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Abstract.  The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients 
of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under 
axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial 
compression is taken into account. Three different theoretical path containing geodesic path, constant 
curvature path and constant angle path has been considered to describe the angle variation along the cone 
length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the 
thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing 
stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated 
basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained 
results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell 
longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads 
based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of 
difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper 
show that using tailored fiber placement could be applied for producing conical shells in order to have 
greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for 
calculated stiffness coefficients and buckling loads of conical shells. 
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1. Introduction 

 
Conical shells occur frequently as components of aeronautic, marine and civil engineering 

structures. Often they are frequently used as transition elements joining cylinders of different 
diameters. Thus, the design of minimum weight, maximum strength stiffened conical shells under 
loads has long been of interest to designers. The advent of high strength, light weight, composite 
materials has resulted in broad use of multi-layered shells. Buckling and loss of stability of 
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stiffened conical shells is one of the most important and crucial failure phenomena of such 
structures. It is well known that stability of conical shells has been studied by many researchers 
with a variety of shell and plate theories (Seide 1956, 1957, Singer 1963, Arbocz 1968, Baruch et 
al. 1970, Tong et al. 1992, Tong and Wang 1992). In these researches, the stiffness coefficients of 
a conical shell are usually assumed to be constant. Unlike an isotropic conical shell, in the case of 
a shell of laminated composite material the thickness and the material properties vary with the 
shell coordinates, which ultimately results in coordinate dependence of stiffness coefficients. An 
exhaustive study of the stiffness functions and their dependence on geometry of the cone has been 
performed by Baruch et al. (1993). Goldfeld and Arbocz (2004) investigated the buckling load of 
laminated conical shells taking into account the variation of stiffness coefficients along the 
coordinates using the computer code. The optimization and sensitivity of laminated conical shells 
to imperfection taking into account the variations of the stiffness coefficients for buckling have 
been studied by Goldfeld et al. (2005) and Goldfeld (2007a, b), respectively. Abdalla et al. (2007) 
considered maximization of the natural frequency of variable stiffness composite panels. The 
concept of constructing variable-stiffness shells has been extended to truncated conical shell by 
Blom et al. (2008, 2009). Blom et al. (2010) presented a method for designing composite plies 
with varying fiber angles with composite panels. 

In this work, three paths definitions for arbitrary conical shells were proposed that can be used 
to describe the variation of fiber orientation along the length of the cone. These paths will be used 
for buckling analysis of laminated conical shell. Basing on the work of Goldfeld and Arbocz (2004) 
and Goldfeld et al. (2005) who considered laminated conical shells for the variations of the 
stiffness coefficients for the geodesic path, this study is an attempt to extend their work to the 
constant curvature and the constant angle paths for elastically TCS, and the buckling load of shells 
are calculated. 

 
 

2. Governing equation 
 
Consider a circular truncated conical shell subjected to axial compression, as shown in Fig. 1, 

where t denotes the thickness of the shell and the values r1, and r2 are radii of the cone at the small 
and large edges, respectively, α is the semi vertex angle of the cone, and L is the cone length along 
its generator. We introduce a set of conical coordinate x-θ that it is located on the middle surface, x 
is measured along the cone’s generator starting from the small radius of the shell and θ is the 
circumferential coordinate. The displacements of the shell’s middle surface are denoted by U and 
V along x and θ direction, respectively and by W along the normal to surface (inward positive) 
(Tong and Wang 1992). 

In this coordinate system, the cone’s radius r, which is the perpendicular distance from the axis 
of revolution at any point, is the length varies linearly following 
 

sin1 xrr                                 (1) 
 

Where, r1 is the cone’s radius at the small edge. In order to design a feasible ply, constructed by 
laying down multiple paths, general expressions are required for the orientation and curvature of a 
path contained on the surface of conical structure. For this purpose  is defined as the angle 
between the longitudinal surface direction and the tangent to the fiber path. For variable-stiffness 
laminates, this angle is defined as a function of x. Referring to Fig. 1, we conclude from the 
geometry of fiber that the fiber orientation is expressed as 
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Fig. 1 Coordinate system, the fiber path and the geometrical details of the conical shell 

 

 
Fig. 2 Flattened configuration of the cone 

 
 

dx

rd tan                                 (2) 

 

The unit tangent vector to the fiber path, τ̂, is 
 

ji

 sincosˆ                                (3) 

 

