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Abstract.  In the present study, the thermal buckling behavior of functionally graded sandwich plates is 
studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally 
consistent and gives four governing equations. Number of unknown functions involved in displacement field 
is only four, as against five in case of other shear deformation theories. This present model takes into 
account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear 
stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal 
expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction 
according to a simple power-law distribution in terms of the volume fractions of the constituents. The core 
layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, 
linear and non-linear temperature rises across the thickness direction. The results reveal that the volume 
fraction index, loading type and functionally graded layers thickness have significant influence on the 
thermal buckling of functionally graded sandwich plates. 
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1. Introduction 

 
Functionally graded materials (FGMs) are microscopically inhomogeneous composites usually 

made of a mixture of metals and ceramics. By gradually varying the volume fraction of their 
constituents, it can be achieved that the effective properties of FGMs exhibit a smooth and 
continuous change from one surface to another, thus eliminating interface problems and mitigating 
thermal stress concentrations. Due to the high heat resistance, FGMs are used as structural 
components operating in ultrahigh-temperature environments and subjected to extremely high 
thermal gradients, such as aircraft, space vehicles, nuclear plants, and other engineering 
applications. 
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The functionally graded (FG) plates are commonly used in thermal environments; they can 
buckle under thermal and mechanical loads. Thus, the buckling analysis of such plates is essential 
to ensure an efficient and reliable design. The classical plate theory (CPT) is usually used to carry 
out stability analysis of thin FG plates (Javaheri and Eslami 2002a). This theory ignores the 
transverse shear deformation and assumes that the normal to the middle plane before deformation 
remains straight and normal to the middle surface after deformation. As a result, the classical plate 
theory overestimates the buckling load except for truly thin plates. The first-order shear 
deformation theory (FSDT), including the effects of transverse shear deformation, was employed 
by some researches to analyze buckling behavior of moderately thick FG plates (Wu 2004, 
Samsam Shariat and Eslami 2005, Bouazza et al. 2010, Yaghoobi and Yaghoobi 2013). The FSDT 
assumes a constant value of transverse shear strain through the thickness of the plate and requires 
shear correction factor to correct for the discrepancy between the actual transverse shear strain and 
the constant one. The shear correction factor, which is crucial to an accurate analysis, depends on 
geometric parameters, loadings, material and boundary conditions of the plate. Also in the FSDT, 
the cross-sectional warping is neglected as it is assumed that the plane sections remain plane. 
According to the viewpoint of some research groups, the first-order shear deformation theory is 
not a proper model for analyzing thick structures (Reddy 1984, 2000, Javaheri and Eslami 2002b, 
Şimşek 2009, Sallai et al. 2009). To overcome the drawbacks of these theories (i.e., CPT and 
FSDT), various higher-order plate theories have been proposed by assuming higher-order 
displacement fields. Among these theories, the higher-order shear deformation theory (HSDT) of 
Reddy (1984) has been extensively used for analysis of thick plates. The HSDT assumes 
third-order polynomials in the expansion of the displacement components through the thickness 
and accommodates a parabolic variation of the transverse shear strains and stresses through the 
thickness and the vanishing of transverse shear stresses on the top and bottom surfaces of the plate. 
Unlike the FSDT, the HSDT requires no shear correction factor and also the cross-sections of plate 
are allowed to warp. 

To the best of authors’ knowledge, there are a little research works for thermal buckling 
analysis of functionally graded rectangular plates based on higher-order shear deformation theories 
in the open literature. Javaheri and Eslami (2002b) studied thermal buckling of simply supported 
FG plates subjected to various types of thermal loadings based on the higher-order shear 
deformation theory. They presented the buckling temperatures in closed-form solutions using 
Navier’s method. Samsam Shariat and Eslami (2007) presented the mechanical and thermal 
buckling analysis of thick functionally graded rectangular plates. They used the third-order shear 
deformation plate theory and Navier’s method to obtain the closed-form solutions for the critical 
buckling load and temperature of a simply supported rectangular plate whose material properties 
vary linearly with respect to the thickness coordinate. Using the method of power series expansion 
of displacement components, Matsunaga (2009) presented a higher order deformation theory for 
thermal buckling of functionally graded rectangular plates. However, there are a few reported 
studies on the thermal buckling analysis of FG sandwich plates. Liew et al. (2004) discussed the 
post-buckling and buckling of moderately thick composite plates comprising FG layers under 
thermal loading. Both perfect and imperfect FG plates are considered, and temperature 
dependency of material constituents is also included. Na and Kim (2006) presented a finite 
element formulation to predict the instability of clamped unsymmetric composite FG plates. In 
their study, temperature dependency of material properties is also included. Recently, Zenkour and 
Sobhy (2010) studied the thermal buckling of functionally graded sandwich plates using sinusoidal 
shear deformation plate theory. A simple approximate closed-form expression to predict the 
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thermal post-buckling response of sandwich plates with FGM face sheets is presented by Kiani 
and Eslami (2012) with considering the temperature dependency of thermomechanical properties. 

