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Dynamic stiffness analysis of steel-concrete composite beams
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Abstract. An exact dynamic stiffness method is introduced for investigating the free vibration
characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel
beam which are connected by using the stud connectors. The elementary beam theory is used to define the
dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in
the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the
governing differential equations of the composite beams in undamped free vibration. The application of the
derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the
steel-concrete composite beams with seven boundary conditions. The present results are compared to the
available solutions in the literature whenever possible.
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1. Introduction

Steel-concrete composite beams are widely used in the fields of bridge engineering and
building engineering over the past several decades due to some distinguishing features as
compared to the steel and concrete counterparts. The steel-concrete composite beam is composed
of a reinforced concrete slab and a steel beam which are connected by a set of distributed stud
connectors. The concrete slab and the steel beam can slide on the steel-concrete interface.
However, this relative sliding is retarded by the stub connectors. On the one hand, this
configuration increases the whole stiffness of the composite beam and reduces the overall
deformation. On the other hand, this configuration makes the numerical modeling of the behavior
of the composite beam more complicated.

The great application of the steel-concrete composite beams in the structural engineering
demands a deep understanding of the dynamic characteristics of these structures. A literature
survey shows that various aspects of the static behaviors of the steel-concrete composite beams are
studied in many research works (Wang 1998, Ranzi and Bradford 2007, Luo et al. 2012).

Girhammar and Pan (1993) carried out the exact and approximate dynamic analyses of the
composite members with interlayer slip and reached the general closed-form solutions for the
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displacement functions and the internal forces. On the basis of Bernoulli-Euler beam theory, Adam
et al. (1997) analyzed the dynamic characteristics of the elastic two-layer beams with interlayer
slip using the linear constitutive equation between the horizontal slip and the interlaminar shear
force. Biscontin et al. (2000) performed the analytical and experimental investigations on the
dynamic behaviors of steel-concrete composite beams based on the Bernoulli-Euler beam theory
and the same transverse displacement for the steel beam and the concrete slab. Morassi and
Rocchetto (2003) presented an experimental investigation on the damage-induced changes in the
natural frequencies and mode shapes of the steel-concrete composite beams. In order to accurately
describe the dynamic behavior of the steel-concrete composite beam under damaged conditions,
Dilena and Morassi (2003) developed an improved analytical model on the basis of the
Bernoulli-Euler beam theory. Berczynski and Wroblewski (2005) investigated the free vibrations
of the steel-concrete composite beams by means of the analytical solution method, in which both
the Bernoulli-Euler beam theory and the Timoshenko beam theory were employed. Based on the
Bernoulli-Euler beam theory, Wu et al. (2007) investigated the free vibrations of the partial-
interaction composite beams with axial force under various classical boundary conditions. Xu and
Wu (2007) studied the static, dynamic, and buckling behaviors of the partial-interaction composite
beams with the effects of shear deformation and rotary inertia taken into account. Xu and Wu
(2008) investigated the free vibration and buckling behaviors of the partial-interaction composite
beams using the two-dimensional theory of elasticity and state-space method. Girhammar et al.
(2009) presented the general solutions of the deflection and internal actions for the free and forced
vibrations of the composite Bernoulli-Euler beams with interlayer slip. Dilena and Morassi (2009)
adopted a simplified method to model the connections of the steel-concrete composite beams and
conducted the vibration analyses based on the Bernoulli-Euler and Timoshenko beam theories.
Berczynski and Wroblewski (2010) presented the experimental results of the dynamic
characteristics of three steel-concrete composite beams. On the basis of Bernoulli-Euler beam
theory, Shen et al. (2011) studied the free and forced vibrations of the composite beams with
interlayer slip by virtue of state-space method and mode superposition method. Lenci and
Clementi (2012) investigated the effects of shear deformation, rotary inertia, axial inertia and
interface stiffness on the free vibrations of the composite beams with partial interaction.