Where, i


 represents the in-plane vector in the longitudinal surface direction of the flattened 
configuration of the cone (shown in Fig. 2) and j


 represents the in-plane vector normal to the 

longitudinal surface direction of the flattened configuration of the cone. 
There are several formulas for determining the curvature for a curve. The formal definition of 

curvature is 
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Where, τ̂ is the unit tangent and l is the arc length. From Eq. (3) it follows by differentiation 
that 
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We need expressions for the derivatives of both unit vectors using the geometry of in-plane 

vectors of the flattened configuration in Fig. 2. 
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Using obtained partial derivatives in Eq. (6), we can rearrange Eq. (5) as follows 
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Referring to Figs. 1 and 2, we conclude from the geometry of fiber, the fiber orientation is 
expressed as 





sin

cos

dx

d

dx

d

dl

dx




                            (8) 

 
The value of curvature of the path fiber for the conical shells, by using Eq. (2, 4, 7 and 8), is 

expressed in the following form 

 sin
sin

cos
rdx

d
                         (9) 

 

This value depends on the variation of fiber orientation and cone geometry. The geodesic path 
having zero curvature 

0sin
sin

cos  
rdx

d
                        (10) 

 

Employing change of variables u = r sin φ, Eq. (10) can be rewritten as follows 
 

0
dx

du
                              (11) 

 

Integration of Eq. (11) yields following expressions 
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cterrr  2211 sinsinsin                       (12) 
 

And the fiber angle variation for the geodesic path will be 
 









r

r 11 sin
arcsin

                           (13) 

 

Using Eq. (9), the equation for value of curvature of the path fiber for the conical shells with 
constant curvature κc, is expressed in the following form 
 

 sin
sin

cos
rdx

d
c                         (14) 

 

We obtain the fiber angle variation for the constant curvature path in exactly the same way 
derived in the geodesic path. Fiber angle variation for the constant curvature is 
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Using Eq. (9), the equation for value of curvature of the path fiber for the conical shells with 
constant angle φc, is expressed in the form 

 sin
sin

r
                            (16) 

 

And the fiber angle variation for the geodesic path can be obtained as follows 
 

c                                (17) 
 

Because the amount of material for unit length of the fiber is constant during the filament 
winding or the fiber placement process, thickness of the lamina at any point, t is derived as follows 
 




cos

cos 111

r

rt
t                              (18) 

 

Where, t1 is the thickness and 1 is fiber direction of the lamina at the small edge. Supposing 
the shell is composed of the angel-ply laminates with N even layers (anti-symmetric) under CST, 
the corresponding constitutive equations are expressed as follows (Jones 1998) 
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Fig. 3 Geometry of an N-layered laminate (Jones 1998) 

 
 

Where, N = {Nx, Nθ, Nxθ}
T and M = {Mx, Mθ, Mxθ}

T are the internal force and moment resultants 
vectors, e = {ex, eθ, exθ}

T and  = {x, θ, xθ}
T are the strain at the reference surface and the change 

of curvature of the middle surface, respectively, Aij, Bij and Dij (i, j = 1, 2, 6) are the membrane, 
coupling, and flexural stiffness, respectively. These stiffness coefficients can be determined using 
Eq. (20) (Jones 1998). 
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Where, (Q̅ij)k are elastic stiffness constants of the kth layer. Zk and Zk-1 are defined in the basic 
laminate geometry of Fig. 3. 
 
 
3. Results and discussions 
 

In this section, results in the three sub-section are described. At first, the influence of the fiber 
paths on the variable ply angle and variable thickness, and then, the influence of the fiber path on 
stiffness coefficient are presented. Finally, the influence of the fiber paths on the buckling loads is 
presented. 

 
3.1 Results for the fibers path 
 
In this section, the variable ply angle and variable thickness along the axial coordinate, are 

presented for an angle-ply laminated conical shell with three different fiber path tailored. The fiber 
orientation of the ply of TCS versus the normalized longitudinal coordinated for the geodesic path 
is shown in Fig. 4. The results are in accordance with those results have been derived by Goldfeld 
et al. (2005). The variation of fiber orientation along the longitudinal coordinate for these shells is 
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Fig. 4 Fiber orientation for the geodesic TCS 
 

 

Fig. 5 Fiber orientation for the constant curvature 
TCS 

 
 
being higher with higher the ply angle at the small end. 

