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Abstract.  In this paper, a higher order shear deformation beam theory is developed for static and free 
vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse 
shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces 
of the beam without using shear correction factors. The material properties of the functionally graded beam 
are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on 
the present higher-order shear deformation beam theory, the equations of motion are derived from 
Hamilton’s principle. Navier type solution method was used to obtain frequencies. Different higher order 
shear deformation theories and classical beam theories were used in the analysis. A static and free vibration 
frequency is given for different material properties. The accuracy of the present solutions is verified by 
comparing the obtained results with the existing solutions. 
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1. Introduction 

 
In material sciences, a functionally graded material (FGM) is a type of material whose 

composition is designed to change continuously within the solid. The concept is to make a 
composite material by varying the microstructure from one material to another material with a 
specific gradient. 

The concept of FGM was first considered in Japan in 1984 during a space plane project. The 
FGM materials can be designed for specific applications. For example, thermal barrier coatings for 
turbine blades (electricity production), armor protection for military applications, fusion energy 
devices, biomedical materials including bone and dental implants, space/aerospace industries, 
automotive applications, etc. 

Static and dynamic analyses of FGM structures have attracted increasing research effort in the 
last decade because of the wide application areas of FGMs. For instance, Sankar (2001) gave an 
elasticity solution based on the Euler-Bernoulli beam theory for functionally graded beam 
subjected to static transverse loads by assuming that Young’s modulus of the beam vary 
exponentially through the thickness. Aydogdu and Taskin (2007) investigated the free vibration 
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behavior of a simply supported FG beam by using Euler- Bernoulli beam theory, parabolic shear 
deformation theory and exponential shear deformation theory. Thai and Vo (2012) presented a 
Bending and free vibration of functionally graded beams using various higher-order shear 
deformation beam theories. Sallai et al. (2009) investigated the static responses of a sigmoid FG 
thick beam by using different beam theories. Ying et al. (2008) obtained the exact solutions for 
bending and free vibration of FG beams resting on a Winkler-Pasternak elastic foundation based 
on the two- dimensional elasticity theory by assuming that the beam is orthotropic at any point and 
the material properties vary exponentially along the thickness direction. 

Şimşek (2010b) studied the dynamic deflections and the stresses of an FG simply-supported 
beam subjected to a moving mass by using Euler-Bernoulli, Timoshenko and the higher order 
shear deformation theories by considering the centripetal, inertia and Coriolis effects of the 
moving mass. 

In the present study, static and free vibration of simply supported FG beams was investigated 
by using classical beam theory (CBT) (Vel and Batra 2002) and first order shear deformation beam 
theory (FSDBT) and parabolic shear deformation beam theory (PSDBT) (Benatta et al. 2008) and 
the sinusoidal theory of Touratier (Touratier 1991), and exponential shear deformation beam 
theory of Karama et al. (ESDBT) (2003) and the new refined shear deformation beam theory 
NRSDBT. The most interesting feature of this theory is that it accounts for a parabolic variation of 
the transverse shear strains across the thickness and satisfies the zero traction boundary conditions 
on the top and bottom surfaces of the beam without using shear correction factors. Then, the 
present theory together with Hamilton’s principle, are employed to extract the motion equations of 
the functionally graded beams. Analytical solutions for static and free vibration are obtained. 
Numerical examples are presented to verify the accuracy of the present theory. 
 
 
2. Problem formulation 

 
Consider a functionally graded beam with length L and rectangular cross section b × h, with b 

being the width and h being the height as shown in Fig. 1. The beam is made of isotropic material 
with material properties varying smoothly in the thickness direction. 

 
2.1 Material properties 
 
The properties of FGM vary continuously due to the gradually changing volume fraction of the 

 
 

 
 

Fig. 1 Geometry and coordinate of a FG beam 
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constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 
function is commonly used to describe these variations of materials properties. The expression 
given below represents the profile for the volume fraction. 
 

p

C h

z
V 


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                              (1a) 

 

p is a parameter that dictates material variation profile through the thickness. The value of p 
equal to zero represents a fully ceramic beam, whereas infinite p indicates a fully metallic beam, 
and for different values of p one can obtain different volume fractions of metal. 