Although some studies have been carried out for the thermal buckling analysis of FG plates by 
using higher-order shear deformation theories with five unknown functions, no studies can be 
found for the thermal buckling analysis of functionally graded rectangular plates with new class of 
plate theories such as the four variable refined plate theory. Thus, the purpose of this paper is to 
study the critical buckling temperature for symmetric FG sandwich plates using a four variable 
refined plate theory. Tounsi and his associates recently developed this new plate theory (Houari et 
al. 2011, Ameur et al. 2011, Merdaci et al. 2011, El Meiche et al. 2011, Bourada et al. 2012, 
Fekrar et al. 2012, Bouderba et al. 2013). This theory which looks like higher-order theory uses 
only four unknown functions in order to derive four governing equations for functionally graded 
plates. The most interesting feature of this theory is that it does not require shear correction factor, 
and accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction 
boundary conditions on the surfaces of the plate without using shear correction factor. The 
accuracy of this theory has been demonstrated for static and thermoelastic behavior of FG plates 
by Houari et al. (2011) and Merdaci et al. (2011). Ameur et al. (2011) presented a new trigonometric 
shear deformation plate theory involving only four unknown functions for flexural analysis of FG 
plates resting on an elastic foundation. El Meiche et al. (2011) studied the buckling and vibration 
of FG sandwich plates using a new refined hyperbolic shear deformable plate theory with only 
four unknown functions. In the present study, the four variable refined plate theories have been 
extended to the thermal buckling behavior of FG sandwich plates. For this end, a new hyperbolic 
displacement model is developed to deduce the stability equations. The material properties as 
Young’s modulus and coefficient of thermal expansion vary according to a power law form 
through-the-thickness coordinate. The governing equations are solved analytically for a plate with 
simply-supported boundary conditions and subjected to various type of temperature rise. Then, an 
eigenvalue problem is formulated for a simply supported FG sandwich plate to analyze its thermal 
buckling behaviors. The effects of various variables, such as FG layer thickness, volume fraction 
index, thickness ratio, and aspect ratio, on the thermal buckling temperature of FG sandwich plate 
are investigated and discussed. An eigenvalue problem is formulated for a simply supported FGM 
sandwich plates to analyze its thermal buckling behaviors. The thermal loads are assumed as 
uniform, linear and non-linear temperature rises across the thickness direction. Illustrative 
examples are given so as to demonstrate the efficacies of the present model. The effects of various 
variables, such as thickness and aspect ratios, gradient index, loading type and sandwich plate type 
on the critical buckling are all discussed. 
 
 
2. Modeling of functionally graded material 

 
Consider a flat sandwich plate composed of three (metal-ceramic, ceramic, ceramic-metal) 

layers as shown in Fig. 1. Rectangular Cartesian coordinates (x, y, z) are used to describe 
infinitesimal deformations of a three-layer sandwich elastic plate occupying the region [0, a] × [0, 
b] × [– h / 2, h / 2] in the unstressed reference configuration. The mid-plane is defined by z = 0 and 
its external bounding planes being defined by z = ± h / 2. The face layers of the sandwich plate are 
made of an isotropic material with material properties varying smoothly in the z (thickness) 
direction only. The core layer is made of an isotropic homogeneous material. The vertical 
positions of the bottom surface, the two interfaces between the core and faces layers, and the top 
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Fig. 1 Geometry of the FGM sandwich plate 

 
 
surface are denoted, respectively, by h0 = – h / 2, h1, h2 and h3 = h / 2. The total thickness of the FG 
plate is h, where h = tC + tFGM and tC = h2 – h1. tC and tFGM are the layer thickness of the core and 
all-FGM layers, respectively. 