This study is a consequence of necessity to establish an exact solution technique that enables
the evaluation of the vibration characteristics of the steel-concrete composite beams or frames with
various boundary conditions reliably and efficiently. In this paper, the dynamic stiffness method is
preferred as a solution technique for analyzing the free vibrations of the steel-concrete composite
beam systems. This method is often referred to as an exact method because it is formulated from
the exact analytical solutions of the homogeneous governing differential equations. This exact
nature makes the dynamic stiffness method exhibit the great advantages when the higher
frequencies and better accuracies of the results are demanded. In addition, this method can
construct a useful comparator when the traditional finite element or other approximate schemes are
employed. To the best of authors’ knowledge, the dynamic stiffness method has never been
applied to the vibration analyses of the steel-concrete composite beams.

First, the coupled governing equations of motion of the steel-concrete composite beams with
shear deformation and rotary inertia excluded are derived by means of the Hamilton’s principle.
The concrete slab and the steel beam are allowed to slide on their interface and have the same
transverse displacement. The reasonable expression is adopted to describe the strain energy of the
stud connectors. Then, the theoretical expressions of the dynamic stiffness matrix of the
steel-concrete composite beams are derived from the exact general solutions of the homogeneous
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Fig. 1 A steel-concrete composite beam and its cross-section

governing differential equations of motion. Finally, the application of the proposed dynamic
stiffness matrix to calculate the modal properties of the steel-concrete composite beams uses the
well-known Wittrick-Williams algorithm (Wittrick and Williams 1971). Numerical results of three
steel-concrete composite beams with seven different boundary conditions are presented and
compared with the available solutions in the literature to illustrate the accuracy and efficiency of
the dynamic stiffness approach.

2. Mathematical formulation

Consider a uniform and straight composite beam made of a reinforced concrete slab and a steel
beam which are connected by using the stud connectors, as shown in Fig. 1. The concrete slab and
the steel beam have the same length L.

The following basic assumptions are made in the analysis.

(1) The concrete slab and the steel beam are linear elastic and isotropic.

(2) Both the transverse shear strains and rotational kinetic energies of the concrete slab and
the steel beam are neglected.

(3) The steel-concrete composite beam only vibrates in the oxz; plane.

(4) The stud connectors are uniformly distributed and the distance between the two
consecutive studs is short enough compared to the beam length. The length of the stud
connectors is half of the thickness of the concrete slab.

(5) The concrete slab and the steel beam can slide on the steel-concrete interface and have the
same transverse displacement.

The strain energy of the concrete slab is
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1L " 1 (L '
4 :5_[) E\I (W )zdx+5L E 4 (ul)zdx (1

where E, is the elastic modulus of the concrete slab, 4, and I; are the area and the moment of
inertia of the concrete slab cross-section, respectively. u;(x, £) and w(x, ¢) are the longitudinal and
transverse displacements of a fiber in the middle surface of the concrete slab, respectively. The
superscript prime denotes the partial derivative with respect to the coordinate x.

The kinetic energy of the concrete slab is expressed as

1= [ Sl + G Jax @

where m; is the mass density per unit length of concrete slab. The overdot represents the partial
differentiation with respect to the time ¢.
Similarly, the strain energy V, and kinetic energy T, of the steel beam are given by

1L " 1 (L '
v, = EL E,L(w"Vdx + 5 jo E, Ay (u, Pl 3)

1= [} mallin ) + o) Jas @

where £, and m, are the elastic modulus and the mass density per unit length of the steel beam,
respectively. A, and I, are the area and the moment of inertia of the steel beam cross-section,
respectively. u,(x, £) and w(x, ¢) are the longitudinal and transverse displacements of a fiber in the
mid-surface of the steel beam, respectively.

The relative sliding between the concrete slab and the steel beam occurs on the steel-concrete
interface, which is retarded by the stub connectors. The strain energy of the ith stud connector can
be denoted as (Berczynski and Wroblewski 2005)

Vi = %Ké}é‘l +%Kefé’lé‘l +Ke {6, ®)

where J; is the difference between the transverse displacements of both ends of the stud connector,

which is assumed to be equal to u, — u; + w'e,, ¢ is the distance between the top surface of the

steel beam and its centroid; {; is the rotation angle of the upper end of stud connector, which is

equal to the rotation angle of the concrete slab w'; K is the shear stiffness of the stud connector; e,

is the distance between the top surface of the steel beam and the centroid of the concrete slab.
Substituting the expressions of d; and {; into Eq. (5) yields

1
Vei = EK(uz —u, +wef (6)
where e is the distance between the centroid of the steel beam and the centroid of the concrete slab,
e=e¢;, T e.

