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Abstract. This paper presents a simple r-order four variable refined theory for the bending and vibration
analyses of functionally graded plates. By dividing the transverse displacement into bending and shear parts,
the number of unknowns and governing equations of the present theory is reduced, and hence, makes it
simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent
the displacement field, does not require shear correction factor, and gives rise to transverse shear stress
variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress
free surface conditions. The governing equations are derived by employing the Hamilton’s principle and the
physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained
results with available published ones.

Keywords: nth-order four variable refined theory; FG plates; vibration; bending; neutral surface
position

1. Introduction

Composite materials have been successfully used in aircraft and other engineering applications
for many years because of their excellent strength to weight and stiffness to weight ratios.
Recently, advanced composite materials known as functionally graded material have attracted
much attention in many engineering applications due to their advantages of being able to resist
high temperature gradient while maintaining structural integrity (Koizumi 1997). The functionally
graded materials (FGMs) are microscopically inhomogeneous, in which the mechanical properties
vary smoothly and continuously from one surface to the other. They are usually made from a
mixture of ceramics and metals to attain the significant requirement of material properties.

*Corresponding author, Professor, E-mail: tou_abdel@yahoo.com

Copyright © 2014 Techno-Press, Ltd.
http://www.techno-press.org/?journal=scs&subpage=8 ISSN: 1229-9367 (Print), 1598-6233 (Online)



22 I Klouche Djedid et al.

Due to the increased relevance of the FGMs structural components in the design of engineering
structures, many studies have been reported on the static, and vibration analyses of functionally
graded (FG) plates. Reddy (2000) presented theoretical formulation and finite element models
based on third order shear deformation theory for static and dynamic analysis of the FG plates.
Batra and Jin (2005) used the first-order shear deformation theory coupled with the finite element
method to study the free vibrations of rectangular anisotropic FG plate. Zenkour (2006)
investigated the bending response of simply supported FG plate using a generalized shear
deformation plate theory. Abrate (2006) analyzed the problems of free vibrations, buckling, and
static deflections of the FG plates. Chi and Chung (2006a, b) studied the mechanical behaviour of
FG plates under transverse load. Three evaluations were considered for the FGM properties, which
include power-law, sigmoid or exponential function. Matsunaga (2008) calculated the natural
frequencies and buckling stresses of plates made of functionally graded materials (FGMs) using a
2-D higher-order deformation theory. Chen et al. (2008, 2009) carried out the vibration and
stability of FG plates based on different plate theories. Lii et al. (2009a) presented a
semi-analytical 3-D elasticity solutions for orthotropic multi-directional functionally graded plates
using the differential quadrature method (DQM) based on the state-space formalism. Lii et al.
(2009b) studied the free vibration of FG thick plates on Pasternak foundation using 3-D exact
solutions.The second-order shear deformation theory is successfully applied Shahrjerdi et al.
(2010) to present the displacements field in solar functionally graded plate with simply support
conditions subjected to a different type of mechanical loadings such as sinusoidal and uniform
distributed loads. Bodaghi and Saidi (2010) presented analytical approach based on a HOST to
determine critical buckling loads of thick FG rectangular plates. Talha and Singh (2010)
investigated the free vibration and static analysis of functionally graded plates using the finite
element method by employing a higher order shear deformation theory. Xiang et al. (2011)
proposed a n-order shear deformation theory for free vibration of functionally graded and
composite sandwich plates. Using the sinusoidal shear deformation theory, Sobhy (2013) studied
the vibration and buckling behavior of exponentially graded sandwich plate resting on elastic
foundations under various boundary conditions. Yaghoobi and Torabi (2013) studied the thermal
buckling of FG plates resting on two-parameter Pasternak’s foundations by using the first-order
shear deformation plate theory. Yaghoobi and Yaghoobi (2013) proposed an analytical
investigation on the buckling analysis of symmetric sandwich plates with FG face sheets resting on
an elastic foundation based on the first-order shear deformation plate theory and subjected to
mechanical, thermal and thermo-mechanical loads. However, various higher order shear
deformation theories are developed using five or more unknown functions. Recently, Tounsi and
his co-workers (Hadji et al. 2011, Houari et al. 2011, Bourada et al. 2012, Bachir Bouiadjra et al.
2012, Fekrar et al. 2012, Fahsi et al. 2012, Bouderba et al. 2013) developed new higher order
plates theories involving only four unknown functions.

In this paper, a n-order four variable refined theory is used to analyze the static and vibration
characteristics of functionally graded plates. The present n-order four variable refined theory is
based on assumption that the in-plane and transverse displacements consist of bending and shear
components, in which the bending components do not contribute toward shear forces and, likewise,
the shear components do not contribute toward bending moments. The most interesting feature of
this theory is that it accounts for a parabolic variation of the transverse shear strains across the
thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the
plate without using shear correction factors. The material properties of FG plate are assumed to
vary according to a power law distribution of the volume fraction of the constituents. To simplify
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the governing equations for the FG plates, the coordinate system is located at the physical neutral
surface of the plate. This is due to the fact that the stretching — bending coupling in the constitutive
equations of an FG plate does not exist when the physical neutral surface is considered as a
coordinate system (Zhang and Zhou 2008, Yahoobi and Feraidoon 2010, Ould Larbi et al. 2013,
Bouremana et al. 2013). Thus, the present n-order four variable refined theory based on the exact
position of neutral surface together with Hamilton principle are employed to extract the motion
equations of the FG plates. Analytical solutions are obtained for simply supported plate, and its
accuracy is verified by comparing the obtained results with those reported in the literature.