The effective material properties for each layer, like Young’s modulus, Poisson’s ratio and 
thermal expansion coefficient, can be expressed as 

  )()(  )( n
mcm

n VPPPzP                          (1) 

where P(n) is the effective material property of FGM of layer n. Pm and Pc denote the property of 
the bottom and top faces of layer 1 (h0 ≤ z ≤ h1), respectively, and vice versa for layer 3 (h2 ≤ z ≤ h3) 
depending on the volume fraction V(n)

 (n = 1, 2, 3). Note that Pm and Pc are, respectively, the 
corresponding properties of the metal and ceramic of the FGM sandwich plate. The volume 
fraction V(n) of the FGMs is assumed to obey a power-law function along the thickness direction 
(Houari et al. 2011) 
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where k is the volume fraction exponent, which takes values greater than or equals to zero. The 
core layer is independent of the value of k which is a fully ceramic layer. However, the value of k 
equal to zero represents a fully ceramic plate. The above power-law assumption given in Eqs. (2a) 
and (2c) reflects a simple rule of mixtures used to obtain the effective properties of the 
metal-ceramic and ceramic-metal plate faces (see Fig. 1). Fig. 2 shows the through-the-thickness 
variation of the volume fraction function of the ceramic for k = 0.01, 0.2, 0.5, 2, 5, and 10. Note 
that the core of the plate is fully ceramic while the bottom and top surfaces of the plate are 
metal-rich. 
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2.1 Higher-order plate theories with five unknown functions 
 
The displacements of a material point located at (x, y, z) in the plate may be written as 
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where, u, v, w are displacements in the x, y, z directions, u0, v0 and w0 are midplane displacements, 
θx and θy rotations of the yz and xz planes due to bending, respectively. Ψ(z) represents shape 
function determining the distribution of the transverse shear strains and stresses along the 
thickness. The displacement field of the classical thin plate theory (CPT) is obtained easily by 
setting Ψ(z) = 0. The displacement of the first-order shear deformation plate theory (FSDPT) is 
obtained by setting Ψ(z) = z. Also, the displacement of third-order shear deformation plate theory 
(TSDPT) of Reddy (1984) is obtained by setting 









 2

2

3

4
1 )(

h

z
zz                           (4a) 

The sinusoidal shear deformation plate theory (SSDPT) of Zenkour (2005) is obtained by 

403



 
 
 
 
 
 

F.Z. Kettaf, M.S.A. Houari, M. Benguediab and A. Tounsi 

setting 
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2.2 Present new hyperbolic displacement model 
 
The present theory has the following features 
 It is a displacement-based theory which includes the transverse shear effects. 
 Number of unknown functions involved in the theory is only four. Even in the Reissner’s 

and Mindlin’s theory (FSDPT), five unknown functions are involved. 
 The theory is variationally consistent. 
 Transverse shear stress satisfies zero shear stress boundary conditions on top and bottom 

surfaces of the beam perfectly. 
 The theory obviates the need of shear correction factor 
 
2.2.1 Assumptions of the new hyperbolic displacement model 
Assumptions of the present theory are as follows 

(i) The displacements are small in comparison with the plate thickness and, therefore, 
strains involved are infinitesimal. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only. 

),(),(),,( yxwyxwzyxw sb                           (5) 

(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and 
σy. 

(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and 
shear components. 

sbsb vvvvuuuu  00      ,                        (6) 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 
shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 
way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 
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2.2.2 Kinematics and constitutive equations 
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Based on the assumptions made in the preceding section, the displacement field can be 
obtained using Eqs. (5)-(8) as 
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The function f(z) is chosen in the form 
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The non-linear von Karman strain–displacement equations are as follows 
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On the basis of the displacement field given in Eq. (9), Eq. (10) becomes 
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where 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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where (σx, σy, τxz, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (1), stiffness coefficients, Qij, can be expressed as 
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and T(x, y, z) is the temperature rise through-the-thickness. 
 
2.3 Stability equations 

 
The total potential energy of the FGM sandwich plate may be written as 
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The principle of virtual work for the present problem may be expressed as follows 
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where 
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where hn and hn–1 are the top and bottom z-coordinates of the nth layer. 
Using Eq. (13) in Eq. (17), the stress resultants of a sandwich plate made up of three layers can 

be related to the total strains by 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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and 
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The stress and moment resultants, NT
x = NT
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b
x
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The stability equations of the plate may be derived by the adjacent equilibrium criterion. 
Assume that the equilibrium state of the FGM plate under thermal loads is defined in terms of the 
displacement components (u

0
0, v

0
0, w

0
b, w

0
s). The displacement components of a neighboring stable 

state differ by (u
1
0, v

1
0, w

1
b, w

1
s) with respect to the equilibrium position. Thus, the total 

displacements of a neighboring state are 
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where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 
equilibrium conditions. 

