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Abstract.  An exact dynamic stiffness method is introduced for investigating the free vibration 
characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel 
beam which are connected by using the stud connectors. The elementary beam theory is used to define the 
dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in 
the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the 
governing differential equations of the composite beams in undamped free vibration. The application of the 
derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the 
steel-concrete composite beams with seven boundary conditions. The present results are compared to the 
available solutions in the literature whenever possible. 
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1. Introduction 

 
Steel-concrete composite beams are widely used in the fields of bridge engineering and 

building engineering over the past several decades due to some distinguishing features as 
compared to the steel and concrete counterparts. The steel-concrete composite beam is composed 
of a reinforced concrete slab and a steel beam which are connected by a set of distributed stud 
connectors. The concrete slab and the steel beam can slide on the steel-concrete interface. 
However, this relative sliding is retarded by the stub connectors. On the one hand, this 
configuration increases the whole stiffness of the composite beam and reduces the overall 
deformation. On the other hand, this configuration makes the numerical modeling of the behavior 
of the composite beam more complicated. 

The great application of the steel-concrete composite beams in the structural engineering 
demands a deep understanding of the dynamic characteristics of these structures. A literature 
survey shows that various aspects of the static behaviors of the steel-concrete composite beams are 
studied in many research works (Wang 1998, Ranzi and Bradford 2007, Luo et al. 2012). 

Girhammar and Pan (1993) carried out the exact and approximate dynamic analyses of the 
composite members with interlayer slip and reached the general closed-form solutions for the 
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displacement functions and the internal forces. On the basis of Bernoulli-Euler beam theory, Adam 
et al. (1997) analyzed the dynamic characteristics of the elastic two-layer beams with interlayer 
slip using the linear constitutive equation between the horizontal slip and the interlaminar shear 
force. Biscontin et al. (2000) performed the analytical and experimental investigations on the 
dynamic behaviors of steel-concrete composite beams based on the Bernoulli-Euler beam theory 
and the same transverse displacement for the steel beam and the concrete slab. Morassi and 
Rocchetto (2003) presented an experimental investigation on the damage-induced changes in the 
natural frequencies and mode shapes of the steel-concrete composite beams. In order to accurately 
describe the dynamic behavior of the steel-concrete composite beam under damaged conditions, 
Dilena and Morassi (2003) developed an improved analytical model on the basis of the 
Bernoulli-Euler beam theory. Berczynski and Wroblewski (2005) investigated the free vibrations 
of the steel-concrete composite beams by means of the analytical solution method, in which both 
the Bernoulli-Euler beam theory and the Timoshenko beam theory were employed. Based on the 
Bernoulli-Euler beam theory, Wu et al. (2007) investigated the free vibrations of the partial- 
interaction composite beams with axial force under various classical boundary conditions. Xu and 
Wu (2007) studied the static, dynamic, and buckling behaviors of the partial-interaction composite 
beams with the effects of shear deformation and rotary inertia taken into account. Xu and Wu 
(2008) investigated the free vibration and buckling behaviors of the partial-interaction composite 
beams using the two-dimensional theory of elasticity and state-space method. Girhammar et al. 
(2009) presented the general solutions of the deflection and internal actions for the free and forced 
vibrations of the composite Bernoulli-Euler beams with interlayer slip. Dilena and Morassi (2009) 
adopted a simplified method to model the connections of the steel-concrete composite beams and 
conducted the vibration analyses based on the Bernoulli-Euler and Timoshenko beam theories. 
Berczynski and Wroblewski (2010) presented the experimental results of the dynamic 
characteristics of three steel-concrete composite beams. On the basis of Bernoulli-Euler beam 
theory, Shen et al. (2011) studied the free and forced vibrations of the composite beams with 
interlayer slip by virtue of state-space method and mode superposition method. Lenci and 
Clementi (2012) investigated the effects of shear deformation, rotary inertia, axial inertia and 
interface stiffness on the free vibrations of the composite beams with partial interaction. 

