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Abstract.  In this paper, we try to prepare an accurate analytical solution for solving nonlinear vibration of 
thin circular sector cylinder. A new approximate solution called variational approach is presented and 
correctly applied to the governing equation of thin circular sector cylinder. The effect of important 
parameters on the response of the problem is considered. Some comparisons have been presented between 
the numerical solution and the present approach. The results show an excellent agreement between these 
methods. It has been illustrated that the variational approach can be a useful method to solve nonlinear 
problems by considering the effects of important parameters. 
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1. Introduction 

 
Nonlinear vibrations are an important issue in mechanical and civil engineering. It is very 

important to find analytical solution for the nonlinear equations. In some cases with high nonlinear 
term, it is really difficult to find an exact solution for them. Perturbation technique is one of the 
well-known methods but it has its own limitations. To overcome the limitations of the traditional 
methods some new approximate analytical solutions have been proposed such as: Homotopy 
Perturbation Method (Shaban et al. 2010, Bayat et al. 2013), Hamiltonian Approach (Bayat and 
Pakar 2011a, 2012, 2013a, Bayat et al. 2013, 2014a, b) , energy balance method (He 2002, Bayat 
and Pakar 2011b, Pakar and Bayat 2011, 2012, Mehdipour et al. 2010), variational iteration 
method (Dehghan 2010, Pakar et al. 2012), amplitude frequency formulation (Bayat et al. 2011, 
2012, Pakar and Bayat 2013a, He 2008), max-min approach (Shen and Mo 2009, Zeng and Lee 
2009), variational approach (He 2007, Bayat and Pakar 2013b, Bayat et al. 2014c, Pakar and Bayat 
2012), and the other analytical and numerical (Xu and Zhang 2009, Alicia et al. 2010, Kuo and Lo 
2009, Wu 2011, Odibat et al. 2008). 

The paper has been organized as follows: 
Governing equation of the problem is in Section 2. Basic idea of variational approach has been 

described in Section 3, the complete applications of variational approach have been studied in 
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Section 4, to verify the results and accuracy of the method, some comparisons between analytical 
and numerical solutions have done in Section 5 and the last section contains the most significant 
findings of the paper. 
 
 
2. Thin circular sector cylinder formulation 

 
In this condition a thin circular sector cylinder is considered as Shown in Fig. 1. 
Thin circular sector cylinder rolls in an oscillatory motion back and forth on a flat stationary 

support, with no sliding effect. Governing equation of the oscillation is as follow (Shaban et al. 
2010) 
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Where the geometrical parameters are shown in Fig. 1. The height of mass center obtained as 

below 
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Introducing the dimensionless time variable 
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Eq. (1) becomes 
 
 

 
Fig. 1 Geometric parameters of the homogeneous thin circular sector cylinder (Shaban et al. 2010) 
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And by introducing the dimensionless geometrical parameter 
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Eq. (4) becomes 
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3. Basic concept of variational approach method 
 

He (2007) suggested a variational approach which is different from the known variational 
methods in open literature. Hereby we give a brief introduction of the method 
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Its variational principle can be easily established utilizing the semi-inverse method (He 2007) 
 

dtFJ
T

 )(
2

1
)(

4/

0

2 





                             (8) 

 

Where T is period of the nonlinear oscillator, .fF    Assume that its solution can be 
expressed as 
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Where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting Eq. 
(9) into Eq. (8) results in 
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Applying the Ritz method, require 
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But with a careful inspection, for most cases He found that 
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Thus, He modify conditions Eqs. (11) and (12) into a simpler form 
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From which the relationship between the amplitude and frequency of the oscillator can be 

obtained. 
 
 

4. Application of variational approach 
 
By using the Taylor’s series expansion for cos(θ(t)), sin(θ(t)) we can re-write Eq. (6) in the 

following form 
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Its variational formulation of Eq. (15) can be readily obtain as follows 
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Choosing the trial function θ(t) = A = cos(ωt) into Eq. (16) we obtain 
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The stationary condition with respect to A leads to 
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Solving Eq. (19), according to ω, we have 
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According to Eqs. (9) and (21), we can obtain the following approximate solution 
 


















 t
AAR

Ag
At

)646416(

)8(4
cos)(

24

2


                   (22) 

 
 
Table 1 Comparison of time history response of variational approach with Runje-Kutta 