Substituting Eqs. (12) and (22) into Eq. (16) and integrating by parts and then equating the 
coefficients of δu

1
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s  to zero, separately, the governing stability equations are 

obtained for the shear deformation plate theories as 
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with 
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For the CPT, the stability equations are reduced to the first three equations of Eq. (23). 
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3. Thermal buckling solution 
 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (23) for a simply supported FGM sandwich plate. 
The following boundary conditions are imposed for the present four variable refined plate theory 
at the side edges 
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The following approximate solution is seen to satisfy both the differential equation and the 
boundary conditions 
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where U1
mn, V

1
mn, W

1
bmn, and W1

smn are arbitrary parameters to be determined and λ = mπ / a and μ = 

nπ / b. Substituting Eq. (27) into Eq. (23), one obtains 

   ,0K                                (28) 

where {Δ} denotes the column 
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In the following, the solution of the equation |K| = 0 for different types of thermal loading 
conditions is presented. The plate is assumed simply supported in bending and rigidly fixed in 
extension. The temperature change is varied only through-the-thickness as the following. 

 
3.1 Buckling of FGM plates under uniform temperature rise 
 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT = Tf – Ti. By solving the 
determinant 

, 0

44342414

34332313

24232212

14131211



aaaa
aaaa
aaaa
aaaa

                        (33) 

one can easily obtain the critical buckling temperature change ΔTcr as 
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3.2 Buckling of FGM plates subjected to graded temperature change across the thickness 
 
We assume that the temperature of the top surface is Tt and the temperature varies from Tt, 

according to the power law variation through-the-thickness, to the bottom surface temperature Tb 
in which the plate buckles. In this case, the temperature through-the-thickness is given by 
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where the buckling temperature difference ΔT = Tb – Tt and γ is the temperature exponent (0 < γ < 
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∞). Note that the value of γ equal to unity represents a linear temperature change across the 
thickness. While the value of γ excluding unity represents a non-linear temperature change 
through-the-thickness. 

Similar to the previous loading case, the critical buckling temperature change ΔTcr can be 
deduced, for the present four variable refined plate theory, as 
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4. Numerical results 
 

4.1 Analytical model of bridge pier 
 
To illustrate the proposed approach, a ceramic-metal functionally graded sandwich plate is 

considered. The combination of materials consists of Titanium and Zirconia. The Young’s 
modulus and the coefficient of thermal expansion for Titanium and Zirconia are given in Table 1. 

The general approach outlined in the previous sections for the thermal buckling analysis of the 
FGM symmetric sandwich plates under uniform, linear and non-linear temperature rises 
through-the-thickness is illustrated in this section using the four variable refined plate theory. 

The shear correction factor for FSDPT is set equal to 5 / 6. For the linear and non-linear 
temperature rises through-the-thickness, Tt = 25°C. 

 
 
Table 1 Material properties used in the FG sandwich plate 

Properties Metal: Ti–6A1–4V Ceramic: ZrO2 

E (GPa) 66.2 244.27 

V 0.3 0.3 

α (10-6/K) 10.3 12.766 

 
 
Table 2 Minimum critical temperature parameter αTcr of the simply supported isotropic plate (a / b = 1, α0 = 
1.0 × 10-6 / K, E = 1.0 × 10-6 N / m2, v = 0.3) 

a / h Present theory Matsunaga (2005) 

10 0.1198 × 10-1 0.1183 × 10-1 

20 0.3119 × 10-2 0.3109 × 10-2 

100 0.1265 × 10-3 0.1264 × 10-3 
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In order to validate the accuracy of the present formulations, a comparison has been carried out 
with the results obtained by Matsunaga (2005) for homogeneous isotropic plates under uniform 
temperature rise. The critical buckling temperature difference has been listed in Table 2. As this 
table shows, the present results have a good agreement with those reported in References 
(Matsunaga 2005). 

