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Abstract.  A new mathematical model and its finite element formulation for the non-linear stress-strain 
analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is 
presented. The connection between the layers is considered to be flexible in both the longitudinal and the 
transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam 
and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, 
all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from 
the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the 
theory is verified by the comparison of the present numerical results with experimental and numerical results 
from literature. The mechanical response arising from the theoretical model and its numerical formulation 
has been found realistic and the numerical model has been proven to be reliable and computationally 
effective. Finally, the present formulation is employed in the analysis of the effects of two different 
realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the 
beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing 
capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of 
ductility, especially, if the connection between the beam and the side plates is sufficiently stiff. 
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1. Introduction 

 
Over the course of the past few decades the plating technique as one of the peak engineering 

solutions of strengthening of flexural beams gained popularity in design of structural retrofitting 
and building renovation. Although a range of different plating solutions is currently available for 
the implementation in the engineering practice, the tension-face plating technique is applied as a 
rule. While often mistakenly considered as less efficient, alternative side-plating techniques are 
considered to be a second choice where the tension face plates are not applicable due to structural 
or aesthetic reasons. 

Reinforced concrete (RC) beams may fail in flexure or shear. The shear failure is brittle 
whereas the flexural failure is mostly ductile. In order to achieve the ductile response, the RC 
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beams are designed in the way that their flexural ductility is large at extreme loading. The request 
for high ductility initiated an intensive research in the late nineties (e.g., Ahmed 1996, Oehlers et 
al. 2000, Nguyen et al. 2001, Oehlers and Seracino 2004, Liu et al. 2006) that revealed that 
tension-face plates may in some cases severely restrict the ductility of the retrofitted elements, 
while the side plates, by the contrast, can prove to be a better choice in this respect. Furthermore, it 
became clear that, for a sufficient understanding of the phenomenon of ductility, we need to 
research further into this matter by performing extensive experimental as well as computational 
parametric studies. 

The theory of externally strengthened (plated) flexural beams originates from the theory of 
multi-layer beams dating back to the middle of the previous century. An extensive overview of the 
work in this field was presented, e.g., in Čas et al. 2004a, b, Kroflič et al. 2010a, b, Milner and 
Tan 2001, Ranzi et al. 2006, Schnabl et al. 2006, 2007. However, due to their unique form of 
failure, the standard composite beam theory is directly applicable only to a small range of plated 
beam problems. For the tension-face strengthened RC flexural beams, for example, failure may 
occur due to an excessive longitudinal contact stress or due to the transverse debonding of the 
beam from the plate. For the mathematical description of such a failure, the present computational 
models for the analysis of standard composite beams considering not only the interlayer slip but 
also the interlayer uplift may be directly applicable. Because the effect of the uplift is negligible in 
the vast majority of multi-layer beams, such models, however, are rare and have been introduced 
only recently (e.g., Alfano and Crisfield 2001, Thomsen et al. 2004, Gara et al. 2006, Ranzi et al. 
2006, Pan and Leung 2008). For less conventional types of the external strengthening techniques 
like the side plating technique, a pronounced transversal partial interaction occurs as well, which 
demands a somewhat different consideration. Oehlers et al. (1997) seem to be the first to discuss 
mathematically the combined effect of both longitudinal and transversal slips between the 
components of the side-plated beams. Their model was derived with the aim to provide adequate 
design rules including the adaptation of the standard rigid plastic analysis and the methods for 
preventing premature buckling of plates (Smith et al. 1999a, b) or an early failure of bolt-shear 
connectors (Ahmed 1996). The non-linear numerical method for the bolted side-plated beams was 
first presented by Siu and Su (2011). Their method considers the material non-linearity and 
inelastic behaviour of the bolted connection, as well as both the longitudinal and the transversal 
partial interaction. 