The stud connectors are assumed to be uniformly distributed and the distance between the two
consecutive studs is assumed to be short enough compared to the beam length, which is justified in
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the real steel-concrete composite beams. Therefore, the discrete stud connectors can be regarded as
a distributed connection along the steel-concrete interface. Under this assumption, the strain
energy of the connection can be described as

L1 .
V.= L Ek(u2 —u, +we)dx (7)

where £ is the shear stiffness per unit length of the connection, k = K/d, in which d is the distance
between two consecutive stud connectors.

The governing equations of motion and the corresponding boundary conditions for the coupled
transverse and longitudinal vibration of the steel-concrete composite beam are derived by using the
Hamilton’s principle, which is expressed as

5[+, =V,~V, )t =0 @®)
4

ouy =0, =ow=0ow'=0 at t=t,t,
where J denotes the variation calculus, ¢, and ¢, are two arbitrary time instants.

Substituting Egs. (1)-(4) and (7) into Eq. (8) and performing the variational operations resulting
in the following governing equations of motion of the steel-concrete composite beam

—myii, + E\Au — ku, + ku, + kew' =0 (9a)
— mytiy + ku, + E, Ayus —ku, —kew' =0 (9b)
—(my +my Wo—keu, +keu, —(E I, +E,L,)W" +ke*w" =0 (9¢)

The boundary conditions at the beam ends (x =0, L) are given by

E Au; ou; =0 (10a)

E, Ay 6uy =0 (10b)

- [— keu, + kew, —(E I, + E, 1, W" + kezw']éw =0 (10c)
— (B, + E,L,W'Sw =0 (10d)

It is evident from Egs. (9a)-(9c¢) that there exists the coupled vibration between the transverse
and longitudinal displacements due to the presence of the stud connectors and this coupling is
vanished if and only if the connection stiffness k£ equals zero or the centroid distance e is zero.

3. Derivation of dynamic stiffness matrix

It can be seen that Egs. (9a)-(9¢) are a set of partial differential equations with constant
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coefficients, which solutions can be separable in time and space, and the time dependence is
harmonic. Thus, the longitudinal displacements u; and u, as well as the transversal displacement w
are assumed as

{ul(x,t) uy(x,t) w(x,t)}z{Ul(x) U,(x) W(x)}ei”t (11)

where w is the circular frequency, Ui(x), U,(x) and W(x) are the amplitudes of the harmonically
varying longitudinal displacements and transversal displacement, respectively.

Inserting Eq. (11) into Egs. (92)-(9¢) and Egs. (10a)-(10d) yields the following set of ordinary
differential equations

mo’U, + E, AU —kU, +kU, +keW' =0 (12a)
m,@’U, + kU, + E,AU5 —kU, —keW'=0 (12b)
(m, +m,) )™ W —keU, +keU, —(E1, + E,L,W"" +ke*W" =0 (12¢)

and the corresponding boundary conditions

E AU 8U, =0 (13a)

E, AU, 8U, =0 (13b)

ke, — keU, + (B 1, + E,L W" — kW' }sw =0 (13¢)
—(E I, + E,L,W'sW' =0 (13d)

The amplitude functions U;(x), U(x) and W(x) of the longitudinal displacements and
transversal displacement can be considered as follows

U0 U) woy={i B Cle® (14)
Introducing Eq. (14) into Egs. (12a)-(12¢) obtains the algebraic eigenvalue equations, which
have nontrivial solutions when the determinant of the coefficient matrix of 4, B and C
vanishes. Let the determinant equal to zero results in the characteristics equation, which is an
eighth-order polynomial equation in x
7,6° + 8 + ot it 41, =0 (15)
where
Ny =—E\ A E, Ay (B + Eyly)
1y = Ex Ay (B, + Ey 1) (k = m@?) + E A (E, e’k + (E\I, + E, L) (k — mya?))
11, = @ (Eydye’kom + E A (€kmy + Ey Ay (my +my)) + (B L, + E L) (k(my +my) = mymya0*))

