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Abstract.  Natural vibration of truss cable structures is analyzed based upon the general structural analysis 
software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods 
are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic 
response analysis of truss cable structures is carried out via time-history method. Introducing three natural 
earthquake waves calculated the results including time-history curve of vertical maximal displacement, 
time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, 
and variation curve of maximal internal force of member along span are presented. The results show the 
formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. 
Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These 
provide convenient and simple design method for practical engineering. 
 
Keywords:    truss cable structures; energy variational method; natural vibration; time-history analysis; 
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1. Introduction 

 
Cable-suspended structure is a kind of reasonable force structural system, and is widely applied 

in long-span sport building and bridge. Among the parallel span systems, a cable truss (see Fig. 1) 
is a counter-stressed double-cable system in which the top and bottom chords consist of 
continuous pre-stressed cables anchored at each end, and between which numerous light rigid 
spacers are placed to provide the web members (Raoof and Davies 2004, Ma et al. 2011). It has 
better shape stability, and that is earliest adopted in Stockholm Skating Museum which is designed 
by the Swedish engineer Jawerth in 1966, then is widely applied in all countries. Moreover, many 
scholars have researched the static and dynamic characteristics of cable truss (Kassimali and 
Parsi-Feraidoonian 1987, Kmet and Kokorudova 2006, Kmet 2009, Vlajić and Kostić 2010, Ma 
2011). But, a truss cable (see Fig. 2) which will be studied in this paper is different from a cable 
truss, which is a suspended structure that can replace flexible cables, and consists of curved 
solid-web or latticed members that have a certain bending rigidity and compress rigidity. Internal 
force of the chords is mainly tension when subjecting uniformly distributed loads (Shen et al. 
2006). It has the virtues of flexible cables and light-weight steel structures. The virtues and wide 
applications have been received great attentions domestically. Truss cable structures have been 
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(a) (b) 

Fig. 1 Layout of cable truss 

 

 

   Fig. 2 Layout of truss cable 

 
 
earlier applied to the practical engineering abroad, such as Yokohama Plant Stadium (Japan, 1960), 
Tokyo Yoyogi Sports Centre (Japan, 1964), The 22nd Olympic Games Natatorium (Former Soviet 
Union, 1980). The importance and application in practical engineering prompt the development of 
theoretical and experimental research. Professor Shi-Zhao and Chong-Bao (Shen et al. 2006), Ye 
and Xu (1994), Liu (2002) etc. have studied static behavior of truss cables and acquired many 
important conclusions, but there is little research to dynamic behavior. Consequently, it is very 
important and fundamental to understand the behavior of truss cable structures. 
 
 
2. Basic data and assumptions 

 
According to the present code, this paper designs a 40-meter-span truss cable, the ratio of sag to 

span is 1/12, the height of cross section is 0.5 m, area of upper and lower members is both 20.4 
cm2, area of diagonal member is 3.57 cm2, elastic modulus is 2.06 × 1011N/m2, bending rigidity is 
5.253 × 107N·m2, shearing rigidity is 1.904 × 107N, gravity load representation value is 285.58 kN, 
mass of unit length is 728.53 kg/m. The axial shape of truss cable is like parabola. 

Basic assumptions (Zhang 2005, Shen et al. 2006 ) are the following: 
(1) Material characteristic accords to Hooke’s law. 
(2) Small sag and only vertical loads is considered. 
(3) The ratio of curvature radius to height of cross section accords to small curvature 

assumption, i.e., R/h >> 5. 
(4) For latticed members, continuum method should be applied. Equivalent section area, 

inertia moment, and shearing rigidity are calculated by the rule of equal rigidity. Torsional 
moment of inertia is ignored. Eq. (1) is their formulas. 
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where, Aa, Ab are area of upper and lower chords, respectively, h is the height of cross section, I is 
equivalent inertia moment of truss cable, GA is equivalent shearing rigidity, Ad is area of diagonal 
member, d is the length of diagonal member, s is half of space between upper chord segment (Liu 
2002). Layout of truss cable is shown in Fig. 2. 
 
 
3. Finite element model 
 

Truss cable structure can be simplified to a plane truss consisted of hinges and struts. The 
material is linear, elastic and isotropic. According to the principle of equivalent force, the load is 
transformed to node load. Deflection accords to the principle of small deflection. In this paper, 
element type of model is Link1, which is a uniaxial tension-compression element with two degrees 
of freedom at each node. According to axial equation and geometry of truss cable and the height of 
cross section, we can educe the equations and nodal coordinates of upper and lower chords. Then, 
lower chord between 3-53 nodes is divided to 25 elements, i.e., the length of each element is 1.5 m, 
the length of 1-3 node and 53-55 node is 1.25 m, then elements are created base on the nodes. 
Restrictions are applied to 1 and 55 nodes. For vibration analysis, concentrated mass model is used, 
in which MASS21 element is placed on nodes (Zhang 2005). The model by ANSYS software is 
shown in Fig. 3. 
 