Here a new finite element formulation for the materially non-linear stress-strain analysis of 
beams strengthened with two longitudinal side plates is presented. The method is based upon a 
planar beam model of Reissner (1972) assuming linearized kinematics. The basic variables in this 
finite-element formulation are strains. The Galerkin-type of the finite element formulation is 
employed as in Planinc et al. (2001). The present article is a substantive continuation of the 
research work presented in Kolšek et al. (2013), where an analytical solution of side-plated elastic 
beams is presented. The present model considers the following assumptions: (i) shear 
deformations are neglected in the kinematic equations, but shear stresses are considered via 
equilibrium equations; (ii) the beam and the side plates have constant cross-sections and straight 
axes; (iii) the layers are made of different yet homogeneous non-linear materials; (iv) the bond 
between the layers is flexible enough to allow for small slips (the longitudinal and the transversal) 
to occur at the side plate/beam contact; (v) uplifting and impressing of one layer against the other 
are neglected; (vi) the interaction between the layers is typically realized through a bonding layer 
of an infinitesimal thickness, which can be, hence, neglected in the model; and (vii) the contact 
connection is supposed to behave non-linearly. The iterative solution procedure employs the 

560



 
 
 
 
 
 

Non-linear analysis of side-plated RC beams considering longitudinal 

Newton-Raphson method and is load-controlled. 
The numerical solution of the present model is compared to the experimental results of Su et al. 

(2010) and Siu and Su (2010) as well as to the numerical results of Siu and Su (2011). Finally, 
effects of the different strengthening arrangements on an RC flexural beam are presented and 
discussed. Conclusions are given in the last section. 
 
 

2. Mathematical model 
 
2.1 Preliminaries 
 

We consider a planar straight beam ‘a’ of length La with two symmetrically bonded side plates ‘b’ 
of length Lb. The cross-sections of the beam and the side-plates, Ax

a and Ax
b, are constant 

throughout their lengths. Deformations of the plated beam are described in the (X,Z)-plane of a 
fixed spatial right-handed Cartesian coordinate system (X, Y, Z) with the orthonormal base vectors 
EX, EZ and EY = EZ × EX. The local coordinate systems of the beam and the side plates are identical 
and, in the initial undeformed state, coincide with the spatial coordinate system. The local 
coordinates are marked by xa ≡ xb ≡ x, ya ≡ yb ≡ y, and za ≡ zb ≡ z, where the upper indices (•)a and 
(•)b refer to the beam and the side plates, respectively. The undeformed and the deformed 
configurations, the typical cross-sections and the loading of the plated beam are depicted in Fig. 1. 

 
 

 
 

Fig. 1 Undeformed and deformed configurations of a side-plated beam 
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The beam and the side-plates are bonded one to another with discrete connectors (e.g., bolts) or 
with an adhesive bonding layer of a small thickness. In either of the two cases, the connection is 
not perfectly rigid, yielding the longitudinal and the transversal slips between the side plate and the 
beam to evolve along the contact area once the beam has been deformed. 

Both the side plates and the beam are modelled by the linearized planar beam theory of 
Reissner (1972). The shear strains are neglected in the kinematic equations, which is a reasonable 
assumption for slender beams (Schnabl et al. 2007). 

The mathematical model of the side-plated beam in Fig. 1 hence consists of three unplated 
beams spanning the parts 21TT , 32TT  and 43TT  of the reference axis, and two plated beams 
located eccentrically on the part 32TT  of the reference axis. Due to the symmetry of the plate 
arrangement and in view of the assumption of the planar deformation, the two plates can be 
considered as one eccentric plate with a double thickness. The final mathematical model of the 
side-plated beam as studied in the present paper is thus described by an unplated beam of length La 
to which a plate of the double thickness is bonded eccentrically, using an inelastic adhesive. 

 
2.2 Governing equations 
 
Only the governing equations of the plated part of the model are presented. The equations of 

the non-plated parts easily follow by neglecting the corresponding terms of the plates. 
The governing equations of the plated part consist of kinematic, equilibrium and constitutive 

equations, each written separately for the beam (i = a) and the side plates (i = b) (Hjelmstad 2005) 
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In Eqs. (1)-(3) (•)′ denotes the derivative with respect to material coordinate x, while ui , wi and 
φi are, respectively, the X-displacement, the Z-displacement and the rotation of the reference axis 
of layer ‘i’ (i = a, b). εi and κi denote the extensional and the bending strain (the curvature) of the 
reference axis and Ni, Qi and Mi refer to stress resultants (the axial force, the shear force and the 
bending moment). Px