This study is a consequence of necessity to establish an exact solution technique that enables 
the evaluation of the vibration characteristics of the steel-concrete composite beams or frames with 
various boundary conditions reliably and efficiently. In this paper, the dynamic stiffness method is 
preferred as a solution technique for analyzing the free vibrations of the steel-concrete composite 
beam systems. This method is often referred to as an exact method because it is formulated from 
the exact analytical solutions of the homogeneous governing differential equations. This exact 
nature makes the dynamic stiffness method exhibit the great advantages when the higher 
frequencies and better accuracies of the results are demanded. In addition, this method can 
construct a useful comparator when the traditional finite element or other approximate schemes are 
employed. To the best of authors’ knowledge, the dynamic stiffness method has never been 
applied to the vibration analyses of the steel-concrete composite beams. 

First, the coupled governing equations of motion of the steel-concrete composite beams with 
shear deformation and rotary inertia excluded are derived by means of the Hamilton’s principle. 
The concrete slab and the steel beam are allowed to slide on their interface and have the same 
transverse displacement. The reasonable expression is adopted to describe the strain energy of the 
stud connectors. Then, the theoretical expressions of the dynamic stiffness matrix of the 
steel-concrete composite beams are derived from the exact general solutions of the homogeneous  
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Fig. 1 A steel-concrete composite beam and its cross-section 

 
 
governing differential equations of motion. Finally, the application of the proposed dynamic 
stiffness matrix to calculate the modal properties of the steel-concrete composite beams uses the 
well-known Wittrick-Williams algorithm (Wittrick and Williams 1971). Numerical results of three 
steel-concrete composite beams with seven different boundary conditions are presented and 
compared with the available solutions in the literature to illustrate the accuracy and efficiency of 
the dynamic stiffness approach. 
 
 
2. Mathematical formulation 

 
Consider a uniform and straight composite beam made of a reinforced concrete slab and a steel 

beam which are connected by using the stud connectors, as shown in Fig. 1. The concrete slab and 
the steel beam have the same length L. 

The following basic assumptions are made in the analysis. 
 

(1) The concrete slab and the steel beam are linear elastic and isotropic. 
(2) Both the transverse shear strains and rotational kinetic energies of the concrete slab and 

the steel beam are neglected. 
(3) The steel-concrete composite beam only vibrates in the oxz1 plane. 
(4) The stud connectors are uniformly distributed and the distance between the two 

consecutive studs is short enough compared to the beam length. The length of the stud 
connectors is half of the thickness of the concrete slab. 

(5) The concrete slab and the steel beam can slide on the steel-concrete interface and have the 
same transverse displacement. 

 

The strain energy of the concrete slab is 
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    dxuAEdxwIEV
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where E1 is the elastic modulus of the concrete slab, A1 and I1 are the area and the moment of 
inertia of the concrete slab cross-section, respectively. u1(x, t) and w(x, t) are the longitudinal and 
transverse displacements of a fiber in the middle surface of the concrete slab, respectively. The 
superscript prime denotes the partial derivative with respect to the coordinate x. 

The kinetic energy of the concrete slab is expressed as 
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where m1 is the mass density per unit length of concrete slab. The overdot represents the partial 
differentiation with respect to the time t. 

Similarly, the strain energy V2 and kinetic energy T2 of the steel beam are given by 
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where E2 and m2 are the elastic modulus and the mass density per unit length of the steel beam, 
respectively. A2 and I2 are the area and the moment of inertia of the steel beam cross-section, 
respectively. u2(x, t) and w(x, t) are the longitudinal and transverse displacements of a fiber in the 
mid-surface of the steel beam, respectively. 

The relative sliding between the concrete slab and the steel beam occurs on the steel-concrete 
interface, which is retarded by the stub connectors. The strain energy of the ith stud connector can 
be denoted as (Berczynski and Wroblewski 2005) 
 

1111
2

11 2

1

2

1  ccci KeKeKV                        (5) 

 
where δ1 is the difference between the transverse displacements of both ends of the stud connector, 
which is assumed to be equal to u2 ‒ u1 + w′es, es is the distance between the top surface of the 
steel beam and its centroid; ζ1 is the rotation angle of the upper end of stud connector, which is 
equal to the rotation angle of the concrete slab w′; K is the shear stiffness of the stud connector; ec  
is the distance between the top surface of the steel beam and the centroid of the concrete slab. 