The material properties of FG beams are assumed to vary continuously through the depth of the 
beam by the rule of mixture (Marur 1999) as 
 

  bCbt P VPPP(z)                             (1b) 
 

where P denotes a generic material property like modulus, Pt and Pb denotes the property of the 
top and bottom faces of the beam respectively, Here, it is assumed that modules E, G and v vary 
according to the Eq. (1). However, for simplicity, Poisson’s ratio of beam is assumed to be 
constant in this study for that the effect of Poisson’s ratio v on deformation is much less than that 
of Young’s modulus (Delale and Erdogan 1983, Benachour et al. 2011). 

The variation of Young’s modulus in the thickness direction of the P-FGM beam is depicted in 
Fig. 2, which shows that the Young’s modulus changes rapidly near the lowest surface for p > 1 
and increases quickly near the top surface for p < 1. 

 
2.2 Basic assumptions 
 
The assumptions of the present theory are as follows: 
(i) The origin of the Cartesian coordinate system is taken at the median surface of the FG beam. 
(ii) The displacements are small in comparison with the height of the beam and, therefore, 

strains involved are infinitesimal. 
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Fig. 2 Variation of Young’s modulus in a P-FGM beam 
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(iii) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only. 

 

),(),(),,( txwtxwtzxw sb                           (2) 
 

(iv) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 
(v) The axial displacement u in x-direction, consists of extension, bending, and shear 

components. 

sb uuuu  0                                (3) 
 

The bending component ub is assumed to be similar to the displacements given by the classical 
beam theory. Therefore, the expression for ub can be given as 
 

x

w
zu b

b 


                                 (4) 

 

The shear component us gives rise, in conjunction with ws, to the parabolic variation of shear 
strain γxz and hence to shear stress τxz through the thickness of the beam in such a way that shear 
stress τxz is zero at the top and bottom faces of the beam. Consequently, the expression for us can 
be given as 
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2.3 Kinematics and constitutive equations 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (2)-(6) as 
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The strains associated with the displacements in Eq. (10) are 
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dz

zdf
zfzfzg

)(
)('     and     )('1)(                     (8d) 

 
The state of stress in the beam is given by the generalized Hooke’s law as follows 

 

xzxzxx zQzQ   )(     and      )( 5511                     (9a) 
where 
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2.4 Equations of motion 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012) 
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where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 
the strain energy; δV is the virtual variation of the potential energy; and δK is the virtual variation 
of the kinetic energy. The variation of the strain energy of the beam can be stated as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The variation of the potential energy by the applied transverse load q can be written as 

 

  
L

sb dxwwqV
0

                           (13) 

 
The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density; and (I1, I2, I3, I4, I5, I6) are the mass inertias defined as 
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Substituting the expressions for δU, δV and δT from Eqs. (11), (13) and (14) into Eq. (10) and 
integrating by parts versus both space and time variables, and collecting the coefficients of δu0, 
δwb, and δws, the following equations of motion of the functionally graded beam are obtained 
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Eq. (16) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (7), (8), (9) and 

(12) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 
u0, wb, ws, can be written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with m th eigenmode, and λ = mπ / L. The transverse load q is also expanded in Fourier 
series as 
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where Qm is the load amplitude calculated from 
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The coefficients Qm are given below for some typical loads. 
Substituting the expansions of u0, wb, ws from Eq. (19) into the equations of motion Eq. (20), 

the analytical solutions can be obtained from the following equations 
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load 