2. Mathematical formulation

Consider a rectangular plate made of FGMs of thickness %, length @, and width b, referred to
the rectangular Cartesian coordinates (x, y, z). Since in functionally graded plates the condition of
mid-plane symmetry does not exist, the stretching and bending equations are coupled. But, if the
origin of the coordinate system is suitably selected in the thickness direction of the FG plate so as
to be the neutral surface, the analysis of the FG plates can easily be treated with the homogenous
isotropic plate theories, because the stretching and bending equations of the plate are not coupled.
In order to determine the position of neutral surface of FG plates, two different datum planes are
considered for the measurement of z, namely, z,, and z,; measured from the middle surface and the
neutral surface of the plate, respectively, as shown in Fig. 1. Following the power law distribution
in the thickness direction, the volume fractions of ceramic constituent ¥, and metal constituent V',

may be written in the form
k k
z 1 z +C 1
Vo= 2 +—| =| B+ — 1
¢ (h 2) ( h 2) M

Material non-homogeneous properties of a functionally graded material plate may be obtained
by means of the Voigt rule of mixture (Suresh and Mortensen 1998). Thus, using Eq. (1), the
material non-homogeneous properties of FG plate P, as a function of thickness coordinate, become

k
z +C 1
= +EJ , Pyy=P.-P, 2)

P(z) =By +PCM[

where Py, and P¢ are the corresponding properties of the metal and ceramic, respectively, and & is
the material parameter which takes the value greater or equal to zero. Also, the parameter C is the
distance of neutral surface from the middle surface. In the present work, we assume that the
elasticity modules £ is described by Eq. (2), while Poisson’s ratio v, is considered to be constant
across the thickness. The position of the neutral surface of the FG plate is determined to satisfy the
first moment with respect to Young’s modulus being zero as follows (Ould Larbi et al. 2013,

Bouremana et al. 2013)
hi2

[z, = Clz,, =0 3)

ms
-h/2

Consequently, the position of neutral surface can be obtained as
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate
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It is clear that the parameter C is zero for homogeneous isotropic plates, as expected.
2.1 Basic assumptions

The assumptions of the present theory are as follows:

(1) The origin of the Cartesian coordinate system is taken at the neutral surface of the FG
plate.

(2) The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

(3) The transverse displacement w includes two components of bending w, and shear w;. Both
these components are functions of coordinates x, y, and time ¢ only.

WX, Y, Z,551) = Wy (X, ,0) + Wi (X, p,1) )
(4) The displacements u in x-direction and v in y-direction consist of extension, bending, and
shear components.

U=uy+u,+u, v=vy+v,+v, (6)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u;, and v, can be given as

uy =—z,, b, v, =—z, b 7

The shear components u, and v give rise, in conjunction with wy, to the sinusoidal variations of
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shear strains y.., 7. and hence to shear stresses 7.., 7,. through the thickness of the plate in such a
way that shear stresses 7,., 7,. are zero at the top and bottom faces of the plate. Consequently, the
expression for u, and v, can be given as

ow ow
u,=—f(z,)—=—, v,=—f(z,))— 3
ox oy
where

f(zns)=1(3j (2,0 +C) ©)
n\ h

2.2 Kinematics and constitutive equations

Based on the assumptions made in the preceding section, the displacement field of the n-order
four variable refined theory can be obtained using Eqgs. (5)-(9) as

n—1
(X, p,2,.,8) = g (X, v,£) — 2, o, _1(2 (z,, +C) o, (10a)
: ox n\h ‘ Ox
n—1
V(X 1,2,08) = vy (X, 1,8) — 2, My _ 1[3) (z,, +C) ow, (10b)
‘ oy n\h ‘ oy
W(X,Y,2,5,t) =Wy (X, ¥,8) + w, (X, y,t) (10c)
The kinematic relations can be obtained as follows
gx g)(c) k)[cj k:: 0
_ 0 b s yyz _ j/yz
£, (=986, rtz,k, o+ f(Z 0k, b =g(z,) A (11)
7/)()/ 7)?_}) k)l:y k;y . ¥
where
8u0 _ azwb _ azsz
g’ o K’ ox’ ks o’ ow,
o ov, 5 o*w . o*w ° b
&y (= — ) ky =\~ 2b ) k; =3~ 2 P yoz = 6‘$ . (122)
}/0 ay kb 632} ks JZ} Xz S
T I A Y B3 B x
dy Ox Ox0Oy Ox0y
and
@ )_l_df(zns) _1_(z,1s+C)” [E " (12b)
8L &z (. +C)\
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For elastic and isotropic FGMs, the constitutive relations can be written as

O, O, O, 0 [le
Tyz Q44 O ]/ vz
o,=1Q @n 0 &, and (Tl o o. 13)
- 0 0 Q66 }/xy zx 55 zx