Substituting the expressions of δ1 and ζ1 into Eq. (5) yields 
 

 2122

1
ewuuKVci                             (6) 

 
where e is the distance between the centroid of the steel beam and the centroid of the concrete slab, 
e = es + ec. 

The stud connectors are assumed to be uniformly distributed and the distance between the two 
consecutive studs is assumed to be short enough compared to the beam length, which is justified in 

580



 
 
 
 
 
 

Dynamic stiffness analysis of steel-concrete composite beams 

the real steel-concrete composite beams. Therefore, the discrete stud connectors can be regarded as 
a distributed connection along the steel-concrete interface. Under this assumption, the strain 
energy of the connection can be described as 
 

  dxewuukV
L

c  
0

2
122

1
                          (7) 

 

where k is the shear stiffness per unit length of the connection, k = K / d, in which d is the distance 
between two consecutive stud connectors. 

The governing equations of motion and the corresponding boundary conditions for the coupled 
transverse and longitudinal vibration of the steel-concrete composite beam are derived by using the 
Hamilton’s principle, which is expressed as 
 

0)(
2

1
2121  dtVVVTT

t

t
c                          (8) 

 

2121 ,at    0 tttwwuu    
 
where δ denotes the variation calculus, t1 and t2 are two arbitrary time instants. 

Substituting Eqs. (1)-(4) and (7) into Eq. (8) and performing the variational operations resulting 
in the following governing equations of motion of the steel-concrete composite beam 
 

02111111  wkekukuuAEum                       (9a) 
 

02222122  wkekuuAEkuum                      (9b) 
 

    02
22112121  wkewIEIEukeukewmm               (9c) 

 
The boundary conditions at the beam ends (x = 0, L) are given by 

 

01111  uuAE                               (10a) 
 

02222  uuAE                               (10b) 
 

   02
221121  wwkewIEIEkeukeu                  (10c) 

 

  02211  wwIEIE                           (10d) 
 

It is evident from Eqs. (9a)-(9c) that there exists the coupled vibration between the transverse 
and longitudinal displacements due to the presence of the stud connectors and this coupling is 
vanished if and only if the connection stiffness k equals zero or the centroid distance e is zero. 

 
 

3. Derivation of dynamic stiffness matrix 
 

It can be seen that Eqs. (9a)-(9c) are a set of partial differential equations with constant 
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coefficients, which solutions can be separable in time and space, and the time dependence is 
harmonic. Thus, the longitudinal displacements u1 and u2 as well as the transversal displacement w 
are assumed as 

    tiexWxUxUtxwtxutxu )()()(),(),(),( 2121                 (11) 
 
where ω is the circular frequency, U1(x), U2(x) and W(x) are the amplitudes of the harmonically 
varying longitudinal displacements and transversal displacement, respectively. 

Inserting Eq. (11) into Eqs. (9a)-(9c) and Eqs. (10a)-(10d) yields the following set of ordinary 
differential equations 
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and the corresponding boundary conditions 
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02222  UUAE                              (13b) 
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  02211  WWIEIE                           (13d) 
 

The amplitude functions U1(x), U2(x) and W(x) of the longitudinal displacements and 
transversal displacement can be considered as follows 
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Introducing Eq. (14) into Eqs. (12a)-(12c) obtains the algebraic eigenvalue equations, which 
have nontrivial solutions when the determinant of the coefficient matrix of A

~
, B

~
 and C

~
 

vanishes. Let the determinant equal to zero results in the characteristics equation, which is an 
eighth-order polynomial equation in κ 
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Let χ = κ2 and substituting it into Eq. (15) yields a fourth-order polynomial equation 
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A closed-form solution to Eq. (16) can be found as follows. Eq. (16) can be factored into the 
product of two quadratic polynomial equations 
 

0))(( 22
2

11
2  qpqp                        (17) 

where 






























 









12
2
1

311
1

2

1
12

2
11

2

1

44

2

2

1
44

2

1




aa

aa

q

q
aaa

p

p
 

 

The parameter λ1 is a real root of the following cubic equation 
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The four roots of Eq. (16) follow 
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Then the general solutions to Eqs. (12a)-(12c) can be written as 
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where )( 212 jj AA  , )( 212 jj BB   and )( 212 jj CC   are three sets of undetermined constants, 

jj    (j = 1 ‒ 4). In the solution of Eq. (16), if any of the χj’s are zero or are repeated, the 
solutions to Eqs. (12a)-(12c) will be revised using the well-known methods for the ordinary 
differential equations with constant coefficients, for those particular values of χj. 