Time 
Case 1  Case 2 

VA RK4 Error  VA RK4 Error 

0 0.5236 0.5236 0  1.0472 1.0472 0 

0.2 0.3216 0.3200 0.0051  0.7676 0.7648 0.0037 

0.4 -0.1285 -0.1326 0.0316  0.0782 0.0698 0.1069 

0.6 -0.4795 -0.4820 0.0052  -0.6530 -0.6628 0.0150 

0.8 -0.4605 -0.4565 0.0088  -1.0355 -1.0379 0.0023 

1 -0.0863 -0.0759 0.1199  -0.8651 -0.8531 0.0138 

1.2 0.3545 0.3637 0.0258  -0.2327 -0.2082 0.1056 

1.4 0.5218 0.5204 0.0027  0.5239 0.5491 0.0481 

1.6 0.2865 0.2723 0.0495  1.0008 1.0101 0.0093 

1.8 -0.1699 -0.1876 0.1043  0.9433 0.9263 0.0180 

2 -0.4952 -0.5016 0.0129  0.3821 0.3428 0.1028 

2.2 -0.4385 -0.4254 0.0297  -0.3831 -0.4256 0.1109 

2.4 -0.0435 -0.0184 0.5772  -0.9437 -0.9644 0.0219 

2.6 0.3851 0.4030 0.0465  -1.0005 -0.9831 0.0174 

2.8 0.5165 0.5109 0.0109  -0.5230 -0.4714 0.0987 

3 0.2495 0.2214 0.1125  0.2337 0.2945 0.2601 
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Fig. 2 Comparison of analytical solution with the numerical solution for: (a) time history response of 
displacement; (b) time history response of velocity for α = π / 3, A = π / 6, g = 9.81, R = 1 
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Fig. 3 Comparison of analytical solution with the numerical solution for: (a) time history response of 
displacement; (b) time history response of velocity for α = π / 6, A = π / 3, g = 9.81, R = 2 
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Fig. 4 Influence of α on phase plan, for A = π / 3, R = 2, g = 9.81 
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Fig. 5 Influence of amplitude and angle on nonlinear frequency 

 
 
5. Results and discussions 

 
In this part, the results of variational approach method and numerical solutions using 

Runge-kutta’s algorithm (Appendix A) are compared in some figures. Table 1 is comparison of 
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Fig. 6 Sensitivity analysis of various parameter of system on nonlinear frequency 

 
 
 
some point values between analytical and numerical solution. 

Figs. 2 and 3 are the displacement time history and velocity time history to show an excellent 
convergence of analytical and numerical solution. It can be obtain from the figures that the motion 
of the problem is periodic and it is function of amplitude. One of the most advantages of analytical 
methods respect to numerical ones is to see the effect of important parameters on the response of 
the problem easily. In Fig. 3 we consider the effects of angle on the phase plan of the problem. The 
effects of α and A on the frequency of the problem is in Fig. 4. A sensitive analyze has been done 
on nonlinear frequency of the system by considering the effect of α and R. 

It is evident that variational approach shows an excellent agreement with the numerical solution 
and quickly convergent and valid for a wide range of vibration amplitudes and initial conditions. 
The accuracy of the results shows that the variational approach can be potentiality used for the 
analysis of strongly nonlinear oscillation problems accurately. 

 
 

6. Conclusions 
 
Nonlinear vibration of thin circular cylinder has been studied in this paper. Variational 

approach has been completely applied to the governing equation of the problem. Some figures and 
patterns have been presented to show the accuracy of this approach. It has been proved that the 
variational approach is very effective and doest need any linearization or small perturbation. By 
applying this approach we can converge to an accurate solution with only one iteration. It has been 
illustrated that the variational approach is extremely speedy, and easy to apply to conservative 
nonlinear oscillators. Variational approach provides an easy and direct procedure for determining 
approximations of periodic solutions. 
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Appendix A 
 

The most often used method of the Runge-Kutta family is the Fourth-Order one, which extends 
the idea of the mid-point method, by jumping 1/4th of the way first, then going half-way, a la the 
mid-point method, then going 3/4th of the way and finally jumping all the way. 

Consider an initial value problem be specified as follows 
 

00 )(), ,(   ttf                          (A.1) 
 
θ is an unknown function of time t which we would like to approximate. Then RK4 method is 

given for this problem as below 
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for n = 0, 1, 2, 3, . . . , using 
 

 

 . ,

,
2

1
 ,

2

1

,
2

1
 ,

2

1
, ,

34

33

12

1

hkhtfk

khhtfk

khhtfk

tfk

nn

nn

nn

nn









 







 











                      (A.3) 

 
Where θn+1 is the RK4 approximation of θ(tn+1). and the next value (θn+1) is determined by the 

present value (θn) plus the weighted average of four increments, where each increment is the 
product of the size of the interval, h, and an estimated slope specified by function f on the 
right-hand side of the differential equation. 

 

• k1 is the increment based on the slope at the beginning of the interval, using θ̇, 

• k2 is the increment based on the slope at the midpoint of the interval, using θ̇ + 1/2 hk1; 

• k3 is again the increment based on the slope at the midpoint, but now using θ̇ + 1/2 hk2; 

• k4 is the increment based on the slope at the end of the interval, using θ̇ + hk3. 
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