To verify also the accuracy of the present new hyperbolic displacement model (with four 
unknown functions), comparisons are made between the thermal buckling results obtained from 
the present new hyperbolic displacement model and those obtained by other higher order theories 
(with five unknown functions). For a homogeneous isotropic plate k = 0, E(z) = E0, α(z) = α0, v = 
0.3. Critical buckling temperature change (103a0ΔTcr) for different values of the side-to-thickness 
ratio a / h and aspect ratio b / a of a homogeneous plate is illustrated in Table 3. With the increase of 
the side-to-thickness ratio a / h, severe decrement for critical buckling temperature can be clearly 
observed. Also, it can be observed that the critical buckling temperature for the homogeneous plate 
decreases gradually as the plate aspect ratio b / a increases. The difference between the shear 
deformation plate theories and the CPT decreases as the ratios a/h or b / a increase because the 
plate becomes thin or long. 

 
 
Table 3 Critical buckling temperature (103a0ΔTcr) of a homogeneous isotropic plate under uniform temperature 

rise 

b / a Theory a / h = 5 a / h = 10 a / h = 15 a / h = 25 a / h = 50 

0.5 

Present 81.15170 27.73347 13.23144 4.94979 1.25825 

SSDPT 81.18685 27.73638 13.23205 4.94987 1.25825 

TSDPT 81.09991 27.73011 13.23079 4.94970 1.25824 

FSDPT 80.90487 27.72437 13.23021 4.94968 1.25824 

CPT 126.53339 31.63335 14.05927 5.06134 1.26533 

1 

Present 41.32613 11.97877 5.48633 2.00644 0.50500 

SSDPT 41.33313 11.97927 5.48643 2.00646 0.50500 

TSDPT 41.31747 11.97825 5.48623 2.00643 0.50499 

FSDPT 41.29710 11.97782 5.48619 2.00643 0.50499 

CPT 50.61336 12.65334 5.62371 2.02453 0.50613 

2 

Present 27.73347 7.63938 3.46065 1.25824 0.31589 

SSDPT 27.73638 7.63958 3.46069 1.25825 0.31589 

TSDPT 27.73011 7.63918 3.46061 1.25824 0.31589 

FSDPT 27.72437 7.63907 3.46060 1.25824 0.31589 

CPT 31.63335 7.90834 3.51482 1.26533 0.31633 

5 

Present 23.56145 6.39248 2.88674 1.04785 0.26288 

SSDPT 23.56351 6.39261 2.88676 1.04785 0.26288 

TSDPT 23.55914 6.39233 2.88671 1.04784 0.26288 

FSDPT 23.55569 6.39227 2.88670 1.04784 0.26288 

CPT 26.31895 6.57974 2.92433 1.05276 0.26319 
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Table 4 Critical buckling temperature ΔTcr of FGM sandwich square plates under uniform temperature rise 
versus volume fraction index k and tC / h (a / h = 5) 