Substituting Eqs. (20a)-(20c) into Eqs. (12a)-(12b) obtains the following relations among the 
three sets of unknown constants 
 

jjjjjj CtACtA 221212                          (21a) 
 

jjjjjj CtBCtB 221212                         (21b) 

where 

 )()( 2
1

2
11

2
2

2
22  mAEektmAEekt jjjjjj  

 

)()()( 2
2

2
22

2
11

2
1

2
22

4
21

2
21  mAEkAEmkAEmmmmk jjj 

 
 

Substituting Eqs. (20a)-(20c) into Eqs. (13a)-(13d) and adopting the sign convention shown in 
Fig. 2, the expressions for the normal forces N1(x) and N2(x), shear force S(x) and bending moment 
M(x) can be written in terms of the constants )( 212 jj CC   
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Fig. 2 Sign convention for positive normal forces N1(x) and N2(x), shear force S(x) and 
bending moment M(x) 
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Fig. 3 Boundary conditions for generalized displacements and forces 

 
 

With reference to Fig. 3, the end conditions for the generalized displacements and generalized 
forces of the steel-concrete composite beam are, respectively 
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Introducing Eqs. (23a) and (23c) into Eqs. (20a)-(20c), the nodal displacements at the beam 
ends can be expressed in terms of the constants )( 212 jj CC   as 
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Substituting Eqs. (23b) and (23d) into Eqs. (22a)-(22d), the nodal forces at the beam ends 
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corresponding to the nodal displacements also can be expressed in terms of the coefficients 
)( 212 jj CC   as 

}]{[}{ CHF                              (25) 
 
where {F} is the nodal force vector defined by 
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Combining Eqs. (24) and (25) and eliminating the constant vector }{C  produces the relation 
between the nodal force vector {F} and the nodal displacement vector {D} 
 

}]{[}{]][[}{ 1 DKDRHF                           (26) 
 

where 1]][[][  RHK  is called the exact element dynamic stiffness matrix. Note that the roots of 
Eq. (16) can be real or complex depending on the coefficients of Eq. (16), and as a consequence, 
the elements of matrices [R] and [H] can be complex. Therefore, the matrix inversion and 
multiplication involved in Eq. (26) must be performed using complex arithmetic. However, the 
resulting dynamic stiffness matrix [K] will be symmetric and real. It may be mentioned that the 
analytical expressions for the elements of the dynamic stiffness matrix can be derived using the 
symbol manipulation software Mathematica (Wolfram 1991), which can lead to substantial 
savings in computational cost. However, these expressions are too lengthy to be listed in the paper. 

The derived element dynamic stiffness matrix can be directly used to compute the natural 
frequencies and mode shapes of the individual steel-concrete composite beam. If an assembly of 
the steel-concrete composite beams is under consideration, the global dynamic stiffness matrix for 
the entire beam system can be assembled from each element dynamic stiffness matrix in a 
completely similar way to that used for the traditional finite element method. The well-known 
Wittrick-Williams algorithm (Wittrick and Williams 1971, Banerjee 1997) is chosen in this paper 
to calculate the natural frequencies of the steel-concrete composite beams. The algorithm is 
reliable and efficient because it finds the total number of natural frequencies below an arbitrarily 
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given trial value instead of directly calculating the natural frequencies. In this way the upper and 
lower bounds are established for each required natural frequency, and then the classical bisection 
method can be used to determine the natural frequencies to any required accuracy. Due to the 
extensive discussions on the use of the algorithm in the literature, the detailed process is not 
repeated here. The mode shapes corresponding to the natural frequencies can be found in the usual 
way by making an arbitrary assumption about one unknown variable of the steel-concrete 
composite beam assembly and then calculating the remaining variables in terms of the arbitrarily 
chosen one. 