The fiber orientation of the ply for constant curvature path (c = 1.94 m-1) TCS versus the 
normalized longitudinal coordinated, shown in Fig. 5. The variation of fiber orientation along the 
longitudinal coordinate for these shells is being lowest near 40 ply angle at the small end. The 
angles far than 40 the ply angle at the small end the more rapid the change along the longitudinal 
coordinate. 

In Fig. 6, it is shown that the thickness of each layer at the small end of the conical shell 
tailored with the fiber on the constant angle path is larger than that at the large end. The results of 
variation of thickness of each layer versus the longitudinal coordinated conical shell tailored with 
the geodesic path are presented in Fig. 7. It is seeing that the thickness of each layer at the small 
end is greater than same parameter at the large end and rate of the variation of shell thickness 
along the axial direction is increasing with increasing the ply-angle of tailored fiber at small end. 
These results have a good conformity with the results of Goldfeld et al. (2005). 

 
 

 

Fig. 6 Normalized thickness for the constant angle 
TCS 

 

Fig. 7 Normalized thickness for the geodesic TCS 
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Fig. 8 Normalized stiffness coefficient A11 for the geodesic TCS 

 

 

Fig. 9 Normalized stiffness coefficient A11 of the TCS 

 
 

3.2 Results for the stiffness coefficients 
 
In this section, numerical results are presented in order to study the influence of fiber path on 

stiffness coefficients of an angle-ply laminated conical shell with three different fiber path tailored. 
The geometric and the material properties are in accordance with related references (Tong and 
Wang, 1992, Goldfeld et al. 2005). The geometrical and material properties of the shell are 
assumed 

32.   , GPa 1.4   , GPa 3.8   , GPa 5.97

mm 16.1   , m 1325.0   , 30   , m 2.0

12122211
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
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nGEE

trL 
 

 
It is assumed that the conical shell is made of CFRP (carbon fiber reinforced plastic). 
The stiffness coefficients are computed by a code base on CST. To isolate the influence of the 
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effects of the variation of thickness and the variation of fiber orientation on the coefficients, each 
of them was artificially fixed. For sample, the stiffness coefficient A11 of those two artificial is 
plotted in Fig. 8. It is seen that the variation of thickness along the axial direction has significantly 
more influence on the stiffness coefficients than the variation of fiber orientation along the axial 
direction. 

In Fig. 9 normalized stiffness coefficient A11 is plotted versus the longitudinal coordinate for 
the CTS that they tailored with three paths [± ]. Three different theoretical path are geodesic path, 
constant curvature (c = 1.94) path and constant angle [± 45°] path. The stiffness coefficient is 
affected by the fiber orientation. The stiffness coefficient decreases by approximately 20% for the 
geodesic tailored and 60% for the tailored constant curvature (c = 1.94) path and constant angle [± 
45°] path. The result of the geodesic path is conformed to the result of Goldfeld et al. (2005). 

For the rest of stiffness coefficients Aij, Bij and Dij the results are as same as A11. The stiffness 
coefficients are affected by the dependence of thickness, and orientation of fiber in the longitudinal 
coordinate. In Fig. 10 the normalized stiffness coefficient B16 is plotted versus the longitudinal 
coordinated for three paths of tailored angle-ply [± ] laminated conical shell (α = ±30°, r1 = 0.1325 
m and L = 0.2 m) with CFRP material. Three different theoretical path are the geodesic path, the 
constant curvature (c = 1.94) path and constant angle [± 45°] path. The stiffness coefficient is 
affected by the fiber orientation. The stiffness coefficient decreases approximately 80% for the 
geodesic tailored and 70% for the tailored constant curvature (c = 1.94) path, and constant angle 
[± 45°] path. The result of the geodesic path is validated by the result of Goldfeld et al. (2005). 

In Fig. 11 normalized stiffness coefficient D11 is plotted versus the longitudinal coordinated 
conical shell for three paths tailored angle-ply [± ] laminated conical shell (α = ± 30°, r1 = 0.1325 
m and L = 0.2 m) with CFRP material. Three different theoretical path are the geodesic path, the 
constant curvature (c = 1.94) path, and constant angle [± 45°] path. The stiffness coefficient is 
affected by the fiber orientation. The stiffness coefficient decreases approximately 85% for the 
geodesic tailored and 80% for the tailored constant curvature (c = 1.94) path, and constant angle 
[± 45°] path. The result of the geodesic path is validated by the result of Goldfeld et al. (2005). 

