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Abstract.  In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a 
uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell 
including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are 
assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while 
the poison’s ratio is assumed to be constant. The temperature distribution is assumed to be a function of the 
thickness direction. Governing equations of the truncated conical shell are derived in terms of components 
of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. 
Results are obtained for different values of power law index of material properties and effects of thermal 
load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are 
compared with those of the finite element method. 
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1. Introduction 

 
Truncated conical shells are well-known structural components which are extensively used in 

various branches of engineering applications such as pressure vessels, aerospace and ship building 
industries. In recent years, increased demands for mechanical components subjected to electro- 
magnetic, thermal and mechanical loadings have drawn the attention of researchers. Some of the 
common applications of interaction between these fields are found in geophysical studies, 
magnetically levitated vehicles, industrial heating equipments and cooking devices and other 
equipments working in combined magnetic and thermal environments. 

On the other hand, a new class of advanced composite material called functionally graded 
material (FGM) is employed due to its improved thermal and mechanical characteristics. Material 
properties of FGMs vary gradually over the volume, by means of which features like high thermal 
load carrying capacity, wear and erosion resistant can be achieved. 

Zhao and Liew (2011) carried out free vibration analysis of an FG conical shell panel using the 
element-free-kp-Ritz method. The first-order shear deformation shell theory and mesh-free kernel 
particle functions were employed to derive the fundamental relations. Sofiyev and Kuruoglu 
(2011) studied the nonlinear buckling behavior of cross ply laminated conical shells. The modified 
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Donnell type stability and compatibility equations were obtained and solved analytically. Patel et 
al. (2005) carried out the investigation of thermo-elastic post-buckling behavior of cross-ply 
laminated composite conical shells under presumed uniform temperature distribution by 
employing semi-analytical finite element approach. Aghdam et al. (2011) investigated bending of 
moderately thick clamped FG conical panels subjected to uniform and non-uniform distributed 
loadings. The governing equations were derived using the first order shear deformation theory and 
solved with the help of Extended Kantorovich Method (EKM). Sofiyev (2012) studied the 
non-linear vibration of truncated conical shells made of FGM. Large deformation theory with von 
Karman-Donnell type of kinematic non-linearity was used for formulating the constitutive 
relations. Superposition, Galerkin and harmonic balance methods were applied to analyze 
problems. 

Ying and Wang (2010) obtained an exact solution for two-dimensional analysis of finite hollow 
cylinder excited by non-uniform thermal shock. The solution was developed on the basis of 
uncoupled linear thermo-elastic theory, using the trigonometric series expansion method and the 
separation of variable technique. Shahani and Nabavi (2007) used the finite Hankel transform 
method to solve analytically the thermo-elasticity problem of a thick-walled cylinder. 
Chandrashekhara and Kumar (1993) have extended the solution to a thick, transversely isotropic, 
circular cylindrical shell subjected to axisymmetric loading. Also a transfer matrix approach has 
been presented to make the method computationally efficient. Eslami et al. (2005) obtained a 
general solution for the one-dimensional steady state thermal and mechanical stresses in a hollow 
thick sphere made of functionally graded material. The analytical solution of the heat conduction 
equation and the Navier equation was presented using the direct method. Sobhani Aragh and Yas 
(2010) presented three-dimensional analysis of thermal stresses in a four-parametric continuous 
grading fiber reinforced cylindrical panel subjected to thermal load. Generalized differential 
quadrature method was employed to solve the thermo-elastic equilibrium equations. 

Khdeir (1996) investigated thermal deformations and stresses in a cross-ply laminated circular 
cylindrical shell. The state space approach was used to solve the thermo-elastic governing 
equations of the third-order and classical theories for arbitrary boundary conditions. Alibeigloo 
and Nouri (2010) presented three-dimensional solution for static analysis of functionally graded 
cylindrical shell with bonded piezoelectric layers using differential quadrature method. Dai et al. 
(2006, 2011) obtained an exact solution for the heat conduction problem of an FG hollow sphere 
using the direct method to solve the Navier equations. They also used infinitesimal theory to 
determine the exact solution of magneto-thermo-elastic behavior of functionally graded cylindrical 
and spherical vessels. Lee (2009) carried out three-dimensional axisymmetric magneto-thermo- 
elastic analysis for the laminated circular conical shells subjected to magnetic and vapor fields 
using Laplace and finite difference methods. Xing and Liu (2010) studied the behavior of 
magneto-thermo-elastic stresses in a conducting rectangular plate subjected to an arbitrary 
variation of magnetic field, employing the differential quadrature method. 