 
 

4. Results and discussion 
 
In order to illustrate the application of the dynamic stiffness matrix derived in the preceding 

sections, numerical calculations are performed on three steel-concrete composite beams. Four 
classical boundary conditions at the ends of each beam are considered, i.e., clamped end, hinged 
end 1, hinged end 2 and free end. 

 

For the clamped end (C): 021  WWUU  
For the hinged end 1 (H1): 021  MWUU  
For the hinged end 2 (H2): 021  MWNN  
For the free end (F): 021  MSNN  
 

A total of seven boundary conditions, i.e., C-C, C-H1, C-H2, F-F, C-F, H1-H1 and H2-H2 are 
considered for each beam. 

The composite beams under consideration are similar to those studied in references (Biscontin 
et al. 2000, Morassi and Rocchetto 2003, Dilena and Morassi 2003). However, a brief description 
of the beams is given for the sake of completeness. Each composite beam is composed of a steel 
beam made of a Fe430 steel section bar of IPE 140 series and a concrete slab with 0.06m thick and 
0.5 m wide, which are connected through a series of Fe430 steel studs. The geometric and material 
properties of the steel beam are equal to their nominal values, i.e., elastic modulus E2 = 2.1 × 1011 
N/m2, mass density per unit length m2 = 12.9 kg/m, cross-sectional area A2 = 1.64 × 10‒3

 m
2, and 

moment of inertia I2 = 5.41 × 10‒6 m4. As for the concrete slab, the cross-sectional area is A1 = 3 × 
10‒2

 m
2, and moment of inertia is I1 = 9 × 10‒6

 m
4. The distance between the top surface of the steel 

beam and the centroid of the concrete slab is ec = 0.03 m, and the distance between the top surface 
of the steel beam and its centroid is es = 0.07 m. Both the length of the steel beam and concrete 
slab are L = 3.5 m. 

The elastic modulus E1 and mass density per unit length m1 of the concrete slab as well as the 
shear stiffness K of the stud connector and the distance d between two consecutive stud connectors 
have different values for the three composite beams under investigation. 

 

For the composite beam A: 
10

1 10539.4 E N/m2, 07.781 m kg/m, 810858.2 K N/m, 21875.0d m 
 

For the composite beam B: 
10

1 10229.4 E N/m2, 19.731 m kg/m, 810367.2 K N/m, 21875.0d m 
 

For the composite beam C: 
10

1 10098.4 E N/m2, 84.751 m kg/m, 810055.2 K N/m, 15217.0d m 
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A detailed numerical investigation is performed on the three steel-concrete composite beams 
with seven different boundary conditions. The natural frequencies of the composite beams are 
evaluated by virtue of the exact dynamic stiffness matrix established in this paper. Each beam is 
idealized with only one element throughout this section. The first ten natural frequencies are 
determined for each beam and each boundary condition. The numerical results are shown in Tables 
1-3, together with some solutions available in the literature. For the composite beam A with F-F 
boundary condition, the natural frequencies for the first eight bending vibration modes and for the 
first two longitudinal vibration modes obtained in reference (Biscontin et al. 2000) by using the 
analytical method and experimental technique are displayed in Table 1. It may be mentioned that 
the rigid vibration modes are omitted for the composite beams with F-F boundary condition and 
the values with superscript asterisk denote the natural frequencies corresponding to the 
longitudinal vibration modes. The present mathematical model is similar to the one used in 
reference (Biscontin et al. 2000), but there is a small difference in describing the strain energy of 
the stud connectors. For the composite beams B and C with F-F boundary condition, the 
experiment results for the first seven bending vibration frequencies and for the first two 
longitudinal vibration frequencies acquired in reference (Morassi and Rocchetto 2003) are 
presented in Tables 2-3, respectively. In addition, the first seven bending vibration frequencies 
gained in reference (Dilena and Morassi 2003) by means of the analytical method are also given in 
Tables 2-3. The definition of the strain energy of the stud connectors in reference (Dilena and 
Morassi 2003) is the same as the one in reference (Biscontin et al. 2000) and the analytical results 
cited from reference (Dilena and Morassi 2003) are based on the assumptions that the relative 
transverse displacement can occur between the concrete slab and the steel beam as well as the 
axial stiffness of the stud connectors is infinity. 