 
 

 
Fig. 10 Normalized stiffness coefficient B16 of 

the TCS 

 
Fig. 11 Normalized stiffness coefficient D11 of 

the TCS 
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3.3 Results for the buckling analysis 
 
The static and buckling analysis of the conical composite shell is performed using FEA 

software based on the eigenvalue analysis. Due to varying stiffness of the geodesic and constant 
curvature path, setting up a finite-element model is more complicated than for the constant angle 
composite laminates. For the three defined paths, the properties of every element can be 

 
 

 
 

(a) Finite-element model 
 

 

(b) Constant angle and geodesic tailored at the 
small end [± 0°] 

  

 
 

(c) Constant curvature tailored at the small end [± 0°]
 

(d) Constant angle tailored at the small end [± 45°]
  

 
 

(e) Geodesic tailored at the small end [± 45°] 
 

(f) Constant curvature tailored at the small end [± 45°]
 

Fig. 12 (a) Finite-element model and (b)-(d) first Buckling mode shapes of TCS for the three paths that 
ply angel of shells at the small end were [± 0°] and [± 45°] degrees, respectively 
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considered approximately based on the local stacking sequences of the element. The buckling 
behavior is extremely depends on the stiffness coefficients. In this work, based on Goldfeld et al. 
(2005), the buckling load and the buckling mode are calculated by the ABAQUS software. The 
stiffness matrices are calculated at each mesh-point. Buckling analysis of the conical composite 
shell is performed using FEA by the ABAQUS software. Finite-element modeling of the TCS is 
carried out with eight node element where for each node, three translation degree of freedom and 
three rotational degrees of freedom along the nodal direction (Fig. 12(a)). 

The main objective of this study is to investigate the influence of the fiber path on the buckling 
behavior of the TCS. The buckling load was computed by the inclusion of variation of stiffness 
coefficients. This was done by calculation of stiffness coefficients for each fiber path TCS by a 
subroutine, and the buckling load was computed by ABAQUS software. The buckling mode shape 
of conical shell tailored with fiber path ([± ]) by finite-element modeling (ABAQUS software) is 
given in Fig. 12. One can see that not only is the buckling load different, but the buckling mode is 
too. 

 
 

 
Fig. 13 Normalized buckling load versus the ply orientation at the small end of the geodesic TCS 

 

 
Fig. 14 Normalized buckling load of TCS for three paths 
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The buckling load is affected by the dependence of thickness, and the orientation of fiber on the 
longitudinal coordinate. In Fig. 13 the buckling load current and Goldfeld et al. (2005) plotted 
again the fiber’s inclination at the small end of the shell for the geodesic TCS (filament winding 
process) (α = ± 30, r1 = 0.1325 m and L = 0.2 m) under axial load with CFRP material. The higher 
ply angle at the small end leads to the lower the thickness and it leads to lower buckling load. The 
results are showing a good conformity with results of Goldfeld et al. (2005). 

Shown in Fig. 14 are the buckling loads in terms of the fiber’s inclination at the small end of 
the shells. TCS (α = ± 30, r1 = 0.1325 m and L = 0.2 m) of CFRP material are under axial load. It is 
seen that for the shells being tailored with three paths (the geodesic path, the constant curvature 
path, and constant angle path), as the ply angle at the small end of the shell increases, the thickness 
of the shell decreases which leads to lower buckling load. The higher ply angle at the small end 
leads to the more rapid decrease of the buckling load. Shells that being tailored with angles more 
than ± 45° on constant angle path were exceptional cases, so the buckling load decreases 
moderately with increasing the ply angle at the small end of shell. 

 
 

4. Conclusions 
 
In this study, the stiffness of the tailored composite conical shells was investigated for three 

fiber orientations were containing constant angle path, the geodesic path or the constant curvature 
path. The obtained results indicate that the stiffness coefficients based on the path fiber and ply 
orientation at the start of tailored are variable, and they are functions of the shell coordinates. 
Furthermore, the buckling loads based on the path fiber and ply orientation at the start of tailored 
fiber gets to be different. The extent of difference in the start angle of the tailored fiber lower than 
20 degrees is not significant. It can be concluded that the buckling load is generally most affected 
by the rate of decreasing of the thickness along the axial direction. When the start angle of the 
tailored fiber at the small end of the shell gets to be larger value, the thickness along longitudinal 
coordinate of the cone reduces very rapidly, which lead to rapidly the reduction of the stiffness and 
the buckling load. 
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