p Method 
L/h = 5 L/h = 20 

w̅ σ̄x τ̄ xz w̅ σ̄x τ̄ xz 

0 

CBT* 2.8783 3.7500 ‒ 2.8783 15.0000 ‒ 

ESDBT* 3.1635 3.8083 0.7762 2.8961 15.0145 0.7908 

SSDBT* 3.1649 3.8052 0.7546 2.8962 15.0137 0.7672 

PSDBT* 3.1654 3.8019 0.7330 2.8962 15.0129 0.7437 

Present 3.1654 3.8019 0.7330 2.8962 15.0129 0.7437 

0.5 

CBT* 4.4401 4.9206 ‒ 4.4401 19.6825 ‒ 

ESDBT* 4.5578 4.6497 0.7738 4.4479 19.6143 0.7908 

SSDBT* 4.8278 4.9969 0.7717 4.4644 19.7014 0.7840 

PSDBT* 4.8285 4.9923 0.7501 4.4644 19.7003 0.7606 

Present 4.8285 4.9923 0.7501 4.4644 19.7002 0.7614 

1 

CBT* 5.7746 5.7958 ‒ 5.7746 23.1834 ‒ 

ESDBT* 6.2563 5.8944 0.7762 5.8047 23.2078 0.7908 

SSDBT* 6.2586 5.8891 0.7546 5.8049 23.2065 0.7672 

PSDBT* 6.2594 5.8835 0.7330 5.8049 23.2051 0.7437 

Present 6.2594 5.8835 0.7330 5.8049 23.2051 0.7437 

2 

CBT* 7.4003 6.7676 ‒ 7.4003 27.0704 ‒ 

ESDBT* 8.0666 6.8969 0.7156 7.4420 27.1025 0.7304 

SSDBT* 8.0683 6.8899 0.6931 7.4421 27.1008 0.7058 

PSDBT* 8.0677 6.8824 0.6704 7.4421 27.0989 0.6812 

Present 8.0677 6.8824 0.6704 7.4421 27.0989 0.6812 

5 

CBT* 8.7508 7.9428 ‒ 8.7508 31.7711 ‒ 

ESDBT* 9.8414 8.1329 0.6403 8.8191 31.8184 0.6554 

SSDBT* 9.8367 8.1219 0.6153 8.8188 31.8156 0.6282 

PSDBT* 9.8281 8.1104 0.5904 8.8182 31.8127 0.6013 

Present 9.8281 8.1104 0.5904 8.8182 31.8127 0.6013 

10 

CBT* 9.6072 9.5228 ‒ 9.6072 38.0912 ‒ 

ESDBT* 10.9404 9.7343 0.6943 9.6907 38.1438 0.7106 

SSDBT* 10.9419 9.7236 0.6706 9.6908 38.1411 0.6847 

PSDBT* 10.9381 9.7119 0.6465 9.6905 38.1382 0.6586 

Present 10.9381 9.7119 0.6465 9.6905 38.1382 0.6586 

* Results form Ref. (Thai and Vo 2012) 
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4. Results and discussion 
 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theories in predicting the bending and free vibration responses of simply supported FG 
beams. The FG beam is taken to be made of aluminum and alumina with the following material 
properties 

 
Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3; ρc = 3960 kg/m3 
Metal (PM: Aluminium, Al): Em = 70 GPa; v = 0.3; ρm = 2702 kg/m3 
 
And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 
alumina rich. 
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Fig. 3 Variation of nondimensional axial normal stress σ̄x (1/2, z) across the depth of FG beams under 

uniform load (L = 2h): (a) p = 0; (b) p = 0.5; (c) p = 1 and (d) p = 10 
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Fig. 4 Variation of nondimensional transverse shear stress τ̄ xz (0, z) across the depth of FG beams under 
uniform m load (L = 2h): (a) p = 0; (b) p = 0.5; (c) p = 1 and (d) p = 10 
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4.1 Results for bending analysis 
 
Table 1 contains nondimensional deflection and stresses of FG beams under uniform load q0 for 

different values of power law index p and span-to-depth ratio L/h. The obtained results are 
compared with various shear deformation beam theories (i.e., ESDBT, SSDBT, PSDBT). It can be 
observed that the values obtained using various shear deformation beam theories (i.e., ESDBT, 
SSDBT, PSDBT) are in good agreement with the those given by the present theory for all values 
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Fig. 5 Variation of the transverse displacement w̅ versus non-dimensional length of a FG beam (L = 5h) 

 
Table 2 Variation of fundamental frequency ω̄ with the power-law index for FG beam for L/h = 5 