It can be seen from the results presented in Tables 1-3 that the natural frequencies of the 
composite beams are sensitive to the variations of the boundary condition. The variation of the 
natural frequency with the boundary condition can be observed from Tables 1-3. The natural 
frequencies of the composite beams with F-F boundary condition are the highest and the 
composite beams with C-F boundary condition have the lowest natural frequencies. The natural 

 
 
Table 1 Natural frequencies (in Hz) for the composite beam A 

Mode 
no. 

C-C C-H1 C-H2 
F-F 

C-F H1-H1 H2-H2
Present

Morassi and 
Rocchetto (2003)

Biscontin et al.
(2000) 

1 53.87 47.28 42.33 59.62 59.625 59.625 9.71 41.92 35.43

2 135.51 119.89 116.62 148.05 148.038 133.875 55.41 106.42 95.11

3 248.90 224.18 222.25 265.54 265.496 235.250 141.88 201.77 198.91

4 392.25 358.87 357.29 410.36 410.268 345.000 257.12 327.75 309.86

5 566.32 524.40 441.20 584.29 584.174 459.000 309.20 484.72 345.69

6 617.54 617.54 524.72 617.83* 617.750* 617.750* 401.38 617.54 483.75

7 771.85 721.41 721.32 789.13 788.895 578.250 575.44 673.20 673.13

8 1009.45 950.50 950.21 1025.44 1025.059 706.750 780.54 893.77 758.29

9 1229.44 1212.08 970.67 1229.19* 1229.303* 1233.625* 924.47 1146.82 893.95

10 1279.54 1229.44 1212.09 1293.52 1292.848 853.000 1017.46 1229.44 1146.71
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Table 2 Natural frequencies (in Hz) for the composite beam B 

Mode 
no. 

C-C C-H1 C-H2 
F-F 

C-F H1-H1 H2-H2
Present

Dilena and 
Morassi (2003)

Morassi and 
Rocchetto (2003)

1 53.91 46.80 42.23 60.27 60.56 60.56 9.86 41.08 35.03

2 135.27 118.88 116.22 148.16 137.99 143.68 55.68 104.74 95.30

3 248.80 223.24 221.77 265.13 246.98 241.90 141.87 200.02 197.82

4 393.04 358.70 357.56 410.23 387.01 345.68 256.87 326.67 310.37

5 568.94 525.91 437.95 585.57 559.30 455.88 309.02 485.17 340.81

6 616.95 616.95 526.11 617.29* 617.06* 617.06* 401.73 616.95 484.48

7 777.20 725.50 725.43 792.89 764.59 566.88 577.40 676.06 676.00

8 1018.40 958.03 957.59 1032.64 1003.27 688.88 785.11 899.90 749.98

9 1226.93 1223.84 964.60 1226.75* N/A 1225.94* 923.12 1157.04 899.99

10 1292.88 1226.94 1223.85 1304.14 N/A N/A 1025.50 1226.93 1156.97

 
 

For the composite beam B with F-F boundary condition, Table 2 illustrates that the first seven 
bending natural frequencies predicted by the present formulation agree well with the analytical 
results in reference (Dilena and Morassi 2003). The relative errors for the first seven bending 
natural frequencies are 0.5%, 7.4%, 7.3%, 6.0%, 4.7%, 3.7% and 2.9%, which may be attributed to 
the different mathematical models used. It can also be found that as the bending mode number 
increases, the differences between the present results and the experimental values in reference 
(Morassi and Rocchetto 2003) increase. However, the natural frequencies of the first two 
longitudinal vibration modes predicted by the present formulation are virtually coincident with the 
experimental data in reference (Morassi and Rocchetto 2003). With the exception of the fundamental 
mode, the present model overestimates the natural frequencies as compared with the experiment 
values. 
 
 
Table 3 Natural frequencies (in Hz) for the composite beam C 

Mode 
no. 