tC / h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

Present 3.23720 3.07138 2.87207 2.68975 2.63325 2.93978 3.30959

SSDPT 3.23775 3.07197 2.87277 2.69065 2.63460 2.94205 3.31226

TSDPT 3.23652 3.07042 2.87074 2.68781 2.63018 2.93446 3.30340

FSDPT 3.23493 3.04858 2.83507 2.64222 2.57355 2.86226 3.23289

CPT 3.96470 3.66606 3.34559 3.06734 2.96200 3.32950 3.82441

0.2 

Present 3.23720 3.05543 2.83135 2.59388 2.39856 2.35252 2.42641

SSDPT 3.23775 3.05598 2.83194 2.59458 2.39953 2.35401 2.42827

TSDPT 3.23652 3.05461 2.83030 2.59241 2.39637 2.34898 2.42195

FSDPT 3.23493 3.03394 2.79675 2.55053 2.34734 2.28926 2.35538

CPT 3.96470 3.64978 3.30066 2.95538 2.68016 2.59922 2.68195

0.4 

Present 3.23720 3.05915 2.84285 2.60512 2.37406 2.19921 2.17624

SSDPT 3.23775 3.05956 2.84318 2.60545 2.37450 2.19992 2.17714

TSDPT 3.23652 3.05867 2.84246 2.60462 2.37320 2.19763 2.17417

FSDPT 3.23493 3.04171 2.81495 2.57038 2.33409 2.15296 2.12571

CPT 3.96470 3.66567 3.33354 2.99117 2.67295 2.43609 2.39804

0.5 

Present 3.23720 3.06980 2.86974 2.64965 2.42885 2.23972 2.17737

SSDPT 3.23775 3.07014 2.86992 2.64976 2.42900 2.24005 2.17784

TSDPT 3.23652 3.06952 2.86972 2.64970 2.42873 2.23910 2.17640

FSDPT 3.23493 3.05527 2.84659 2.62069 2.39542 2.20130 2.13606

CPT 3.96470 3.68764 3.38155 3.06366 2.75801 2.50252 2.41816

0.6 

Present 3.23720 3.08713 2.91139 2.71917 2.52309 2.34313 2.27452

SSDPT 3.23775 3.08741 2.91146 2.71909 2.52297 2.34310 2.27458

TSDPT 3.23652 3.08699 2.91168 2.71971 2.52367 2.34345 2.27461

FSDPT 3.23493 3.07586 2.89364 2.69680 2.49698 2.31286 2.24190

CPT 3.96470 3.71993 3.45164 3.17226 2.89771 2.65182 2.55878

0.8 

Present 3.23720 3.14445 3.04101 2.93052 2.81681 2.74134 2.65659

SSDPT 3.23775 3.14474 3.04107 2.93038 2.81650 2.74092 2.65609

TSDPT 3.23652 3.14431 3.04137 2.93131 2.81794 2.74272 2.65798

FSDPT 3.23493 3.13952 3.03406 2.92193 2.80661 2.72895 2.64315

CPT 3.96470 3.81800 3.66058 3.49712 3.33246 3.21552 3.10423

1 

Present 3.23720 3.23720 3.23720 3.23720 3.23720 3.23720 3.23720

SSDPT 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775

TSDPT 3.23652 3.23652 3.23652 3.23652 3.23652 3.23652 3.23652

FSDPT 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493

CPT 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470
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Table 5 Critical buckling temperature Tcr of FGM sandwich square plates under linear temperature rise 
versus volume fraction index k and tC / h (a / h = 5) 