Zielnica (2012) carried out buckling load and stability path analysis of a sandwich conical shell 
with unsymmetrical faces under combined loading condition based on the assumption of 
moderately large deflection. The constitutive relations were developed on the basis of the 
Nadai-Hencky deformation theory of plasticity and Prandtl-Reuss plastic flow theory and the Ritz 
method was used to solve the governing differential equations. Ghannad et al. (2012) performed 
an elastic analysis of axisymmetric clamped-clamped pressurized thick truncated conical shells 
made of functionally graded material, based on the first-order shear deformation theory. Matched 
asymptotic method (MAM) of the perturbation theory were used to convert the resulting equations 
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into a system of algebraic equations. 
The main object of the present study is to investigate the magneto- thermo-elastic problem of a 

truncated conical shell made of functionally graded material subjected to a constant magnetic field, 
thermal load and internal pressure. Variations of material properties through the thickness of the 
shell are assumed to obey a simple power law. The fundamental equations of thermal and elastic 
fields are developed and an efficient semi-analytical method called differential quadrature (DQ) 
method is employed to approximate derivatives of functions along the thickness and the axial 
direction of generator. Results obtained by the present method are compared with those obtained 
by the finite element method which is found to be in excellent agreement. The effects of various 
parameters such as the power law index and thermal loading on the distribution of stress, 
displacement, temperature and induced magnetic field are graphically depicted. 

 
 
2. Governing equations 

 
Let us consider a truncated conical shell made of FGM with perfect conductivity permeated by 

initial magnetic field H0ζ and subjected to uniform internal pressure P0 and a rapid temperature 
change, T, at the inner surface. Physical model and corresponding system coordinates for the 
truncated conical shell is shown in Fig. 1., where hsh denotes the thickness of the shell, L and L1 are 
generatix length and the distance between origin and top surface of cone, respectively and γ is the 
semi- vertex of the conical shell. 

R1 and R2 indicate the inner radii of the cone at its small and large ends, respectively. The 
structure corresponds to coordinate system (s, θ, ζ), where s lies along the generator and on the 
internal surface, θ axis lies in circumferential direction on the reference surface of the cone and the 
ζ axis is along the thickness direction of the cone. 

The stiffness, magnetic permeability, coefficients of heat conductivity, thermal expansion and 
electric conductivity are assumed to vary through the wall thickness according to a simple power 
law distribution as follows 

n
shhYY )/1(0                             (1) 

where Y0 and n represent material properties at the inner surface and the power law index, 
respectively. 

Let u and w be the displacement components in s and ζ directions, then the strain-displacement 
relations are given as 
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Fig. 1 Physical model and system coordinates for the truncated conical shell 

 
 
 

The constitutive stress-strain relations for an isotropic material can be written in matrix form as 
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where σij and τij represent the stresses and εij represents the strain tensor and α is the coefficient of 
thermal expansion. 

The quantities ci,j, i, j = 1, 2, 3, 4 for isotropic materials are defined by 
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where λ and G are Lame’s constants which are expressed as 
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By combining Eqs. (2) and (3), components of the stress field are defined in terms of 
components of the displacement and temperature fields. 
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Assuming that the magnetic field vector in  the conducting truncated conical shell, has only 
one component that acts along the thickness H


= (0, 0, H0ζ), then by disregarding the displacement 

current, the governing equations and fundamental relations of electro-dynamic Maxwell equations 
(John 1941) for a perfectly conducting, elastic-body is presented as 

  hJdivhHUcurlh


  , 0  ,                       (7) 

where ,J


h


 and U


 represent electric current density, induced magnetic field and displacement 
vectors, respectively. 

In order to obtain the induced magnetic field vector h


 from Eq. (7), we have to invoke the 
following relation (Strang 1986) 

HUUHUdivHHUdivHUcurl


).().()()()(                 (8) 

It is observed form Eqs. (7) and (8) that a key problem to obtain the induced magnetic field 
vector, is to have the divergence and curl of the vector function X (vs, vθ, vζ), in the conical 
coordinate system (s, θ, ζ), which are defined by the following formulas 
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By substituting magnetic field vector H