i, Pz
i
 and M y

i
 are the components of the traction vector per unit of the 

reference axis of layer ‘i’, and statically reduced with respect to the reference axis. In fact, they are 
static equivalents of surface and volume forces, pi and vi, after being reduced to the beam reference 
axis (i = a, b), see, e.g., Hjelmstad (2005) 
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The graphical description of the quantities in Eq. (4) is also given in Fig. 1. Furthermore, due to 
the beam-plate contact, the contributions of not only the external tractions, but also of the contact 
tractions have to be considered in Eq. (4). The X-, Y- and Z-components of the traction vectors P i

 
and M

i
 are, therefore, the sum of their external and contact counterparts 
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where indices ‘e’ and ‘c’ refer to the external and contact traction contributions. 
In the sequel a more detailed consideration of the contact parts of the traction vectors (i.e., Pc,

i
x, 

Pc,
i
z and Mc,

i
y) is presented. Because we assume that each layer of the beam only deforms in the (X, 

Z)-plane, the Y-component of the contact traction equals zero. Next, the intensity of the contact 
traction depends on the contact connection stiffness dictating the size of the slip between the layers. 
The slip is represented by the relative displacement between the beam and the side plates. If we 
imagine two initially coincident particles, Pa and Pb (see Fig. 1), we may easily perceive that their 
positions with regard to the fixed coordinate system are different after the structure has been 
deformed. Their new, deformed position vectors are (i = a, b) 
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The spatial coordinates Xi, Yi and Zi depend on the displacement vector of each particle and the 
particular layer rotation, ui , wi and φi (i = a, b), and are given by 
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The slip vector between the two particles of the beam and the side plate being initially in 
contact and having coordinates (x, y, z) is thus 
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The magnitudes of the contact tractions are highly dictated by the type of the actual interface 
connection. Here we assume that there is no correlation between the slips in the X− and Z− 
directions. A general non-linear relationship between the slip and the related contact traction in 
each direction is assumed as 
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Functions f and g depend on the type of contact materials and the technical details of the 
connection. They must be determined by experiments for the actual type of the connection. After 
inserting the contact traction load, Eq. (9), into Eq. (4) and considering that the contact tractions 
P a and P b (and likewise M a and M b) have the opposite sign, we end up with 
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When Pc,
i
x, Pc,

i
z and Mc,

i
y from Eq. (10) are substituted in Eq. (5), the system of equations of the 

side-plated beam, Eqs. (1)-(3), consists of 4 non-linear algebraic and 12 quasi-linear ordinary 
first-order differential equations. The analytical solution of the problem is only possible when both 
the material models and the contact laws are linear (Kolšek et al. 2013). Otherwise a numerical 
method has to be employed. The finite element method is employed here as shortly described in 
the next section. 
 
 
3. The finite element formulation 
 

The strain-based finite element method is employed as described in detail in Čas et al. (2004a, 
b) and Kroflič et al. (2010b). This innovative variant of the finite-element method is based on the 
modified principle of virtual work with the strains as the only interpolated unknown functions of 
the problem, while the remaining primary unknowns appear solely as boundary values in the 
functional 
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As observed from the functional, the strains εi(x) and κi(x), the generalized boundary forces 
Ni(0), Qi(0) and Mi(0) and the boundary kinematic quantities ui(0), ui(L), wi(0), wi(L), φi(0) and φi 
(L) (i = a, b) represent the set of the primary unknowns of the problem. Here only εi(x) and κi(x) 
are functions of x. They are interpolated with the Lagrangian polynomials Lm (m = 1, 2, ..., M) of 
the order (M ‒ 1) as 
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where ε i
m and κ i

m are the unknown scalar nodal values of the extensional and bending strains of 
layers i = a, b. The interpolation points are taken to be equidistant. After inserting εi(x) and κi(x) 
from Eq. (12) into Eq. (11), we obtain the following system of discrete equilibrium equations of 
the side-plated beam accounting for longitudinal and transverse contact slips (m = 1, 2, ..., M)  
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The above system of non-linear algebraic equations of the side-plated beam comprises 4M+18 
equations for 4M + 18 primary unknowns ε i

m, κ i
m, ui(0), wi(0), φi(0), ui(L), wi(L), φi(L), Ni(0), Qi(0), 

Mi(0). Its solution is obtained by the Newton-Raphson method. Once the primary unknowns have 
been obtained, the secondary unknown functions, ui, wi, φi, Ni, Qi, Mi, ΔU, ΔW, Pc,

i
x, Pc,

i
z, Mc,

i
y (i = 

a, b), are given at any particular value of x by the equations 
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In the numerical formulation to be used in the analyses presented in the next section, the 
integrals in Eqs. (13) and (14) were evaluated numerically with the Gaussian numerical integration. 
The specific features of the present numerical formulation enables us to use any degree of the 
Lagrangian polynomials. The formulation also enables the point loading to be applied at the 
boundary nodes of each individual finite element. 