N

where (0y, 0y, Ty, Tyz, Tyx) and (&, €, Yx» V)2 Yx:) are the stress and strain components, respectively.
Using the material properties defined in Eq. (2), stiffness coefficients, Oy, can be expressed as

0,=0,= E(Zmz) > (14a)
1-v
12 = —VIE_(IZ/;S) . (14b)
E(z,
Oy =055 =06 = 2(1(;1;3‘3)’ (14¢)

2.3 Governing equations

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in
an analytical form as

0=((6U+6V-6K)dr (15)

S —N

where oU is the variation of strain energy; 6/ is the variation of work done by external forces; and
0K is the variation of kinetic energy. The variation of strain energy is calculated by

ie
oU =J. ”axé' £, +0,06,+7,07,+7,0y,+7.0 )/xz]dznsdQ
e
2
= IQ [Nx6 e +N,Se)+N Sey +MSki +M)Sk, +M, 5k}, +MSk; (16)

MK+ MLS K, + 558y, + 558y |do

where Q is the top surface and N, M, and S are stress resultants defined by

h

N, N,, N,] %< 1
M, M;’, Mfy = J. (O' ,0,,T z,. dz,
M;:’ M)SN M;y _%_C f(Zns)

(17a)
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h

Ic
I P o v (17b)
_h e

2

The variation of work done by external forces can be expressed as

5V=—ng(5wb+§wb)d9 (18)

where ¢ is the transverse load.
The variation of kinetic energy can be written as

h
el
2
sK= [ [lasi+vsi+isilp(,)dds,
h Q

2c
2

= j {1, [ttty + 9,5, + (b, +w, XS, + 5w, )]

—]l(uo 0%y 1+ D% 54y 47, 20 O Oj
ox oy (19)
_JI[MO 00 W, N ow, 5ty +7, 00w, N ow, S oj
X Ox W
i1, oW, 00 W, N oW, 00 W, iK, oW, 00 W, N ow, 00 w,
ox Ox oy oy ox Ox oy Oy

+J, ow, 00 W, N ow, 06 W, N ow, 00 W, N ow, 00 w, JO
ox Ox Ox Ox oy Oy oy Oy

where dot-superscript convention indicates the differentiation with respect to the time variable z;
and (Lo, 11, J1, I, J», K>) are mass inertias defined as

L
2

(IO’II’JI’IZ’JZ’KZ): J.(l’zns’fﬂzis’zns f’fz)p(zns)dzns (20)

e
2

Substituting the expressions for oU, dV, and 0K from Egs. (16), (18), and (19) into Eq. (15) and
integrating by parts, and collecting the coefficients of dug, dvo, ow,, and ow,, one obtains the

following equations of motion

N aNt .. "'
Suyg: Ne Sy g Oy O,
Ox oy ox ox @1
aNx a a-. a..
Svy: —2 4 =Y g, -1, 2 g D
Ox Oy oy oy
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oMb oMy, *M]

ow,: + + +
AP oy oy °
=1y, + 0y )+ 1| P Do) g v v,
o’M: _0*M, M) as’ oS
ow, —+2 + +—= 4 +q
ox? Ox0y oy? Ox oy
ol oV,
=1, (i, +0, )+ J,| 22+ 20| g V2, — K,V 0,
ox Oy

Using Eq. (9) in Eq. (13), and the subsequent results into Eq. (17), the stress resultants are
obtained as

N 4 0 B¢
M°t=| 0 D D'Rk"}, §=4%, (22)
M| |B° D' H'|k'

where
N={N, NN, M=t Mt Mt S e = e (23a)
e={g gy,yxy} K=Yk ke =k ] (23b)
All AIZ O Dll DIZ 0
A=|4, 4, 0| D=|D, D, 0|, (23¢)
0 0 A, 0 0 D
B, B, 0 D, Dj, 0 HY, Hp, 0
B=|B, B, 0| D'=D, D}, 0| H=|H, H), 0| (23d)
0 0 B, 0 0 D 0 0 H,
s T o
S= {szﬂsyz}a 7’:{7xza7yz}t, A = 44 s I (236)
0 A

The stiffness coefficients 4;; and Dy, etc., are defined as

S S N h
A11 D11 B11 D11 H11 E*C 1

AlZ D12 BLSZ DlSZ HISZ = j Qll > ns’f(zns 7Znsf(zns)f (Zns) V dzns (243)

N S s 1
s Dss Bgs Ds Heg —g—c T
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and
(40, Dy By, D3y H3, )= (1, B3 DY ) (24b)
s s g—c E(z,) 2
Ay = Ass = hJ- 2+ )[ g(z, )l dz,,. (24¢)

By substituting Eq. (22) into Eq. (21), the equations of motion can be expressed in terms of

displacements (duy, dvy, oWy, owy) as

82

o%u u %, 5 S\ 0w s 63ws ow, 6ws
All?zo"_ A66?20 + (A12 + A66)_0 - (Blz 2366)6 8y - B\ — o =Ly — 1, 6xb oy (25a)
A, 0 g gy ) (B*+2B*)a3 g O gy Dy O (o5