 and displacement vector U


in Eq. (7) and employing 
Eq. (8), the induced magnetic field vector h


 is obtained which has two components in the s and ζ 

directions. The current density vector ,J


 is found to have one component in the θ-direction as 
follow 
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The conducting truncated conical shell immersed in a magnetic field, H0ζ, is subjected to 
Lorentz’s force. Lorentz’s force vector has only one nonzero component which is along the s 
direction, as follow 
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The two-dimensional equilibrium equations in s and ζ directions taking to account of the 
Lorentz’s force fl, are expressed as 
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By substituting Eqs. (6) and (11) into Eq. (12), equilibrium equations in s and ζ directions are 
obtained in terms of components of the displacement and temperature fields in Eqs. (13a) and 
(13b), respectively as follows 
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In this study, the inner surface of the truncated conical shell is subjected to boundary 
temperature T, uniform pressure P0 and initial magnetic field H0ζ. It is also supposed that the outer 
radius is free of traction and its temperature is kept at 0°. Considering these details, the mechanical, 
thermal and magnetic boundary conditions at the inner and outer boundary surfaces are described 
as 
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It is also assumed that the top and bottom boundaries of the cone are clamped, thus these 
boundary conditions are expressed as 
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The heat conduction equation in the steady-state condition for the truncated conical shell can be 
written as 
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where K is the coefficient of heat conductivity. 
 
 
3. Method of solution 
 

The differential quadrature technique is applied as a semi-analytical procedure to discretize 
governing and related boundary equations. Differential quadratue method approximates the 
derivatives of a smooth function by a linear summation of all the functional values along an 
assumed mesh line. In this investigation, weighting coefficients related to the first-order derivative 
are obtained based on the Lagrange interpolation. For higher order derivatives the matrix multitude 
approach is used (Shu 2000). 
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where A(n) shows the weighting coefficients for the nth order derivative. 
Above formulation belongs to one-dimensional problem. The first and the second order 

derivatives of the goal function are developed by extending one-dimensional differential 
quadrature approximations to a two-dimensional case which can be described by 
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where A(n), B(n) represent weighting coefficients for the nth derivative along the thickness and 
generator directions; P and N are the numbers of sampling points along the generatix direction s 
and thickness direction ζ, respectively. Transversely discretized governing differential equations 
and the related boundary conditions are transformed into algebraic equations using DQ method. 
The quadrature form of equilibrium equations i.e., Eqs. (13a) and (13b) are substituted in Eqs. 
(19a) and (19b), respectively. 
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And the corresponding mechanical boundary conditions are transformed into the following 
form 
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And the discretised heat conduction equation is obtained as follows 
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4. Numerical results and discussion 

 
In numerical calculations, geometrical parameters of L = 1, γ = 15° for the truncated conical 

shell are assumed. Sampling points with following coordinate can be obtained using the 
Chebyshev-Gauss-Lobatto formula as follow: 
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In the ζ- direction 
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In this study, the following material properties are assumed for the conical shell 
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The results are expressed in terms of dimensionless characteristic quantities using the following 
non-dimensional parameters 
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At first, a convergence analysis is carried out to examine the computational efficiency of the 
DQ method. Distribution of the non-dimensional displacement w̄, through the thickness with 
different numbers of DQ points is plotted in Fig. 2 It is observed from this figure that as the 
number of discrete points increases, the computed results rapidly converge. It is however noticed 
that even for less number of grid points, results with acceptable accuracy are obtained indicating 
the computational efficiency of the method. 

Next, results obtained by the present method are compared with those of the finite element 
method which are found to be in good agreement, as shown in Fig. 3 Finite element analysis of the 
shell is carried out using ANSYS suit of program. The conical shell is modeled and meshed with 
Solid 5 element. It has eight nodes with up to six degrees of freedom per node and has 3-D 
magnetic, thermal, electric, piezoelectric and structural field capabilities with limited coupling 
between them. 

 
 

Fig. 2 Convergence study of DQ method, variation of w̄ with number of grid point 
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Fig. 3 Variation of w̄ with ζ̄ , comparison of FEM with DQM 

 
 
 

The effect of the power law index on the distribution of dimensionless components of 
displacement field w̄, circumferential and radial stresses, induced magnetic vector and temperature 
fields through the thickness direction are shown in Figs. 4 to 8. It is depicted from Fig. 4 that the 
dimensionless displacement w̄ varies linearly across the thickness. It can be seen that as n changes 
from negative to positive the non-dimensional displacement decreases and for all cases the 
maximum and minimum values occur at the inner and outer surfaces, respectively. It is worth 
pointing out that for positive values of n the behavior of non-dimensional displacement is found to 
be fairly steady. 

 
 
 

Fig. 4 Variation of w̄ with power law index of material properties 
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Variation of the stress component σ̄ζζ with the value of power law index n, at different thickness 
points ζ̄  are shown in Fig. 5 It can be easily realized that the power law index has pronounced 
effect on the exerted stresses. As n changes form positive to negative, the distribution of the 
stress  σ̄ζζ, along the thickness tends to decline. Consequently, one can choose appropriate FGM 
properties to reduce the value of induced stresses and promote the safety and structural integrity of 
functionally graded truncated conical shells. 