 
4. Natural vibration analysis 

 
4.1 Natural vibration analysis by FEM 
 
ANSYS is the large general finite element structural analysis software. Modal analysis in 

ANSYS can be used to natural vibration characteristics analysis of structure. There are four parts 

 
 

   Fig. 3 Truss cable structure finite element model 
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(a) The first mode (b) The second mode 

(c) The third mode (d) The fourth mode 

(e) The fifth mode (f) The sixth mode 

   Fig. 4 The fist six modes of truss cable by ANSYS 

 
 
 
(establishment of model, loads and solution, expansion of modes, observation of results) in 
analysis. Then the process of analysis is detailedly given. Finite element model is established 
above. Analysis type is modal, and subspace method is applied to extract modes. Effect load in 
modal analysis is only zero displacement restriction. Where, restrictions are applied in direction x 
and z, then solution is done. Last, the frequency and vibration mode can be obtained by expanding 
modes (Seo et al. 2010). It is noted that the unit of obtained frequency in ANSYS is Hz, the first 
six frequencies are given in Table 1 after multiplied 2π. The first six modes obtained by ANSYS 
are shown in Fig. 4. Seen from it, the first mode is also an antisymmetric mode. 

 
4.2 Natural vibration analysis by the energy variational method (EVM) 
 
We assume the initial shape of truss cable is 
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where, f , l are respectively the sag and span of truss cable. 

Dynamic displacement is 
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Mode function is 
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where, m = 2, 4, 6, … , p = 2, 4, 6, … , for antisymmetric mode, 

m = 1, 3, 5, … , p = 3, 5, 7, … , for symmetric mode 
In the case of small amplitude vertical vibration, total potential energy (Clough and Penzien 

2006, Chopra 2007) can be written as 
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where, m̅ is uniformly distributed mass, ω is frequency of truss cable. 

By substituting Eq. (3), Eq. (4) into Eq. (5), we can get the implicit expression for Π (omitted 
here for limit space). 

According to theory of the minimum of total potential energy, 0
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From Eq. (6) and Eq. (7), we can get 
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then, Eq. (9) can be expressed in the following form 
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As an example, set p = 7, then the explicit expression of symmetric vibration (m, i = 1, 3, 5, 7) 

is as follow 
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For antisymmetric vibration (m, i = 2, 4, 6, 8), set p = 8, 
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Then, for antisymmetric mode frequency can be simply written as 
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Next, the first three symmetric and antisymmetric frequency formulas and derivations will be 

presented in more detail. 
 

(1) The first three symmetric mode: 
(a) For p = 1, m = 1, mode function is 
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from Eq. (10), we can get 
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Therefore, the frequency formula of one-half sine wave symmetric mode can be expressed as 
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(b) For p = 3, m = 1, 3, mode function is 
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from Eq. (11), we can get 
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Solving Eq. (19), we can get the frequency formula of three-half sine wave symmetric mode. 
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or p = 5, m = 1, 3, 5, mode function is 
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from Eq. (11), we can get 
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By solving the eigenvalue of matrix, we can get the frequency of five-half sine wave symmetric 
mode. 

 

(2) The first three antisymmetric mode: 
(a) For p = 2, m = 2, mode function is 
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from Eq. (13), we can get 
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(b) For p = 4, m = 4, mode function is 
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from Eq. (13), we can get 
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(c) For p = 6, m = 6, mode function is 
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from Eq. (13), we can get 
 













22

222
2
6

36

)(666

GAlEI

lGA

l

GA

lm 
                      (28) 

 
The first six frequencies of vibration are calculated by these formulas, and listed in Table 1. 
 
4.3 Natural vibration analysis by Rayleigh method (RM) 
 
Mode function is 
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Table 1 Comparison of the first six frequencies 

Frequency (1/s) FEM EVM Difference RM Difference Numbers of half wave 

1  6.102 6.405 4.97% 6.405 4.97% 2 

2  12.239 12.364 1.02% 14.874 21.53% 3 

3  17.046 18.196 6.75% 16.208 4.92% 1,3 

4  22.854 23.474 2.71% 23.474 2.71% 4 

5 33.896 34.851 2.82% 34.803 2.68% 5 

6 46.917 45.771 2.51% 45.771 2.51% 6 
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According to Rayleigh method, we get 
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The first six frequencies of vibration by this method are listed in Table 1. Furthermore, we plot 

the first six mode shapes of truss cable obtained by three methods (FEM, EVM, RM) in Figs. 5-10. 
From them, we can see clearly that mode shapes of three methods are very similar except the third 
mode. It is noted that the third mode as well as the second mode is also coupling of single and 
three sine half waves, it can be a kind of phenomena of insert frequency. From Table 1, the 
differences of frequencies by EVM are very little. The differences of second and third mode 
frequency by RM are big. This can be explained as that the assumed the mode function is not so 
good as others. For antisymmetric mode, the formula of frequency of EVM and RM is the same. 