22 ayz 66 axz 12 66 axay 12 66 axza 22 a A3 0Y0 1 ay 1 H
4 4 4
- D, %C—Wf ~2(Dy, +2D,) aizgybz 2 aa;ﬁb
S a S S N S
-Dih—= o (Dlz + 2D66)T D22 (25¢)
= 1,(V, + v, )+ 1 (6”0 Oy j — LV, — J,V i,
ox Oy
P (B, +2B; )—83”0 (B +2B) 0y, gy s Oy
11 ax 12 66 axayz 12 Gé/axzay 22 ay3 11 ax4
o*w, o*w, o*w
“ops 20 ) C s ps C Y s OV
( 12 66/6 8y2 22 8y4 11 o
) 0'w, o*w, o’w, 0
—2(H;2+21L1g6,a L
2 .. .
+ A aaw +q =1, (i, +0,)+ J, [‘Z;O +%>]—J2v2wb — K,V

3. Closed-form solution for simply supported plates

Rectangular plates are generally classified according to the type of support used. Here, we are
concerned with the exact solutions of Eqgs. (25) for a simply supported FG plate. Based on the

Navier approach, the solutions are assumed as
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U, U, e cos(Ax)sin(u y)
Vo — i i an ei(:; tsnl(//{’ x) CO.S(:U y) (26)
Wp m=1 n=1 Vmen e Sln(ﬂ’ X) Sln(/l y)
W, W€ sin(A x)sin(u y)

where U, Vin, Womn and Wy, are arbitrary parameters to be determined, w is the eigenfrequency
associated with (m, n)th eigenmode, and A =mz / a and u = nz / b.
The transverse load ¢ is also expanded in the double-Fourier sine series as

9(6Y) = DD gy sin(A x)sin(u y) 27)
m=1 n=1
For the case of a sinusoidally distributed load, we have

m=n=1 and ¢, =g, (28)

where ¢ represents the intensity of the load at the plate centre.
Substituting Egs. (26) and (27) into Eq. (25), the analytical solutions can be obtained from

a, ap, 0 a my 0 my my U 0

mn

N

a, Ay 0 ay of 0 my my; my, Vo 0
- = (29)
0 0 ay ay My My My My | |[W,, Dnn

Ay Qyy G3y Ay My Moy NMay My | )\ W, Gmn

Ch
g
R
L

-0,02 -—— 77—
0 5 10 15 20 25 30 35 40
k

Fig. 2 Variation of the neutral surface position versus the material parameter &
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Table 1 Material properties used in the FG plate

. . Ceramic
Properties Metal aluminum (Al) ; ; ;
Alumina (Al,05) Zirconia (ZrO,)
E (GPa) 70 380 200
p (kg/m®) 2702 3800 5700
in which

ay = A A + Agpt’

app :/1#(1412 +A66)

ay, ==A[B)A® + (B, +2Bg) 1]

ayy = Ag A + Ay p1?

ayy =—u[(BY, +2Big) A + By, 1]

ayy =Dy A" +2(Dy, +2Deo) A i + Doy pt* (30)
a3y = DAY + 2Dy, +2Dg) 2> u? + Dsy pt

gy = HL\AY + 2(HY + 2H )X i + Hyy ' — AS A — A u?
my =my =—=ly, my=Al, my =4, my=ul

Moy = [1Jy, M z_(lo +12(/12 +

My 2—(10 +J2(/12 +/12)), My, :—(]0 +K2(ﬂ,2 +,L12)),

4. Numerical results

In this section, various numerical examples are presented and discussed to verify the accuracy
of the present theory in predicting the bending and free vibration responses of simply supported
FG plates. Two types of FG plates of Al/Al,O; and Al/ZrO, are used in this study, in which their
material properties are listed in Table 1. For all calculations, the Poisson’s ratio is taken as 0.3

Fig. 2 presents the variation of non-dimensional parameter C// versus the material parameter £
of Al/ALLO; functionally graded plate. It can be observed when the material parameter of FGM
becomes zero (fully ceramic) or infinity (fully metallic); the neutral surface coincides on the
middle surface, as expected.

4.1 Bending analysis

For bending analysis, a plate subjected to a sinusoidal load is considered. For convenience, the
following dimensionless forms are used

-z — 10K°E, (ab_J — h (ab_J
Zms = 5 w= 4 W _5_’st ) O-X:_O-x _’_’st ’
h aq, 22 aq, 2°2
;xy ——TW(O,O,ZMS), ;xz —_sz(oaéazms]’ ;Z = O-z(g’é’zmsJ
aq, aqg, 2 22
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Table 2 Dimensionless stresses and displacements of a functionally graded square plate (a / & = 10)