The effect of power law index of material properties on distribution of the circumferential 
stress is depicted in Fig. 6 It is observed that the circumferential stress reaches its maximum value 
at the inner radius of the shell for negative values n and this trend is reversed for positive values of 
n. It is also observed that for n = 0, the circumferential stress remains almost steady and has nearly 
uniform distribution across the thickness. It is interesting to note that the value of this stress at ζ̄  
approximately equal to 0.5 remains constant irrespective of the value of the grading index. 

Distribution of the induced magnetic field of h̄ along the thickness for different values of the 
power law index is shown in Fig. 7 It is observed that as n varies from negative to positive, the 
absolute value of h̄ decreases. It is also noted that at ζ̄  approximately equal to 0.8, the value of the 
induced magnetic field remains constant for different values of power law index. Fig. 8 depicts 
distribution of temperature field along the thickness of the shell for different values of power law 
index. It is observed that as n changes from positive to negative value, the magnitude of the 
temperature at any position increases. 

The effect of the thermal load on variations of dimensionless displacement w̄, circumferential 
and radial stresses and induced magnetic vector fields through the thickness direction are shown in 
Figs. 9 to 12. The power law index is assumed to be equal to 1, i.e., n = 1. It is observed from Fig. 
9, that as the temperature difference between the inner and outer surfaces increases, dimensionless 
value of the displacement component notably increases. Distribution along the thickness of σ̄ζζ for 
different values of the inner-wall temperature is depicted in Fig.10 It is observed from Fig. 10 that 
as the temperature difference across the wall of the shell increases the value of σ̄ζζ slightly 
increases. These results can help designers to find an appropriate material property index for an 
FG truncated conical shell that contributes to lower values of thermal stresses. 

 
 
 

Fig. 5 Variation of σ̄ζζ with power law index of material properties 
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Fig. 6 Variation of σ̄θθ with power law index of material properties 

 

      Fig. 7 Variation of h̄ with power law index of material properties 

 

Fig. 8 Variation of H̄ with power law index of material properties 
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Fig. 9 Thermal load effect on variation of w̄ 

 

Fig. 10 Thermal load effect on variation of σ̄ζζ 

 

Fig. 11 Thermal load effect on variation of σ̄θθ 
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Fig. 12 Thermal load effect on variation of h̄ 

 
 
 

Fig. 11 demonstrates the effect of the temperature gradient on the distribution of the 
dimensionless circumferential stress across the thickness of the truncated conical shell. As 
expected, value of circumferential stress considerably increases as the value of temperature 
difference across the shell increases. The maximum and minimum values of the non-dimensional 
circumferential stress in the FG conical shell always occur at its outer and inner surfaces, 
respectively. Variation of the induced magnetic field versus distance ζ̄  in a conducting truncated 
circular conical shell for different values of temperature difference across the shell is shown in Fig. 
12. It is noted that the maximum of absolute value of the induced magnetic field occurs at the 
inner surface and also approaches to zero for ζ̄  about 0.7 irrespective to the value of temperature 
difference across the shell. 
 
 
5. Conclusions 
 

In this work, magneto-thermo-elastic analysis of a conducting truncated conical shell made of 
functionally graded material subjected to uniform magnetic and thermal fields and internal 
pressure is investigated. The constitutive formulas are derived and the differential quadrature 
method is employed to analyze the static magneto-thermo-elastic problem. It is concluded from 
above studies and results that the present solution is an accurate and effective technique and 
provides great numerical simulation. The numerical results are presented graphically and effects of 
power law index and thermal load on variation of the displacement, stress and thermal fields along 
the thickness are investigated. It is observed that magneto-thermo-elastic responses of the 
conducting non-homogeneous conical shell are mainly dependent on the non-homogeneity of 
material properties of the shell. The results introduced in the paper can assist engineers to select 
the desirable material property index to transcend the safety and structural reliability of an FG 
truncated conical shell. 
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Nomenclature 
 

K  Coefficient of heat conductivity 

α  Coefficient of thermal expansion 

σij  Components of stress tensor 

hsh  Thickness of the shell 

U


, u, w  Displacement vector and displacement components 

L1  Distance between the origin and the top surface of the cone 

E0  Elastic constant 

J


  Electric current density vector 

λ, G  Induced magnetic field vector 

L  Lame’s constants 

fl  Length of the generator of the cone 

H


  Lorentz’s force 

μ  Magnetic field vector 

N, P  Magnetic permeability 

υ  Number of grid points along the thickness and generator directions, respectively 

n  Poisson's ratio 

R1, R2  Power law index 

γ  Inner radii of the cone at its small and large ends, respectively 

B(n)  Semi-vertex of the conical shell 

A(n)  Weighting coefficients of the nth derivative along the generator 
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