C-C C-H1 C-H2 
F-F 

C-F H1-H1 H2-H2
Present

Dilena and 
Morassi (2003)

Morassi and  
Rocchetto (2003)

1 54.20 47.76 42.39 59.81 62.03 62.03 9.72 42.49 35.34

2 136.44 121.00 117.36 148.95 139.50 146.53 55.69 107.70 95.70

3 250.49 225.93 223.72 267.33 248.29 246.59 142.78 203.67 200.35

4 394.41 361.17 359.33 412.94 387.30 351.25 258.80 330.20 312.84

5 568.92 527.14 438.54 586.83 557.43 460.25 300.64 487.61 350.49

6 600.16 600.16 527.43 601.07* N/A 600.31* 403.74 600.16 486.43

7 774.74 724.45 724.32 792.62 759.72 568.63 578.30 676.40 676.28

8 1012.52 953.72 946.61 1029.14 994.46 677.50 783.71 897.14 749.23

9 1193.11 1193.11 954.55 1193.00* N/A 1189.60* 897.91 1150.30 897.32

10 1282.69 1215.40 1215.40 1297.31 N/A N/A 1020.85 1193.11 1150.12
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Fig. 4 First ten normal mode shapes of the composite beam A with C-F boundary condition: (a) mode 

1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 
9; (j) mode 10 
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Fig. 4 Continued 

 
 
frequencies of the composite beams with C-H1 and H1-H1 boundary conditions are larger than 
those of the composite beams with C-H2 and H2-H2 boundary conditions, respectively. 

For the composite beam A with F-F boundary condition, it can be seen from Table 1 that the 
first ten natural frequencies obtained by the present formulation are in excellent agreement with 
the analytical results in reference (Biscontin et al. 2000). However, a comparison between the 
present results and the experimental values in reference (Biscontin et al. 2000) shows that a good 
agreement is observed for the lower natural frequencies and a fairly large difference can be found 
for the higher natural frequencies. The relative errors for the first eight bending natural frequencies 
are 0, 10.6%, 12.9%, 18.9%, 27.3%, 36.5%, 45.1% and 51.6%. The present results are consistently 
larger than the experimental values and the relative errors increase with the increase of the mode 
number, which may implicate that the shear deformation and rotary inertia will play an important 
role for the higher bending natural frequencies. 

For the composite beam C with F-F boundary condition, similar conclusions to the composite 
beam B can be drawn. 
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The first ten normal mode shapes of the steel-concrete composite beam A with C-F boundary 
condition are computed and plotted in Figs. 4(a)-(j). It can be seen from Figs. 4(a)-(j) that of the 
ten natural frequencies under investigation the fifth and ninth natural frequencies are 
corresponding to the longitudinal vibration modes. Another observation is that the bending 
vibration is coupled with the longitudinal vibration, which is due to the nonzero shear stiffness of 
the stud connectors or the nonzero distance between the centroid of the steel beam and the centroid 
of the concrete slab. In addition, it can also be found from Figs. 4(a)-(j) that the differences 
between the longitudinal displacement components of the vibration modes in the steel beam and 
concrete slab are obvious. 

 
 

5. Conclusions 
 
This paper presents a dynamic stiffness formulation for investigating the free vibration of the 

steel-concrete composite beams with the effect of relative longitudinal deformation between the 
concrete slab and the steel beam included. The dynamic stiffness matrix is formulated from the 
closed-from general solutions of the homogeneous governing differential equations of the 
steel-concrete composite beams. The dynamic stiffness method is illustrated by its application to 
compute the natural frequencies and mode shapes of the composite beams using the 
Wittrick-Williams algorithm. Numerical results of three steel-concrete composite beams with 
seven different boundary conditions are presented and compared to the available solutions in the 
literature. For the particular composite beams under consideration, the F-F composite beams have 
the highest natural frequencies and the C-F composite beams have the lowest ones. A comparison 
between the present results and the experimental values shows that an excellent agreement is 
observed for the first two longitudinal vibration natural frequencies, a good agreement for the 
lower bending vibration natural frequencies and a fairly large difference for the higher ones, the 
errors may be ascribed to the ignorance of the shear deformation and rotary inertia in the present 
formulation. It is anticipated that the dynamic stiffness method used in this paper can also be 
applied to the forced vibration analyses of the steel-concrete composite beams. 
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