1, = &’ (e kmm,0” + E, A, (m, + m,)(~k + ma@*) + E, A (m, + m,)(—k + m,o"))
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1o = (my +my)@* (=k(m, + m,) + mm, )
Let y = x* and substituting it into Eq. (15) yields a fourth-order polynomial equation

){4+a1;(3+a2;(2+a3;(+a4=0 (16)
where
a, =773/774 a, =772/774 a; =771/774 a, =770/774

A closed-form solution to Eq. (16) can be found as follows. Eq. (16) can be factored into the
product of two quadratic polynomial equations

X +px+a) 0’ +px+49,)=0 (17)
where

{pl}zl[aliw/af—4a2+4ﬂl:| {ql}:l %iM
Py 2 q,] 2 Vai —da, +44,

The parameter 4, is a real root of the following cubic equation
P —a, X +(a,a, —4a,)A + (daya, — a3 —ala,) =0 (18)

The four roots of Eq. (16) follow

2 2
Al__ by b Ll__Pry [P 19
{Zz} 27 Ve {14} 27V "

Then the general solutions to Egs. (12a)-(12¢) can be written as

U (x)= 4, " + Aye ™ + 4™ + Aje™™ + Ae™ + Age ™" + A,e™ + Age™
4
- KX - —K ;X
SN AT e (20a)
= Z( e+ Aye )
=
U,(x)=Be"" + B,e ™ + Bie™" + B,e™™ + Bse™" + Bge ™" + B,e™" + Bge ™"
4
R (20b)
=) ( 2j-1€ 2;€ )
J=1
W(x)=C,e™ +C,e™ + Cye™" + Cye ™" +Cse™" + Cye ™" + C,e™" + Cye ™
_ (20¢)

M-

KX ~ —K X
(Cyjae” +Cyie )
1

~.
Il
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where ZZ_H(ZZ_/) , Ez_/fl(l_gz/) and 6’2_/71(52_].) are three sets of undetermined constants,
k;=,/x; (G=1-4). In the solution of Eq. (16), if any of the y;’s are zero or are repeated, the
solutions to Egs. (12a)-(12c) will be revised using the well-known methods for the ordinary
differential equations with constant coefficients, for those particular values of y;.

Substituting Egs. (20a)-(20c) into Egs. (12a)-(12b) obtains the following relations among the
three sets of unknown constants

IZZj—lztj@j—l A2j:_tj(_ij (21a)

By, = t_jazjfl Ez = —t__/azj (21b)

J
where
t; = ekic;(Ey it +myo’) [A 1, =—ekicj(E AT +ma’) A

A =k(m, +m))o* —mm,o°* + EzAzK_,z'(k —mao’)+ EIAIK_/z. (k- EzAszz» —m,0”)

Substituting Egs. (20a)-(20c) into Egs. (13a)-(13d) and adopting the sign convention shown in
Fig. 2, the expressions for the normal forces N;(x) and N,(x), shear force S(x) and bending moment
M(x) can be written in terms of the constants C,; ,(C,;)

4
N(x)=EAU; =) EAtx; (C2 e+ Gy je’”") (22a)
j=1
4 - - - —
Ny (x) = E, AUy = E, Al ik (c2 e+ Cy e ) (22b)
j=1

S(x) = keU, — keU, + (E,I, + E,L, W" — ke’W'

“[ ; _en [G, e G o) (22¢)
=Z:}’celj—kethr(Ell1 +E2[2)Kj —ke'x; \Cyy e —Cyle

J=1

4
M(x)=~(Eq + E,LW" =Y ~(E I+ E,L ) (52 e+ Gy je”‘f") (224d)

j=1

S(x) S(x)
Nl(x)—1~.-.-.‘ﬁ' ---------- T 1 E000E g T ﬁ'~‘— N,(x)
N,(x) - N,(x)

M(x) M(x)

Fig. 2 Sign convention for positive normal forces N;(x) and N,(x), shear force S(x) and
bending moment M(x)
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Fig. 3 Boundary conditions for generalized displacements and forces