k Method w o, o, T, T, T,
Zenkour (2006)  0.2960 1.9955 1.3121 0.7065 0.2462 0.2132
Present n =3 0.2960 1.9943 1.3123 0.7066 0.2385 0.2120
Ceramic  Present n =15 0.2957 1.9894 1.3134 0.7072 0.2045 0.2020
Present n =7 0.2953 1.9864 1.3145 0.7078 0.1915 0.1912
Present n=9 0.2950 1.9844 1.3153 0.7082 0.1844 0.1844
Zenkour (2006)  0.5889 3.0870 1.4894 0.6110 0.2462 0.2622
Present n =3 0.5889 3.0850 1.4898 0.6111 0.2385 0.2607
1 Present n =15 0.5884 3.0767 1.4914 0.6114 0.2045 0.2484
Present n =7 0.5877 3.0716 1.4930 0.6117 0.1915 0.2352
Present n=9 0.5872 3.0683 1.4941 0.6119 0.1844 0.2267
Zenkour (2006)  0.8819 4.0693 1.1783 0.5667 0.2029 0.2580
Present n =3 0.8814 4.0655 1.1793 0.5669 0.1943 0.2536
4 Present n=>5 0.8784 4.0501 1.1834 0.5677 0.1586 0.2301
Present n =7 0.8760 4.0411 1.1862 0.5682 0.1444 0.2117
Present n=9 0.8744 4.0353 1.1880 0.5685 0.1365 1.1880
Zenkour (2006) 1.0089 5.0890 0.8775 0.5894 0.2198 0.2041
Present n =3 1.0087 5.0848 0.8784 0.5895 0.2113 0.2014
10 Present n =15 1.0055 5.0678 0.8824 0.5904 0.1747 0.1850
Present n =17 1.0024 5.0570 0.8851 0.5911 0.1593 0.17063
Present n =9 1.0000 5.0499 0.8868 0.5915 0.1504 0.1612
Zenkour (2006) 1.6070 1.9955 1.3121 0.7065 0.2462 0.2132
Present n =3 1.6071 1.9943 1.3123 0.7066 0.2385 0.2120
Metal Present n =15 1.6054 1.9894 1.3134 0.7072 0.2045 0.2020
Present n =7 1.6033 1.9864 1.3145 0.7078 0.1915 0.1912
Present n=9 1.6017 1.9844 1.3153 0.7082 0.1844 0.1844

Table 2 contains nondimensional stresses and displacements of a simply supported FG square
plate of @ / h = 10. It can be found that the present n-order four variable refined theory produces
the close results to those of Zenkour (2006).

The nondimensional transverse normal displacement and transverse shear stress are compared
in Table 3 with those obtained by Matsunaga (2009). Varying the number of power law index and
the side to thickness ratio, the results are in good agreement with those of Matsunaga (2009).

It should be noted that the present theory contains four unknowns as against five or more in the
case of other higher order theories. It can be concluded that the present theory is not only accurate
but also efficient in predicting the responses of FG plates.
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Table 3 Comparison of the dimensionless deflections and transverse shear stresses in a square FG-plate
subjected to sinusoidally distributed load

alh=5 alh=10
k Method
wE. | qoh 7. (0,b/2)/ qo wE. | goh 7. (0,b/2)/qg

Matsunaga (2009) 0.2098 01186 0.2943 0.2383
Present n =3 0.2145 0.1190 0.2960 0.2385
0 Present n =15 0.2138 0.1022 0.2957 0.2045
Present n="7 0.2128 0.0957 0.2953 0.1915
Present n =9 0.2121 0.0922 0.2950 0.1844
Matsunaga (2009) 0.3179 0.1209 0.4504 0.2431
Present n=3 0.3235 0.1217 0.4537 0.2439
0.5 Present n =15 0.3225 0.1049 0.4533 0.2100
Present n="7 0.3213 0.0985 0.4528 0.1971
Present n=9 0.3204 0.0951 0.4524 0.1902
Matsunaga (2009) 0.4139 0.1184 0.5875 0.2383
Present n=3 0.4179 0.1190 0.5889 0.2385
1 Present n =15 0.4167 0.1022 0.5884 0.2045
Present n="7 0.4151 0.0957 0.5877 0.1915
Present n =9 0.4139 0.0922 0.5872 0.1844
Matsunaga (2009) 0.6511 0.1076 0.8823 0.2175
Present n =3 0.6505 0.0969 0.8815 0.1944
4 Present n =15 0.6431 0.0792 0.8784 0.1586
Present n="7 0.6373 0.0721 0.8760 0.1444
Present n=9 0.6332 0.0682 0.8744 0.1365
Matsunaga (2009) 0.7624 0.1078 0.1007 0.2167
Present n=3 0.7672 0.1053 1.0087 0.2113
10 Present n =15 0.7596 0.0873 1.0055 0.1747
Present n="7 0.7520 0.0796 1.0024 0.1593
Present n =9 0.7461 0.0752 1.0000 0.1504

In Figs. 3 and 4, the variation of the center deflection with the aspect and side-to-thickness
ratios is presented, respectively. The deflection is maximum for the metallic plate and minimum
for the ceramic plate. The difference increases as the aspect ratio increases while it may be
unchanged with the increase of side-to-thickness ratio. One of the main inferences from the
analysis is that the response of FGM plates is intermediate to that of the ceramic and metal
homogeneous plates.
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Fig. 3 Dimensionless center deflection w as function of the aspect (a / b) of an FG plate (a / h = 10, n = 3)

3,8
3,6
3,4
3,2
3,0
2.8 Metal
2,6
2,4
2,2
2,0
1,8
16\ 5
1,4
12\ 2
1,0
0,8—- =1
0,6—:\\
0471 Ceramic