tC / h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

Present 6.42441 6.09275 5.69414 5.32949 5.21651 5.82957 6.56918 

SSDPT 6.42550 6.09396 5.69554 5.33130 5.21920 5.83411 6.57458 

TSDPT 6.42305 6.09084 5.69148 5.32562 5.21036 5.81891 6.55680 

FSDPT 6.41986 6.04716 5.62014 5.23443 5.09711 5.67452 6.41578 

CPT 7.87940 7.28211 6.64118 6.08468 5.87400 6.60901 7.59882 

0.2 

Present 6.42441 6.06087 5.61271 5.13775 4.74712 4.65504 4.80264 

SSDPT 6.42550 6.06197 5.61388 5.13917 4.74907 4.65803 4.80632 

TSDPT 6.42305 6.05922 5.61059 5.13482 4.74275 4.64797 4.79372 

FSDPT 6.41986 6.01789 5.54350 5.05105 4.64468 4.52851 4.66058 

CPT 7.87940 7.24955 6.55131 5.86076 5.31032 5.14843 5.31369 

0.4 

Present 6.42441 6.06830 5.63571 5.16024 4.69812 4.34842 4.26735 

SSDPT 6.42550 6.06913 5.63636 5.16089 4.69900 4.34984 4.24818 

TSDPT 6.42305 6.06734 5.63491 5.15923 4.69640 4.34526 4.26325 

FSDPT 6.41986 6.03341 5.57990 5.09075 4.61818 4.25591 4.16712 

CPT 7.87940 7.28133 6.61708 5.93233 5.29588 4.82217 4.70737 

0.5 

Present 6.42441 6.08961 5.68948 5.24929 4.80770 4.42943 4.30474 

SSDPT 6.42550 6.09029 5.68986 5.24952 4.80800 4.43011 4.30569 

TSDPT 6.42305 6.08903 5.68943 5.24940 4.80746 4.42821 4.30281 

FSDPT 6.41986 6.06053 5.64319 5.19137 4.74084 4.35259 4.22211 

CPT 7.87940 7.32529 6.71310 6.07732 5.46601 4.95505 4.78633 

0.6 

Present 6.42441 6.12425 5.77278 5.38833 4.99619 4.63616 4.49905 

SSDPT 6.42550 6.12482 5.77291 5.38818 4.99595 4.63609 4.84881 

TSDPT 6.42305 6.12398 5.77335 5.38942 4.99734 4.63680 4.49922 

FSDPT 6.41986 6.10171 5.73728 5.34361 4.94396 4.57561 4.43382 

CPT 7.87940 7.38985 6.85328 6.29453 5.74542 5.25352 5.06756 

0.8 

Present 6.42441 6.23889 6.03202 5.81104 5.58362 5.35987 5.26317 

SSDPT 6.42550 6.23949 6.03215 5.81076 5.58301 5.35923 5.26229 

TSDPT 6.42305 6.23862 6.03273 5.81262 5.58589 5.36259 5.26598 

FSDPT 6.41986 6.22905 6.01812 5.79385 5.56322 5.33541 5.23630 

CPT 7.87940 7.58600 7.27115 6.94424 6.61492 6.29563 6.15846 

1 

Present 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 

SSDPT 6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 

TSDPT 6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 

FSDPT 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 

CPT 6.42363 6.12545 5.77544 5.39175 4.99944 4.63813 4.49981 
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Table 6 Critical buckling temperature Tcr of FGM sandwich square plates under non-linear temperature rise 
versus volume fraction index k and tC / h (a / h = 5 and γ = 5) 