With reference to Fig. 3, the end conditions for the generalized displacements and generalized
forces of the steel-concrete composite beam are, respectively

x=0: U=U, U=U, W=W, W=w (23a)
x=L: U=U, U-=U, W=W, W=W (23b)
x=0: N,=-N,, N,=-N,, S=S, M=M, (23¢)
x=L N,=N, N,=N,, S§=-S, M=-M, (23d)

Introducing Egs. (23a) and (23c) into Egs. (20a)-(20c), the nodal displacements at the beam
ends can be expressed in terms of the constants C,; (G, ;) as

{D} =[R]{C} (24)
where {D} is the nodal displacement vector defined by

{D}:{Ull U21 Wl VW U12 U22 Wz Wzl}T

— — = — = =T
{C}={C1 C3 Cs C7 Cz C4 C6 Cs}

4 t, I 1, -1 -1, — 1 -1
Lo I ly - —1 -1 1
1 1 1 1 1 1 1 1
[R]= KI}L KﬁL KsL K::L _’ch _’iZKL _’fskL _’214
Le'' et hLett nett —te —he U —Le U —tfe ™t
l‘lelclL t‘zelch t_3eK3L t_4eK4L _ l‘le—rclL _ t‘ze—KZL _ t‘3efK3L _ [_4e—K4L
eKIL eich eK3L emL e—lclL e—rch e*K3L e—K4L
ke et ket ket —ke ™t —xe ™t —ke ™t — ket

Substituting Egs. (23b) and (23d) into Egs. (22a)-(22d), the nodal forces at the beam ends
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corresponding to the nodal displacements also can be expressed in terms of the coefficients
CZj—l(CZj) as

{F}=[H]{C} (25)
where {F7} is the nodal force vector defined by

{F}:{Nn N, Sl M, N, N, Sz MZ}T

—1 —1, — 1 -1, -1 —1, —1, —1,

-4 -hL  -&  —h -4 - -4 1

hooohL L L —h =L =

[H]= AZALL AfiL "fiL AZA4L AflL Afz At} Af4
te" t,e* e™ te" te ™ fe ™t et fet
;l’equ ;;el(zL ’geK;L aemL 'El’e—lql ’t\’ze—KzL Ee—qu ae—mL
_ t_leK'L _ t_zeKZL _ lr3ezc3L _ ZT46K4L ZTI - L 1726 KoL t—seﬂc}L 174 —Kk4L
- i‘leKIL _ i‘zekzL —£3€K3L _ l:‘4elc4L _ i‘le—KlL _ i‘ze—lch _ i‘3e—K3L _ i‘4e—lc4L |
in which

[ =EAtx, T =Edtx, 1 =ket,—ket;+(EI~+EL ) —ke'x,
f_jz—(E1[1+E212)1(_/2. (J=1-4)

Combining Egs. (24) and (25) and eliminating the constant vector {C} produces the relation
between the nodal force vector {F} and the nodal displacement vector {D}

{Fy =[H][R]"{D} =[K]{D} (26)

where [K]=[H][R]™" is called the exact element dynamic stiffness matrix. Note that the roots of
Eq. (16) can be real or complex depending on the coefficients of Eq. (16), and as a consequence,
the elements of matrices [R] and [H] can be complex. Therefore, the matrix inversion and
multiplication involved in Eq. (26) must be performed using complex arithmetic. However, the
resulting dynamic stiffness matrix [K] will be symmetric and real. It may be mentioned that the
analytical expressions for the elements of the dynamic stiffness matrix can be derived using the
symbol manipulation software Mathematica (Wolfram 1991), which can lead to substantial
savings in computational cost. However, these expressions are too lengthy to be listed in the paper.