0,2 — T T 1 T T 1 T 1T T~ 1T " T T~ T
8 10, 12 14 16 18 20

N
N
(o)}
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FG square plate (n =3)
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Fig. 5 Variation of transversal shear stress (z,.) through-the-thickness of an FG plate for
different values of the aspect ratio (¢ / h=10,k=1,n=3)
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Fig. 6 Variation of transversal shear stress (z..) through-the-thickness of an FG plate for
different values of the aspect ratio (a / h =10, k=1, n=3)
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Figs. 5-9 present the through-the-thickness distributions of the shear stresses 7,. and 7 ,.; the
normal stresses o, and o,, and the longitudinal tangential stress 7., in the FG plate under the
sinusoidal load. The volume fraction exponent of the FG plate is taken as £ = 1 in these figures.
The through-the-thickness distributions of the shear stresses 7. and 7, are not parabolic and the
stresses increase as the aspect ratio decreases (Figs. 5 and 6). It is to be noted that the maximum
value occurs at z = 0.135 and not at the plate center as in the homogeneous case.

As indicated in Figs. 7 and 8, the normal stresses, o, and o,, are compressive throughout the
plate up to z = C (z = 0.115) the distance of neutral surface from the middle surface and then they
become tensile. The maximum compressive stresses occur at a point on the bottom surface and the
maximum tensile stresses occur, of course, at a point on the top surface of the FG plate. However,
the tensile and compressive values of the longitudinal tangential stress, 7 ,, (Fig. 9), are maximum
at a point on the bottom and top surfaces of the FG plate, respectively. It is clear that the minimum
value of zero for all in-plane stresses o.; o, and 7, occurs at z = C and this irrespective of the
aspect and side-to-thickness ratios.

The effect of material anisotropy on the maximum deflections of simply supported FG square
plate (a / h = 10) is presented in Fig. 10. It is clear that the deflections decrease smoothly as the
volume fraction exponent decreases and as the ratio of metal-to-ceramic moduli increases.

4.2 Free vibration analysis

In this section, various numerical examples are presented and discussed to verify the accuracy

05
04 5 10 a/h=20
03-
021

0,1+

0,0
014
024
-0,3 _-

0,4 4

Fig. 7 Variation of normal stress (o) through-the-thickness of an FG square plate for different
values of the side-to-thickness ratio (k= 1, n = 3)
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Fig. 8 Variation of normal stress (o,) through-the-thickness of an FG plate for different values of
the aspect ratio (a/ h=10,k=1,n=3)
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Fig. 9 Variation of tangential stress (7 ,,) through-the-thickness of an FG plate for different
values of the aspect ratio (a /h=10,k=1,n=3)
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Fig. 10 The effect of material anisotropy on the dimensionless maximum deflection (w) of an
FG plate for different values of k (a/ h =10, n =3)

of the present theory in predicting the natural frequency of simply supported plates. For
convenience, following natural frequency parameter is used in presenting the numerical results in
tabular and graphical forms

Eza)h\lpm/Emﬂ ﬁZWthC/EC, Z)za)ljz Vpc/Ec s

The first verification is performed for Al/ZrO, square plates with different values of thickness
ratio a / h and power law index k. The fundamental frequency parameters § obtained using the
present theory are compared with those of 3-D exact solutions of Vel and Batra (2004), 2-D
higher-order theory solutions of Matsunaga (2008), and Reddy’s theory with analytical method
solutions of Hosseini-Hashemi et al. (2011a) in Table 4. It can be seen that for the plate with k£ =0,
that is, fully ceramic isotropic plate, the results of present theory are well in agreement with those
of other solutions (Matsunaga 2008, Vel and Batra 2004, Hosseini-Hashemi et al. 2011a).
However, for FG plate with non-zero values of k, the results of present n-order four variable
refined theory and other shear deformation theories are higher than those obtained by 3-D exact
solutions of Vel and Batra (2004). i

The fundamental frequency and the lowest third frequency parameters f are presented in Table
5 for a square Al/Al,O; plate with thickness ratio varied from 5 to 20 and power law index varied
from 0 to 10. It can be seen that the results obtained by the present n-order four variable refined
theory are in good agreement with those reported by Hosseini-Hashemi ef al. (2011a) based on
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Reddy’s theory.
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The lowest four frequency parameters w obtained from present n-order four variable refined
theory are compared with those reported by Hosseini-Hashemi et al. (2011b) based on first shear
deformation theory (FSDT) in Table 6 for rectangular Al/Al,O; plate (b = 2a) with thickness ratio
varied from 5 to 20 and power law index varied from 0 to 10. It can be observed that the FSDT
(Hosseini-Hashemi et al. 2011b) gives accurate results for moderately thick plate at lower modes

of vibration.

