual s values of 1.0-1.2. 

The input parameters used for derivation of the proposed models are thoroughly representative 
of both geometrical and mechanical properties of steel beams. Any variations in those parameters 
significantly affect the value of s. Therefore, the physical effectiveness of these parameters can 

 
 

(a) (b) 
 

(c) 
 

Fig. 11 Interaction between prediction capability of the proposed models and (a) width of 
sections; (b) depth of sections; and (c) shear length of the beams 
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Fig. 12 Variation in absolute errors of the proposed NN model and GEP model by Güneyisi et 
al. (2013) with respect to the actual flexural overstrength values of I-H steel beams 

 

 
 

Fig. 13 Variation in absolute errors of the proposed NN model and GEP model by Güneyisi et 
al. (2013) with respect to the actual flexural overstrength values of RHS-SHS steel 
beams 

 
 
also be observed from the models. In order to highlight the interaction between the input 
parameters and the proposed models, Fig. 11 is plotted to demonstrate the fluctuation of prediction 
performance against the variation of some input parameters. 

For further comparison of the proposed models, the estimation errors are graphically shown in 
Figs. 12 and 13. The frequency of the data in the specified intervals is also given in these figures. 
By this way, more detailed analysis of the prediction performances of the proposed NN models 
and GEP models can be observed through examining the absolute errors presented in these figures. 
The errors for the predicted values obtained from NN model for I-H section seems to be very close 
to each other for the specified intervals of actual s values. However, for the RHS-SHS, the errors 
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have a tendency of decrease as the actual s value increases. As seen from Figs. 12 and 13, the 
majority of s values fall between 1.0 and 1.2. The lowest errors for the GEP model occurred in this 
interval. However, the highest error observed from the GEP model were for the actual s values of 
smaller than 1.0. 
 
 

7. Conclusions 
 
A novel prediction model through explicit formulation of flexural overstrength of the steel 

beams is presented in this study. The proposed formulations are derived by means of artificial 
neural network (NN). To generate the model, the available experimental data presented in the 
existing literature were used. Based on the analysis of the results, the following conclusions can be 
drawn: 

 

• It was proved that NN technique can be profitably used to develop empirical mathematical 
formulations of the flexural overstrength of the steel beams with various cross-sectional 
properties, boundary and loading conditions. No invalid results were obtained from the 
prediction models. Therefore, it can be inferred that the developed models can be considered 
as handful tools with satisfactory prediction capability of the whole data set when the 
proposed mathematical relation is transferred to the computer. 

• The proposed NN model was compared with an available formula derived from Gene 
expression programming (GEP). Considering the whole data set for I-H and RHS-SHS 
beams, the performance of the proposed NN model is noticeably more accurate than the 
GEP model. 

• Based on the statistical evaluation, the accuracy of the proposed models can be considered 
fully satisfactory to be utilized for estimation of the s. The correlation coefficients for 
training and testing databases are higher than 0.99 for all of the databases considered in this 
study. Even though the database for testing data set were not used for training, a high level 
of prediction was obtained for both training and testing data sets associated with low mean 
absolute percentage of error and high coefficients of correlation. This can be considered as 
the proper robustness of the developed models. 

• Unlike the GEP model, the NN model requires the data to be normalized between [–1, 1]. 
Although the GEP model can be considered as a more user friendly than the NN model, 
when the accuracy of the prediction possesses more significance, the utilization of the NN 
model becomes more critical. However, by means of properly computerization of the 
proposed NN models, they can easily be exploited. 

 

The proposed models for I-H and RHS-SHS steel beams in this study have been developed 
from existing experimental data presented in the literature. It is worth noting that the further use of 
both models in different datasets to validate results and/or comparison with results from other 
authors would noticeably increase the interest of the work. Indeed, increasing the number of data 
samples used for training the models by generating data through new experimental work may 
provide more robust models as well as increasing the generalization capability of such models. 
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