The derived element dynamic stiffness matrix can be directly used to compute the natural
frequencies and mode shapes of the individual steel-concrete composite beam. If an assembly of
the steel-concrete composite beams is under consideration, the global dynamic stiffness matrix for
the entire beam system can be assembled from each element dynamic stiffness matrix in a
completely similar way to that used for the traditional finite element method. The well-known
Wittrick-Williams algorithm (Wittrick and Williams 1971, Banerjee 1997) is chosen in this paper
to calculate the natural frequencies of the steel-concrete composite beams. The algorithm is
reliable and efficient because it finds the total number of natural frequencies below an arbitrarily
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given trial value instead of directly calculating the natural frequencies. In this way the upper and
lower bounds are established for each required natural frequency, and then the classical bisection
method can be used to determine the natural frequencies to any required accuracy. Due to the
extensive discussions on the use of the algorithm in the literature, the detailed process is not
repeated here. The mode shapes corresponding to the natural frequencies can be found in the usual
way by making an arbitrary assumption about one unknown variable of the steel-concrete
composite beam assembly and then calculating the remaining variables in terms of the arbitrarily
chosen one.

4. Results and discussion

In order to illustrate the application of the dynamic stiffness matrix derived in the preceding
sections, numerical calculations are performed on three steel-concrete composite beams. Four
classical boundary conditions at the ends of each beam are considered, i.e., clamped end, hinged
end 1, hinged end 2 and free end.

For the clamped end (C): U, =U,=W =W'=0
For the hinged end 1 (H1): U, =U,=W =M =0
For the hinged end 2 (H2): N, =N,=W =M =0

For the free end (F): N,=N,=85=M =0

A total of seven boundary conditions, i.e., C-C, C-H1, C-H2, F-F, C-F, H1-H1 and H2-H2 are
considered for each beam.

The composite beams under consideration are similar to those studied in references (Biscontin
et al. 2000, Morassi and Rocchetto 2003, Dilena and Morassi 2003). However, a brief description
of the beams is given for the sake of completeness. Each composite beam is composed of a steel
beam made of a Fe430 steel section bar of IPE 140 series and a concrete slab with 0.06m thick and
0.5 m wide, which are connected through a series of Fe430 steel studs. The geometric and material
properties of the steel beam are equal to their nominal values, i.e., elastic modulus E,=2.1x 10"
N/m?, mass density per unit length m, = 12.9 kg/m, cross-sectional area 4,=1.64 x 10° m?, and
moment of inertia 1,=5.41x 10° m*. As for the concrete slab, the cross-sectional area is 4;=3 x
10 m?, and moment of inertia is /; =9 x 10 °m®*. The distance between the top surface of the steel
beam and the centroid of the concrete slab is e.=0.03 m, and the distance between the top surface
of the steel beam and its centroid is e;= 0.07 m. Both the length of the steel beam and concrete
slab are L = 3.5 m.

The elastic modulus £, and mass density per unit length m; of the concrete slab as well as the
shear stiffness K of the stud connector and the distance d between two consecutive stud connectors
have different values for the three composite beams under investigation.

For the composite beam A:
E, =4.539x10"°N/m*, m, =78.07 kg/m, K =2.858x10°N/m, d =0.21875m
For the composite beam B:
E, =4.229x10"'N/m’, m, =73.19kg/m, K =2.367x10°N/m, d=0.21875m
For the composite beam C:
E, =4.098x10"'N/m’, m, =75.84kg/m, K =2.055x10°N/m, d =0.15217m
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A detailed numerical investigation is performed on the three steel-concrete composite beams
with seven different boundary conditions. The natural frequencies of the composite beams are
evaluated by virtue of the exact dynamic stiffness matrix established in this paper. Each beam is
idealized with only one element throughout this section. The first ten natural frequencies are
determined for each beam and each boundary condition. The numerical results are shown in Tables
1-3, together with some solutions available in the literature. For the composite beam A with F-F
boundary condition, the natural frequencies for the first eight bending vibration modes and for the
first two longitudinal vibration modes obtained in reference (Biscontin ef al. 2000) by using the
analytical method and experimental technique are displayed in Table 1. It may be mentioned that
the rigid vibration modes are omitted for the composite beams with F-F boundary condition and
the values with superscript asterisk denote the natural frequencies corresponding to the
longitudinal vibration modes. The present mathematical model is similar to the one used in
reference (Biscontin et al. 2000), but there is a small difference in describing the strain energy of
the stud connectors. For the composite beams B and C with F-F boundary condition, the
experiment results for the first seven bending vibration frequencies and for the first two
longitudinal vibration frequencies acquired in reference (Morassi and Rocchetto 2003) are
presented in Tables 2-3, respectively. In addition, the first seven bending vibration frequencies
gained in reference (Dilena and Morassi 2003) by means of the analytical method are also given in
Tables 2-3. The definition of the strain energy of the stud connectors in reference (Dilena and
Morassi 2003) is the same as the one in reference (Biscontin ez al. 2000) and the analytical results
cited from reference (Dilena and Morassi 2003) are based on the assumptions that the relative
transverse displacement can occur between the concrete slab and the steel beam as well as the
axial stiffness of the stud connectors is infinity.