Table 4 Comparison of fundamental frequency parameter 8 of Al/ZrO, square plate

k=1 alh
Method
a/h=+10 a/h=10 a/h=5 a/h=10 a/h=20 k=2 k=3 k=5
3D (Vel and
Batra 2004) 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225
Matsunaga (2008) 0.4658 0.0578 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281
Hosseini-Hashemi )y o3 0577 02276 00619 00158 02256 02263 02272
etal. (2011a)
Present n =3 0.4622 0.0576 0.2276 0.0618 0.0158 0.2256 0.2262 0.2271
Present n=>5 0.4634 0.0577 0.2280 0.0618 0.0158 0.2262 0.2269 0.2280
Present n =7 0.4651 0.0577 0.2284 0.0619 0.0158 0.2267 0.2276 0.2287
Present n =9 0.4665 0.0577 0.2287 0.0619 0.0158 0.2271 0.2281 0.2293
Table 5 Comparison of natural frequency parameterﬁ of AL/AlL,O; square plate
k
a/p Modeno. Method
(m, n) 0 0.5 1 10
Hosseini-Hashemi
et al. (2011a) 0.2113 0.1807 0.1631 0.1378 0.1301
Present n=3 0.2112 0.1807 0.1631 0.1378 0.1300
> (LD Present n=>5 0.2115 0.1809 0.1633 0.1385 0.1306
Present n=7 0.2120 0.1812 0.1636 0.1390 0.1312
Present n=9 0.2123 0.1815 0.1638 0.1394 0.1316
Hosseini-Hashemi
et al. (2011a) 0.4623 0.3989 0.3607 0.2980 0.7271
Present n=3 0.4622 0.3988 0.3606 0.2979 0.2770
> (1.2) Present n=>5 0.4634 0.3997 0.3614 0.3004 0.2790
Present n =17 0.4651 0.4010 0.3626 0.3026 0.2812
Present n=9 0.4665 0.4020 0.3635 0.3042 0.2830
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Table 5 Continued

1 Klouche Djedid et al.

alh Mode no. Method i
(m, n) 0 0.5 1 4 10
H":tszllm(z%ﬁge)m‘ 0.6688 05803 05254 04284 03948
Present n =3 0.6688 05802 05254 04283 03948
> @2 Present n =S5 06707 05817 05267 04326 03980
Present n =7 06739 05842 05288 04365 04019
Present =9 0.6764 05860 05305 04393  0.4050
Hoestszllm(z%ﬁg‘;m‘ 0.0577  0.0490  0.0442  0.0381  0.0364
Present n =3 00576 00490  0.0441 00380  0.0363
(LD Present n =S5 00577  0.0490 00442 00381  0.0364
Present n=7 00577  0.0490 00442 00381  0.0364
Present =9 00577 00491 00442 00382  0.0365
H":lelm(z%?ﬁm‘ 01377 01174  0.1059 00903  0.0856
Present n =3 01376  0.1173  0.1059 00902  0.0856
10 @2 Present 1 =5 01378 01174  0.1060  0.0905  0.0859
Present n =7 01379 01176 01061  0.0908  0.0861
Present 7 =9 01381 01177 01062  0.0910  0.0863
HO:ISZ‘IHI(Z%?Sl}:)’m‘ 02113 01807 01631 01378  0.1301
Present 1 =3 02112 01807 01631 01378  0.1300
22) Present 1 =5 02115  0.1809  0.1633 01385  0.1306
Present 1 =7 02120 01812  0.1636 01390  0.1312
Present 7 =9 02123 01815  0.1638 0139  0.1316
HO::Z‘IHI(Z%?T:)’“ 00148 00125 00113 00098  0.0094
Present 1 =3 00147 00125 00113 00098  0.0094
20 @D Present 1 =5 00148 00125 00113 00098  0.0094
Present 1 =7 00148 00125 00113 00098  0.0094
Present 7 =9 00148 00125 00113 00098  0.0094
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Table 6 Comparison of frequency parameter @ of AL/ALO; rectangular plate (b = 2a)