 
 

4. Validation of the model and numerical examples 
 
In the fourth section of the article, the present formulation is implemented in the mechanical 

analyses of two characteristic examples of externally plated beams. The objective of the first 
example (Section 4.1) is the validation of the model. The second numerical example (Section 4.2) 
carries out the comparisons between the two different arrangements of strengthening of the beam, 
i.e. the side-plated and the tension-face plated beams. 

The finite elements employed in analyses of this section are denoted by Ej‒k, where j indicates 
the number of the interpolation points and k the number of the Gaussian integration nodes along 
the element length. 

Various material constitutive laws have been employed in the analyses. The bi-linear 
stress-strain relationship is used for the reinforcing steel bars and the steel side plates and material 
parameters given in the European building code EC2 (Eurocode 2 2005) are applied in all 
examples. Eurocode 2 (2005) is also used as a reference for the non-linear constitutive law of 
concrete in the second example (Section 4.2). In order to come as close as possible to the 
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experimental results, however, a somewhat different non-linear stress-strain relationship proposed 
by Desayi and Krishnan (1964) is implemented in the first example analysis (Section 4.1). When 
compared to the model provided by EC2, the model of Desayi and Krishnan suggests a slightly 
different definition of the constitutive law of the material and recommends a higher value of the 
ultimate concrete strain Dcu. This allows for taking into account the advantageous impact of the 
transverse reinforcement in formation of a beneficial spatial stress state, so that a more ductile 
behaviour of concrete is assured. In addition, the beneficial effect of the tensile strength of the 
concrete in accordance with Bergan and Holand (1979) is also incorporated in the analysis of the 
first example (Section 4.1). The above mentioned constitutive laws of steel and concrete are 
displayed in Fig. 2 and presented below by Eqs. (15)-(17). 

• The stress-strain relation of concrete for structural analysis proposed by EC2 (2005) 
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• The stress-strain relation of concrete of Desayi and Krishnan (1964) and Bergan and Holand 
(1979) 
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with 
0

1
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c

c

f
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D
 , 0.55cr crD D  , D′cr = 0.1‰, Dmax = 0.7‰ and D*

cu = 4.1‰. 

In Eqs. (15) and (16), Dc stands for the longitudinal strain of concrete, and Dc1, Dcu, Ecm, fcm, 
and fct are, respectively, the concrete strain at peak stress, the concrete ultimate strain, the secant 
modulus of elasticity of concrete, and the absolute mean values of cylinder compressive and 
tensile strength of concrete at age 28 days, all of these values taken as proposed by EC2. D* is the 
ultimate compressive strain of concrete as proposed by Desayi and Krishnan (1964). 

• The stress-strain relation of steel proposed by EC2 (Eurocode 2 2005) 
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Fig. 2 Stress-strain relationships of: (a) concrete as proposed by Desayi and Krishnan (1964) and 
complemented by the strength contributions of concrete in tension in accordance with Bergan 
and Holand (1979) (implemented in the numerical example presented in Section 4.1); (b) 
concrete as proposed by Eurocode 2 (2005) appropriate for cases of structural analyses 
(implemented in the numerical example presented in Section 4.2); (c) steel as proposed by 
Eurocode 2 (2005) (implemented in the numerical examples presented in Sections 4.1 and 4.2) 

 
 

 
 

Fig. 3 Contact constitutive laws implemented in the mechanical analyses of beams presented in: (a) 
Section 4.1: Non-linear bolt force/deformation response of one bolt measured in a standard bolt 
shear test and its piecewise linear modification used in numerical simulations; (b) Section 4.2: 
Linear contact traction load/deformation response of the contact connection between the layers 
of the plated beam. The same contact relationship is assumed for both the longitudinal and the 
transversal directions (j = x, z) 
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where Es stands for the modulus of elasticity of steel, Ep for the tangent modulus of steel hardening, 
fy and Dy1, respectively, for the yield stress and the yield strain of steel, Dy2 for the steel strain at 
the peak stress, and Dyu for the ultimate steel strain. 