 
 

5. Time-history analysis under vertical earthquake simulation 
 

5.1 Selection of earthquake waves 
 
In time-history analysis, it is important to choose earthquake waves. There are three factors to 

be considered: earthquake intensity, earthquake spectrum characteristic and earthquake duration 
(Li et al. 2002). This paper selects three natural vertical earthquake waves ― EL-Centro 
earthquake record, Taft earthquake record, Beijing Restaurant earthquake record. According to 
design earthquake of code for seismic design (China), peak value of earthquake wave is adjusted 
to 70 gal in time-history analysis. Acceleration peak value of EL-Centro earthquake record is 
206.3 gal, duration is 5 s, time interval is 0.02 s. Acceleration peak value of Taft earthquake record 
is 102.9 gal, duration is 20 s, time interval is 0.02 s. Acceleration peak value of Beijing Restaurant 
earthquake record is 34.99 gal, duration is 40 s, time interval is 0.01 s. Acceleration records of 
three earthquake waves are shown in Fig. 11. 
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   Fig. 5 First mode shape of truss cable by three methods 

 

 

   Fig. 6 Second mode shape of truss cable by three methods 

 

 

   Fig. 7 Third mode shape of truss cable by three methods 
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   Fig. 8 Fourth mode shape of truss cable by three methods 

 
 

 

   Fig. 9 Fifth mode shape of truss cable by three methods 

 
 

 

   Fig. 10 Sixth mode shape of truss cable by three methods 
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    (a) EL Centro wave 

 
    (b) Taft wave 

 
     (c) Beijing Restaurant wave 

   Fig. 11 Vertical Acceleration records of three kinds of earthquake waves 

 
 

5.2 Time-history response of nodal displacement and internal force 
 
With APDL language of ANSYS program, data of acceleration record can be read to ANSYS 

by Table array. Time interval is 0.02 s. Damping ratio of cable structure is set to 0.02. The mass 
damp multiplier and the stiffness damp multiplier can be obtained by the first two vertical 

128



 
 
 
 
 
 

Analysis of dynamic behavior for truss cable structures 

Table 2 Maximal displacement and internal force 

Wave EL-Centro Taft Beijing Restaurant 
Time (s) 1.96 9.88 29.77 

Displacement (mm) 4.96 10.39 12.77 

Internal force (kN) 33.91 72.94 87.97 

 
 

 

 

 

    Fig. 12 Time history of vertical displacement for node12 under three kinds of earthquake waves 
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symmetric modes. i.e., α = 0.28496, β = 0.0137. Full method is applied to time-history analysis. 
By the analysis, we notice that the maximum displacement occurs near the 1/5 span point (node 12 
or node 44) and the maximum internal force occurs near the 1/5 span (member 11-13 or member 
43-45). Maximum values are tabulated in Table 2. Vertical displacement time history of node 12 
curves under three kinds of earthquake waves are shown in Fig. 12. Internal force time history of 
member 11-13 curves under three kinds of earthquake waves are plotted in Fig. 13. 

 
 

 

 
 

 

    Fig. 13 Time history of vertical displacement for node12 under three kinds of earthquake waves 
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    Fig. 14 Variation of maximal displacement along span 

 

  

    Fig. 14 Variation of maximal displacement along span 

 
 

5.3 Variations of maximum displacement and internal force along span 
 
Maximum displacement of each node and internal force of each member can be obtained by 

time-history analysis. Their variations along span are shown in Figs. 14 and 15. From these figures, 
we can find that under three kinds of earthquake waves, the results of EL Centro wave is close to 
that of mode decomposition response spectrum method (maximum displacement of node 12 is 
5.62 mm, maximum force of member 11-13 is 38.94 kN). The results of Taft and Beijing 
Restaurant waves are bigger. Moreover, the seismic response of truss cable structure is smaller 
under EL-Centro earthquake simulation, the ratio of max vertical dynamic displacement to max 

131



 
 
 
 
 
 

Wen-Fu Zhang, Ying-Chun Liu, Jing Ji and Zhen-Chao Teng 

static displacement (82.91 mm) and that of max dynamic force to static force (401.8 kN) are all 
less than 1/10. It is proved that truss cable structure has strong rigidity. 
 
 
6. Conclusions 

 
Natural vibration for truss cable structure is analyzed by finite element methods, energy 

variational method and Rayleigh method. The frequencies of vibration of truss cable structure are 
compared. The first six mode shapes of truss cable are given. Moreover, vertical seismic response 
analysis of truss cable structures under different earthquake action is carried out by time-history 
method and analysis. Variation of node maximum displacement and member maximum internal 
force along span are obtained. The following conclusions are made. 

 

(1) The theoretical formulas of frequencies obtained by energy variational method are of high 
accuracy, which can be conveniently used in practical project, especially in the 
preliminary design stage. 

(2) The maximum displacement of node and the maximum internal force of member for truss 
cable structure occur near 1/5 span point under earthquake action, rather than in the span 
center of truss cable as expected. Same rule can be found in the distribution of maximum 
internal force of member. This phenomenon reminds engineers to pay enough attention in 
the design for long-span truss cable. 
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