It can be seen from the results presented in Tables 1-3 that the natural frequencies of the
composite beams are sensitive to the variations of the boundary condition. The variation of the
natural frequency with the boundary condition can be observed from Tables 1-3. The natural
frequencies of the composite beams with F-F boundary condition are the highest and the
composite beams with C-F boundary condition have the lowest natural frequencies. The natural

Table 1 Natural frequencies (in Hz) for the composite beam A

F-F
Yok e CHl G2 T Momssiand  Biscontmeral  C-F HIHI H2H2
Rocchetto (2003) (2000)

1 53.87 4728 4233 59.62 59.625 59.625 971 4192 3543
2 13551 119.89 116.62 148.05 148.038 133.875 5541 10642 95.11
3 24890 224.18 22225 265.54 265.496 235.250 141.88 201.77 198.91
4 39225 358.87 35729 410.36 410.268 345.000 257.12 327.75 309.86
5 56632 52440 44120 584.29 584.174 459.000 309.20 484.72 345.69
6 617.54 617.54 52472 617.83" 617.750° 617.750° 401.38 617.54 483.75
7 771.85 72141 72132 789.13 788.895 578.250 575.44 67320 673.13
8 1009.45 950.50 950.21 1025.44 1025.059 706.750 780.54 893.77 758.29
9  1229.44 1212.08 970.67 1229.19 1229.303" 1233.625"  924.47 1146.82 893.95

10 1279.54 1229.44 1212.09 1293.52 1292.848 853.000 1017.46 1229.44 1146.71
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Table 2 Natural frequencies (in Hz) for the composite beam B

F-F
Nfl‘(’fe C-C CHl CH2 " ™ Dilena and Morassi and C-F  HI-Hl H2-H2
Morassi (2003) Rocchetto (2003)

1 5391 4680 4223 6027 60.56 60.56 9.86 41.08 35.03
2 13527 118.88 11622 148.16 137.99 143.68 5568 104.74 95.30
3 24880 22324 221.77 265.13 246.98 241.90 141.87 200.02 197.82
4 393.04 35870 357.56 41023 387.01 345.68 256.87 326.67 310.37
5 56894 52591 43795 585.57 559.30 455.88 309.02 485.17 340.81
6 61695 61695 526.11 617.29° 617.06" 617.06" 40173 616.95 484.48
7 77720 72550 72543  792.89 764.59 566.88 57740 676.06 676.00
8 1018.40 958.03 957.59 1032.64  1003.27 688.88 785.11 899.90 749.98
9 122693 1223.84 964.60 1226.75" N/A 1225.94° 923.12 1157.04 899.99
10 1292.88 1226.94 1223.85 1304.14 N/A N/A 1025.50 1226.93 1156.97

For the composite beam B with F-F boundary condition, Table 2 illustrates that the first seven
bending natural frequencies predicted by the present formulation agree well with the analytical
results in reference (Dilena and Morassi 2003). The relative errors for the first seven bending
natural frequencies are 0.5%, 7.4%, 7.3%, 6.0%, 4.7%, 3.7% and 2.9%, which may be attributed to
the different mathematical models used. It can also be found that as the bending mode number
increases, the differences between the present results and the experimental values in reference
(Morassi and Rocchetto 2003) increase. However, the natural frequencies of the first two
longitudinal vibration modes predicted by the present formulation are virtually coincident with the
experimental data in reference (Morassi and Rocchetto 2003). With the exception of the fundamental
mode, the present model overestimates the natural frequencies as compared with the experiment

values.