In concluding the preliminary part of this section, we present the contact constitutive laws to be 
used in the numerical analyses. In the numerical calculations of Section 4.1, a somewhat 
simplified piecewise linear modification (Fig. 3(a)) of the load/deformation response of the bolt as 
measured in a standard bolt shear test is employed as a simulation of the mechanical response of 
each individual bolt connecting the layers of the side-plated beam. In the numerical case of Section 
4.2, the contact law of the interlayer connection is taken simply as linear (Fig. 3(b)). The same 
contact relationship is assumed for both the longitudinal and the transversal directions. 

 
4.1 Simply supported RC beam with steel side plates 
 
Our first numerical example is a simply supported reinforced concrete (RC) beam with a clear 

span of L = 360 cm and externally strengthened with two symmetrically bolted side plates. The 
beam is under a two-point bending with point loads 60 cm away from the midspan. This beam was 
tested experimentally by Su et al. (2010) and later on also computationally by Siu and Su (2011). 
Their results are used to verify the present numerical model extensively. The objective of the 
full-scale laboratory tests of Su et al. (2010) was to assess the influence of different side plates and 
different contact connections on the mechanical behavior of the tested flexural beam, therefore, 
different beam side plating variants were tried out. Here three of them marked as SBWP (‘strong 
bolts-weak plate’), WBSP (‘weak bolts-strong plate’) and WBWP (‘weak bolts-weak plate’) will be 

 
 

 
 

Fig. 4 Simply supported side-plated RC beam. The geometric properties (the side views and the 
typical cross- sections) and loading attributes (units of the diameters of the bars and the 
bolts are millimetres, units of the other length quantities are centimetres) 
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Table 1 Material properties of concrete 

Concrete cube strength fc 
[MPa] 

Young’s modulus Ec 
[GPa] 

Cube strength strain Dc1 
[‰] 

Ultimate strain Dcu 
[‰] 

34.30 32.30 2.00 3.50 

 
Table 2 Material properties of the steel strengthening plates and the reinforcing steel bars 

 
Yield strength fy 

[MPa] 
Young’s modulus Es 

[GPa] 
Yield strain Dy 

[‰] 
Ultimate strain Dt 

[‰] 

plates 355.00 212.00 1.58 20.00 

bars 537.00 187.00 1.58 20.00 

 
 
presented. The geometric (the side-views and the cross-sections) as well as the loading data of the 
three beams are given in Fig. 4. The material properties data (Su et al. 2010, Siu and Su 2010) 
used in the calculations are presented in Tables 1 and 2. 

A comparisons between the experimental (Su et al. 2010, Siu and Su 2010) and the computational 
results (Siu and Su 2011) and the present results are shown in Figs. 5 and 6. First, load-deflection 
responses are depicted in Fig. 5. It is clear that the agreement between the experimental (‘–’) and 
the present numerical data (‘o’) is good. The present numerical formulation predicted the failure of 
the WBSP and WBWP triggered by the fracture of the two bolts closest to the support, whereas the 
SBWP beam (with a weaker plate but also a stronger contact connection) would fail in concrete 
crushing. The collapse simulations agree with the experimentally observed results (Su et al. 2010). 
In addition, the bearing capacities observed by the experiments and those predicted by the present 
numerical formulation seem to agree well with the errors ranging only roughly from 0.7% to 1%. 
Well simulated seem to be also the stiffness and the ductility of the beams and also the turning 
points in the ascending parts of the curves corresponding to the instants, when yielding of the 
bottom reinforcement takes place (the detected errors range from roughly −1.5% to 3.2%). Some 
further details regarding the differences between the present and the experimental results are given 
in Table 4. 