Theory p = 0 p = 0.2 p = 0.5 p = 1 p = 5 p = 10 Metal 

CBT 5.3953 5.0206 4.5931 4.1484 3.5949 3.4921 2.8034 

FSDBT 5.1525 4.8066 4.4083 3.9902 3.4312 3.3134 2.6772 

ESDBT 5.1542 4.8105 4.4122 3.9914 3.4014 3.2813 2.6781 

PSDBT 5.1527 4.8092 4.4111 3.9904 3.4012 3.2816 2.6773 

Present 5.1527 4.8081 4.4107 3.9904 3.4012 3.2816 2.6773 

 
Table 3 Variation of fundamental frequency ω̄ with the power-law index for FG beam for L/h = 20 

Theory p = 0 p = 0.2 p = 0.5 p = 1 p = 5 p = 10 Metal 

CBT 5.4777 5.0967 4.6641 4.2163 3.6628 3.5546 2.8462 

FSDBT 5.4603 5.0827 4.6514 4.2051 3.6509 3.5415 2.8371 

ESDBT 5.4604 5.0829 4.6516 4.2051 3.6483 3.5389 2.8372 

PSDBT 5.4603 5.0829 4.6516 4.2050 3.6485 3.5389 2.8372 

Present 5.4606 5.0817 4.6511 4.2050 3.6486 3.5389 2.8371 

 
 
of power law index p and span-to-depth ratio L/h. Due to ignoring the shear deformation effect, 
CBT underestimates deflection of moderately deep beams (L/h = 5). 

Figs. 3-4 show the variations of axial stress σ̄x, and transverse shear stress τ̄ xz, respectively, 
through the depth of a very deep beam (L = 2h) under uniform load. In general, the present theory 
and all shear deformation beam models give almost identical results, except for the case of 
transverse shear stress τ̄ xz. 

Fig. 5 illustrates the variation of the non-dimensional transversal displacement w̅ versus non- 
dimensional length for different power law index p. It can be seen also that the present beam 
theory gives almost identical results to PSDBT. In addition, the results show that the increase of 
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Fig. 6 Variation of the fundamental frequency ω̄ of FG beam with power-law index p 

 
 
the power law index p leads to an increase of transversal displacement w̅. 
 

4.2 Results for free vibration analysis 
 
Tables 2 and 3 shows the nondimensional fundamental frequencies ω̄ of FG beams for different 

values of power law index p and span-to-depth ratio L/h. The calculated frequencies are compared 
with those given by Şimşek (2010a) using various beam theories. It should be noted that the results 
reported by Şimşek (2010a) based on various shear deformation beam models in which the shear 
strains are approximated in terms of shear rotations instead of shear components of bending 
rotation as in this study. An excellent agreement between the present solutions and results of 
Şimşek (2010a) is found. 

Fig. 6 shows the non-dimensional fundamental natural frequency ω̄ versus the power law index 
p for different values of span-to-depth ratio L/h using the present theory. It is observed that an 
increase in the value of the power law index leads to a reduction of frequency. The highest 
frequency values are obtained for full ceramic beams (p = 0) while the lowest frequency values are 
obtained for full metal beams (p → ∞). This is due to the fact that an increase in the value of the 
power law index results in a decrease in the value of elasticity modulus. In other words, the beam 
becomes flexible as the power law index increases, thus decreasing the frequency values. It can be 
also seen that the span-to-depth ratio L/h has a considerable effect on the non-dimensional 
fundamental natural frequency ω̄ where this latter is reduced with decreasing L/h. This dependence 
is related to the effect of shear deformation. 
 
 
5. Conclusions 

 
A New shear deformation beam theory is proposed for bending and frees vibration analysis of 

functionally graded beams. The theory accounts for parabolic distribution of the transverse shear 
strains and satisfies the zero traction boundary conditions on the surfaces of the beam without 
using shear correction factors. It is based on the assumption that the transverse displacements 
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consist of bending and shear components. Based on the present beam theory, the equations of 
motion are derived from Hamilton’s principle. Numerical examples show that the proposed theory 
gives solutions which are almost identical with those obtained using other shear deformation 
theories. 
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