a/p Modeno. Method k
(m, n) 0 0.5 1 2 5 8 10
Hosseini-Hashemi 5 )09 5 9300 26473 24017 22528 2.1985 2.1677
et al. (2011b)
Present n=3 34412 29346 2.6475 23948 22271 2.1696 2.1406
HLD Present n=5  3.4451 29374 26500 23987 22363 2.1781 2.1475
Present n=7  3.4499 29409 2.6532 24026 22435 2.1856 2.1545
Present n=9  3.4536 29436 2.6556 2.4055 22486 2.1912 2.1598
HOeStSZ}f“('Z%?Sl};e)m‘ 52802 4.5122 4.0773 3.6953 3.4492 33587 3.3094
Present n=3 52813 45179 4.0780 3.6805 3.3938 3.2964 3.2513
20:2) Present n=5 52896 4.5240 4.0836 3.6889 3.4134 33143 3.2807
Present n=7 53003 4.5318 4.0906 3.6975 3.4290 3.3305 3.2807
S Present n=9 53087 4.5379 4.0961 3.7041 3.4402 3.3427 3.2923
Hojtsg}?l('z}éﬁ}l‘)‘iml 8.0710 6.9231 62636 5.6695 52579 5.1045 5.0253
Present n=3  8.0748 6.9366 62662 5.6389 5.1424 4.9757 4.9055
313 Present n=5  8.0920 6.9493 62777 5.6562 5.1825 5.0119 4.9345
Present n=7  8.1150 6.9662 62930 5.6748 52154 50456 4.9653
Present n=9  8.1331 6.9795 6.3050 5.6889 52390 5.0710 4.9896
HO::Z}%%?TS““ 97416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518
Present n=3  10.1163 87138 7.8761 7.0750 6.4073 6.1846 6.0954
4@ Present n=5  10.1409 8.7322 7.8926 7.0998 6.4648 6.2360 6.1363
Present n=7  10.1749 87575 7.9154 7.1272 6.5127 6.2848 6.1810
Present n=9 102018 8.7773 7.9335 7.1483 6.5474 6.3219 62163
HOSISZ}%%?SI%‘;““ 36518 3.0983 27937 2.5386 23998 23504 2.3197
Present n=3  3.6517 3.0990 2.7936 2.5364 23916 2.3410 23110
D Present n=5  3.6530 3.0998 2.7944 25376 23945 23438 23132
Present n=7  3.6544 3.1009 2.7954 2.5388 23968 2.3462 2.3155
0 Present n=9  3.6556 3.1017 27961 2.5397 23984 23480 23172
HO:;Z}?&%?&‘;“ 57693 4.8997 4.4192 40142 3.7881 3.7072 3.6580
Present n=3 57694 49014 44192 4.0089 3.7682 3.6845 3.6368
2(1.2) Present n=5  5.7724 49035 44211 4.0119 3.7754 3.6913 3.6423
Present n=7 57760 4.9061 4.4235 4.0148 3.7809 3.6971 3.6477
Present n=9  5.7788 4.9081 4.4253 4.0170 3.7849 3.7014 3.6519
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Table 6 Continued
k
a/p Modeno. Method
(m, n) 0 0.5 1 2 5 8 10

Hosseini-Hashemi
et al. (2011b)

Present n =3 9.1880 7.8189 7.0514 6.3886 5.9764 5.8340 5.7574

9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086

3(13) Present n =75 9.1953 7.8241 7.0562 6.3959 5.9938 5.8502 5.7706

Present n=17 9.2042 7.8304 7.0620 6.4031 6.0073 5.8644 5.7837

10 Present n=9 9.2111 7.8354 7.0665 6.4086 6.0169 5.8749 5.7938
Hosseini-Hashemi

et al. (2011b) 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639

s Present n =3 11.8314 10.0809 9.0933 8.2308 7.6731 7.4812 7.3821

Present n =15 11.8431 10.0893 9.1009 8.2425 7.7009 7.5070 7.4030
Present n="7 11.8576 10.0997 9.1104 8.2543 7.7226 7.5298 7.4240
Present n=9 11.8688 10.1078 9.1177 8.2631 7.7381 7.5466 7.4402
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‘ ----CPT

3,0 T T T T T T T T

Power law index (k)

Fig. 11 The effect of power law index on fundamental frequency parameter (@) of square FG plate (n = 3)

Fig. 11 illustrates the variation of fundamental frequency parameters of square plate with
respect to power law index, k. The thickness ratios a/#h are assumed to be 5 (corresponding to
thick plate) and 100 (corresponding to thin plate). It can be seen that the fundamental frequency
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Fig. 12 The effect of thickness ratio on fundamental frequency parameter (w) of square FG plate (n = 3)
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parameter decreases as the power law index increases. This is due to the fact that increasing the
power law index increases the volume fraction of metal. Also, the frequency parameters of fully
ceramic plates are considerably higher than those of FG plates. Furthermore, the results predicted
by the present theory, the higher order shear deformation theory (HSDT) based on Reddy’s theory
and FSDT are identical, and the classical plate theory (CPT) overestimates frequency parameter of
FG plates. The difference between CPT and present theory is considerable for thick plate, but it
can be neglected for thin plates.

The variation of fundamental frequency parameter of square plate versus thickness ratio a/# is
shown in Fig. 12. It is observed that the fundamental frequency parameter increases by the
increase in thickness ratio, and the variation of fundamental frequency parameter is remarkable
when the thickness ratio is smaller than 5. Also, the CPT overestimates the frequency parameter of
FG plates, and the discrepancy between the CPT and present curves is negligible when the
thickness ratio is greater than 10. The effect of aspect ratio b/a on the frequency parameter of
plate (a/h =10) is presented in Fig. 13. It can be found that that the frequency parameter decreases
by the increase in the aspect ratio.

5. Conclusions

A n-order four variable refined theory is proposed to analyze the bending and free vibration of
functionally graded plates. By dividing the transverse displacement into bending and shear
components, the number of unknowns and governing equations of the present theory is reduced to
four and is therefore less than alternate theories available in the scientific literature. The equations
of motion derived from Hamilton principle are solved analytically for bending and free vibration
problems of a simply supported plate. It is observed that the proposed higher order shear and
normal deformation theory is not only accurate but also provides an elegant and easily
implementable approach for simulating bending and vibration behaviors of FG plates, of relevance
for example in spacecraft thermo-structural design. The formulation lends itself particularly well to
finite element simulations (Curiel Sosa et al. 2012, 2013) and also other numerical methods
employing symbolic computation for plate bending problems (Rashidi et al. 2012), which will be
considered in the near future.
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