The differences between the present numerical results (‘o’) and the numerical simulations of 
Siu and Su (‘...’) are also only minor. They probably come from the different stress-strain laws of 
concrete used in the two models. While Siu and Su assumed the concrete constitutive law having a 
constant stress in the post-peak region (σc = fcm for Dc > Dc1), the present numerical model adopted 
a law with a descending post-peak region and considered the advantageous effect of the transversal 
reinforcement on the ductility of the beam. The consequences of such choices are especially 
noticeable in the improved ductility of the structural response predicted by the present numerical 
model in the case of the beam SBWP (Fig. 5(a)). Furthermore, the bearing capacity of concrete in 
tension was ignored in the numerical simulation of Siu and Su (2011). These differences result in 
deviations in both the initial stiffness of the load-deflection curves and the ultimate bearing 
capacity of the beam. For a detailed presentation of the effect of the tensile strength of concrete 
observe Table 3. The table shows the present numerical results for: (i) when tensile strength of 
concrete is accounted for in the analysis; and (ii) when it is neglected. Initially (see midspan 
deflection at the load level MC = 48 kNm), a somewhat higher stiffness of the structural response 
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Fig. 5 Simply supported side-plated RC beam. A comparison of moment-deflection responses 
between the experimental results of Su et al. (2010) (‘–’), the numerical results of Siu and 
Su (2011) (‘...’) and the present numerical results (‘o’) for three plating arrangements: (a) 
SBWP; (b) WBSP; and (c) WBWP 

 
Table 3 A comparison between the present numerical results for the initial stiffness (which is demonstrated 

by the midspan deflection at the load level MC = 48 kNm), ultimate bearing capacity M u
C, and the 

ultimate midspan deflection wu
C of the beams WBSP, SBWP, and WBWP for: (i) when the tensile 

strength of concrete is accounted for in the analysis; and (ii) when it is neglected 

 wC (MC = 48kNm) [cm] M u
C [kNm] wu

C [cm] 

 (i) (ii) (i) (ii) (i) (ii) 

WBSP 0.5628 0.6169 154.01 153.80 5.3301 5.2371 

SBWP 0.6680 0.7119 139.58 139.37 4.6711 4.6194 

WBWP 0.6679 0.7117 135.38 134.58 4.6710 4.3969 

 
 
is observed for the case (i). In addition, a somewhat higher ultimate bearing capacity of the beam 
is obtained for this case. From the point of view of engineering purposes, both of the two 
differences are, however, rather insignificant. 

The longitudinal slip responses of the observed beams are depicted in Fig. 6 (‘–’ and ‘-.-’ – 
experimental results, ‘...’ - numerical results of Siu and Su, ‘o’ – the present numerical results). 
Only small differences between the two numerical results can be detected. These differences 
correctly reflect the distinctions between the bolt force/slip responses implemented in the models. 
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Recall that Siu and Su assumed a simplified bi-linear relationship with a somewhat stiffer initial 
part and a more flexible final part of the curve, in contrast to the more precise bolt model as 
implemented in the present analysis (see Fig. 4). Nonetheless, these deviations are insignificant 
throughout the response of the beam, and idicates that Siu and Su’s assumption of bi-linearity of 
the bolt force-slip response is reasonable and accurate enough for engineering purposes. 

The comparison of slips obtained in the numerical and the experimental results indicates lower 
experimentally measured slips as a rule. As already discussed by Siu and Su (2011), the difference 
may be due to the fact that the frictional resistance between the surfaces of the beam and the side 
plates is ignored in the analyses. 
 
 

 
 

Fig. 6 Simply supported side-plated RC beam. A comparison of mid-span deflection/longitudinal 
slip (absolute values) in points A1, A2, B1 and B2 (for the positions of the points, see Fig. 4) 
between the experimental results of Su et al. (2010) (‘–’ - slips at positions ‘1’ and ‘-.-’ - 
slips at positions ‘2’), the numerical results of Siu and Su (2011) (‘...’) and the numerical 
results of the present formulation (‘o’) for three plating variants: (a) SBWP; (b) WBSP; and 
(c) WBWP. Due to the planar deformation assumed in the numerical analysis, the computed 
slips for both plates are the same 
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Table 4 Errors of the present numerical calculations in the predicted bending moment, M y
C, p, at the first 

yielding of the bottom reinforcement, and of the predicted peak bending moment, M u
C, p, with 

respect to the experimental results of Su et al. (2010). (ΔM y
C = M

y
C,exp ‒ M

y
C, p, ΔM u

C = M u
C,exp ‒ M

u
C, p; 