Table 3 Natural frequencies (in Hz) for the composite beam C

F-F
l\fl‘fe C-C CHL CH2 " ™ Dilena and Morassi and C-F  HI-Hl H2-H2
Morassi (2003) Rocchetto (2003)

1 5420 4776 4239  59.81 62.03 62.03 972 4249 3534
2 13644 121.00 117.36 148.95 139.50 146.53 5569 107.70 95.70
325049 22593 22372 267.33 248.29 246.59 14278 203.67 200.35
4 39441 361.17 359.33 412.94 387.30 351.25 258.80 330.20 312.84
5 56892 527.14 438.54 586.83 557.43 460.25 300.64 487.61 350.49
6  600.16 600.16 527.43 601.07° N/A 600.31" 403.74 600.16 486.43
7 77474 72445 72432 792.62 759.72 568.63 57830 676.40 676.28
8 1012.52 953.72 946.61 1029.14 994.46 677.50 783.71 897.14 749.23
9 1193.11 1193.11 954.55 1193.00° N/A 1189.60" 897.91 115030 897.32

10 1282.69 1215.40 1215.40 1297.31 N/A N/A 1020.85 1193.11 1150.12
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Fig. 4 First ten normal mode shapes of the composite beam A with C-F boundary condition: (a) mode
1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode §; (i) mode

9; (j) mode 10
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Fig. 4 Continued

frequencies of the composite beams with C-H1 and H1-H1 boundary conditions are larger than
those of the composite beams with C-H2 and H2-H2 boundary conditions, respectively.

For the composite beam A with F-F boundary condition, it can be seen from Table 1 that the
first ten natural frequencies obtained by the present formulation are in excellent agreement with
the analytical results in reference (Biscontin et al. 2000). However, a comparison between the
present results and the experimental values in reference (Biscontin et al. 2000) shows that a good
agreement is observed for the lower natural frequencies and a fairly large difference can be found
for the higher natural frequencies. The relative errors for the first eight bending natural frequencies
are 0, 10.6%, 12.9%, 18.9%, 27.3%, 36.5%, 45.1% and 51.6%. The present results are consistently
larger than the experimental values and the relative errors increase with the increase of the mode
number, which may implicate that the shear deformation and rotary inertia will play an important
role for the higher bending natural frequencies.

For the composite beam C with F-F boundary condition, similar conclusions to the composite
beam B can be drawn.
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The first ten normal mode shapes of the steel-concrete composite beam A with C-F boundary
condition are computed and plotted in Figs. 4(a)-(j). It can be seen from Figs. 4(a)-(j) that of the
ten natural frequencies under investigation the fifth and ninth natural frequencies are
corresponding to the longitudinal vibration modes. Another observation is that the bending
vibration is coupled with the longitudinal vibration, which is due to the nonzero shear stiffness of
the stud connectors or the nonzero distance between the centroid of the steel beam and the centroid
of the concrete slab. In addition, it can also be found from Figs. 4(a)-(j) that the differences
between the longitudinal displacement components of the vibration modes in the steel beam and
concrete slab are obvious.

5. Conclusions

This paper presents a dynamic stiffness formulation for investigating the free vibration of the
steel-concrete composite beams with the effect of relative longitudinal deformation between the
concrete slab and the steel beam included. The dynamic stiffness matrix is formulated from the
closed-from general solutions of the homogeneous governing differential equations of the
steel-concrete composite beams. The dynamic stiffness method is illustrated by its application to
compute the natural frequencies and mode shapes of the composite beams using the
Wittrick-Williams algorithm. Numerical results of three steel-concrete composite beams with
seven different boundary conditions are presented and compared to the available solutions in the
literature. For the particular composite beams under consideration, the F-F composite beams have
the highest natural frequencies and the C-F composite beams have the lowest ones. A comparison
between the present results and the experimental values shows that an excellent agreement is
observed for the first two longitudinal vibration natural frequencies, a good agreement for the
lower bending vibration natural frequencies and a fairly large difference for the higher ones, the
errors may be ascribed to the ignorance of the shear deformation and rotary inertia in the present
formulation. It is anticipated that the dynamic stiffness method used in this paper can also be
applied to the forced vibration analyses of the steel-concrete composite beams.
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