‘p’ stands for ‘present’ and ‘exp’ for ‘experiment’) 

 
,exp

*100%
y
C

y
C

M

M

  
,exp

*100%
u
C

u
C

M

M

  

SBWP 3.23 0.69 

WBSP -1.50 1.21 

WBWP -1.04 1.04 
 
Table 5 Material properties of concrete 

Concrete cube strength fc 
[MPa] 

Young’s modulus Ec 
[GPa] 

Cube strength strain Dc1 
[‰] 

Ultimate strain Dcu 
[‰]  

38.30 33.60 2.00 3.50 
 
Table 6 Material properties of the steel strengthening plates and the reinforcing steel bars 

Yield strength fy [MPa] Young’s modulus Es [GPa] Yield strain Dy [‰] Ultimate strain Dt [‰] 

465.00 200.00 2.30 20.00 

 

 
Fig. 7 RC cantilever beam: geometric properties, typical cross-sections and loading data for two 

different examples of external strengthening of the beam: (a) side strengthening; and (b) 
tensile-face strengthening. The diameters of the bars are given in millimetres, units of the 
remaining length quantities are centimetres 

 
 

4.2 RC cantilever beam with side and tension-face plates 
 
The aim of this section is to compare the side plating strengthening method with the alternative 

tension-face plating method. We explore the ductility, bearing capacity and the stiffness of the 
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Fig. 8 Force-deflection responses of two externally strengthened RC cantilever beams for two 
different connection stiffnesses: (a) flexible contact connection (kx = kz = 0.25 kN/cm3) and 
(b) stiff contact connection kx = kz = ∞ kN/cm3). Full lines (‘–’) represent the numerical results 
of tension-face plated beams. Dash-dotted lines (‘-..-’) signify numerical results of the 
alternative side-plated beams. Dotted lines (‘...’) mark the results for a beam with no 
external strengthening 

 
 
side-plated (SP) and the tension-face plated (TP) RC cantilever beam of length 500 cm (Fig. 7). 
The response of the tensile-face plated beam was obtained by the numerical model of Kroflič et al. 
(2010b). The contact law was taken to be linear, yet two differently stiff interlayer connections 
were applied: kx = kz = 0.25 kN/cm3

 (modelling a flexible contact) and kx = kz = ∞ kN/cm3
 (modelling 

a stiff contact). The material properties of concrete and steel reinforcement (the steel strengthening 
plates and the steel reinforcement bars) are presented in Tables 5 and 6. The remaining data are 
shown in Fig. 7. 

Fig. 8 depicts the load-deflection responses of the side-plated (‘-..-’) and the tension-face plated 
(‘–’) beams. Which type of plating is more effective depends on the stiffness of the connection. In 
fact, in the case of the stiff connection (see the results in Fig. 8(b)), the tension face strengthening 
enhances strength more than the side-plate one, yet the ductility becomes smaller. Just the opposite 
holds true, if the connection is sufficiently flexible (see the results in Fig. 8(a)). Note a substantial 
increase in the bearing capacity for the stiff connection for both types of strengthening. 

 
 

5. Conclusions 
 
We have presented a new mathematical model and its finite element numerical solution of the 

geometrically linear side-plated planar beam with a fully non-linear material beam/side plate 
contact connection flexible in both the longitudinal and the transversal direction. The material 
properties are assumed to be non-linear and can include combinations like FRP–concrete and 
steel–concrete often met in structural engineering. The governing equations of the model have 
been discretized by the strain-based finite element method where only the extensional strain and 
the curvature are interpolated. The verification of the model has been performed by the 
comparison of the present solution with other numerical as well as experimental results from 
literature. Our results indicate that the presented numerical formulation is very accurate and the 
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outcomes reliable, which proves that the present method is a suitable tool for the mechanical 
analysis of side-plated members. The present solution has been employed in exploring the effects 
of different strengthening on the bearing capacity and ductility of a cantilever beam. The 
comparisons have been made between the tension-face plating and the side plating arrangements. 
The analysis revealed that the side plates can indeed efficiently enhance the bearing capacity of the 
unstrengthened beam, which can, under some conditions, exhibit a lower loss of ductility. If the 
connection is sufficiently flexible, the side-plated strengthening may well outperform in strength 
the tension-face strengthening. 
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