tC / h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

Present 19.27322 20.57122 21.62347 22.42701 23.05643 23.75304 24.05661

SSDPT 19.27655 20.57531 21.62882 22.43468 23.06838 23.77163 24.07624

TSDPT 19.26915 20.56479 21.61337 22.41074 23.02926 23.70963 24.01127

FSDPT 19.25957 20.41729 21.34246 22.02700 22.52869 23.12129 23.49484

CPT 23.63820 24.58692 25.21986 25.60494 25.96247 26.92893 27.82720

0.2 

Present 19.27322 20.43016 21.34626 21.99533 22.37338 22.64929 22.85562

SSDPT 19.27655 20.43388 21.35077 22.00145 22.38259 22.66392 22.87344

TSDPT 19.26915 20.42463 21.33822 21.98279 22.35275 22.61489 22.81317

FSDPT 19.25957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958

CPT 23.63820 24.43703 24.91598 25.09061 25.02775 25.04991 25.28770

0.4 

Present 19.27322 20.24553 21.00745 21.54152 21.81937 21.87237 21.87534

SSDPT 19.27655 20.24830 21.00993 21.54429 21.82352 21.87961 21.88463

TSDPT 19.26915 20.24234 21.00447 21.53734 21.81141 21.85652 21.85429

FSDPT 19.25957 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153

CPT 23.63820 24.29255 24.66557 24.76464 24.59556 24.25535 24.13098

0.5 

Present 19.27322 20.13209 20.80394 21.28287 21.54783 21.60059 21.57856

SSDPT 19.27655 20.13435 20.80531 21.28380 21.54921 21.60389 21.58333

TSDPT 19.26915 20.13019 20.80375 21.28330 21.54679 21.59462 21.56887

FSDPT 19.25957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437

CPT 23.63820 24.21722 24.54686 24.64006 24.49836 24.16380 23.99263

0.6 

Present 19.27322 20.00176 20.57076 20.98623 21.23955 21.32555 21.31715

SSDPT 19.27655 20.00362 20.57125 20.98565 21.23856 21.32526 21.31771

TSDPT 19.26915 20.00087 20.57280 20.99045 21.24446 21.32848 21.31794

FSDPT 19.25957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808

CPT 23.63820 24.13520 24.42100 24.51562 24.42463 24.16529 24.01085

0.8 

Present 19.27322 19.68210 19.99784 20.23872 20.41383 20.52740 20.55953

SSDPT 19.27655 19.68400 19.99828 20.23774 20.41159 20.52420 20.55608

TSDPT 19.26915 19.68124 20.00022 20.24422 20.42213 20.53780 20.57050

FSDPT 19.25957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455

CPT 23.63820 23.93190 24.10594 24.18546 24.18431 24.11121 24.05679

1 

Present 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322

SSDPT 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655

TSDPT 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915

FSDPT 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957

CPT 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820
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Tables 4-6 show the critical buckling temperature difference (Tcr = 10–3ΔTcr) for FGM sandwich 
plates for the uniform, linear and nonlinear cases of temperature distribution through the thickness, 
respectively. The comparison between the present new hyperbolic displacement model and 
different higher- and first-order shear deformation theories and classical plate theory is established. 
As observed in Tables 4-6, there is a very good agreement between the present model (with four 
unknown functions) and other higher-order plate theories (with five unknown functions). Tables 
4-6 show also the influence of the layer thickness of the core tC (ceramic layer) on the thermal 
buckling behavior for the FGM sandwich plates. As can be seen from Tables 4 and 5, the thermal 
buckling temperatures decrease with the increase in volume fraction index k. Thus, the increase in 
thermal buckling temperature of an FGM sandwich plate could be attributed to the ceramic 
property. Indeed, this observation is also confirmed when a small volume fraction index is 
considered (k ≤ 2) for all values of tC. A small volume fraction index k indicates that the ceramic is 
the dominant constituent in FGM sandwich plates. However, Table 6 indicates that the thermal 
buckling temperatures increase with the increase in volume fraction index k when the plate is 
under non-linear temperature rise with γ = 5. It can be observed that the thermal buckling temperature 
decreases with the increasing thickness of the thickness of the core layer (tC) for all considered 
volume fraction index. 

Fig. 3 shows the effect of the volume fraction index k on the critical buckling temperature Tcr 
for different thickness of the core tC of FGM sandwich plates under uniform, linear and non-linear 
temperature change through-the-thickness using the present new hyperbolic displacement model. It 
is clear that the critical buckling temperature Tcr for the plates under a non-linear temperature 
change is higher than that for the plates under uniform temperature change. While Tcr for the plates 
under linear temperature change is intermediate to the two previous thermal loading cases. It is 
further observed that, for the plate without core (tC = 0), the critical buckling Tcr decreases rabidly 
to reach minimum values and then increases gradually as the volume fraction index k increases as 
shown in Fig. 3(a). However, for the FGM sandwich plates with a ceramic core, Tcr decreases 
smoothly as k increases (see Figs. 3(b), (c) and (d)). 
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Fig. 3 Critical buckling temperature difference Tcr versus the power-law index k for various 
types of FGM sandwich square plates with a / h = 10: (a) tC = 0, (b) tC = 0.4, (c) tC = 0.6, 
and (d) tC = 0.8. For non-linear temperature γ = 2 
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Fig. 3 Continuous 
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Fig. 4 Critical buckling temperature difference Tcr versus the side-to-thickness ratio a / h for 
various types of FGM sandwich square plates (k = 2): (a) tC = 0, (b) tC = 0.4, (c) tC = 0.8 
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The variation of critical temperatures Tcr of FGM sandwich square plates subjected to various 
thermal loading types is shown in Fig. 4 with respect to the side-to-thickness ratio a / h. It is seen 
that the critical temperature difference decreases monotonically as the side-to-thickness ratio a / h 
increases. 

Note that the critical temperatures Tcr of the FGM plate under uniform temperature rise is 
smaller than that of the plate under linear temperature rise and the latter is smaller than that of the 
plate under non-linear temperature rise. Also, it is noticed that Tcr increases as the nonlinearity 
parameter γ increases. 

Fig. 5 shows the effects of the aspect ratio b / a on the critical buckling temperature change Tcr 
of FGM sandwich plates under various thermal loading types. It is seen that, regardless of the 
sandwich plate types, the critical buckling Tcr decreases gradually with the increase of the plate 
aspect ratio b / a wherever the loading type is. It is also noticed from Fig. 5 that the Tcr increases 
with the increase of the non-linearity parameter γ. 
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Fig. 5 Critical buckling temperature difference Tcr versus the plate aspect ratio b / a for various 
types of FGM sandwich square plates (k = 1, a / h = 10): (a) tC = 0, (b) tC = 0.4, (c) tC = 0.8 
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Fig. 5 Continued 
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Fig. 6 Critical buckling temperature change Tcr of FGM sandwich square plates versus k and tC / 

h: (a) uniform temperature; (b) linear temperature; (c) non-linear temperature (γ = 5) 
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Fig. 6 Continued 

 
 
Fig. 6 shows the influence of layer thickness of the core tC on the thermal buckling behavior for 

the FG sandwich plates for the uniform, linear and nonlinear cases of temperature distribution 
through the thickness, respectively. As can be seen from Figs. 6(a) and (b) (uniform and linear 
temperature), the thermal buckling temperatures decrease with the increase in volume fraction 
index. A small volume fraction index k indicates that the ceramic is the dominant constituent in the 
FGM plate. In addition, it is observed that the thermal buckling temperatures increase for tC ≥ 0.4 
which means that the ceramic is also the dominant constituent in the FGM plate. Thus, the increase 
in thermal buckling temperature of an FGM sandwich plate could be attributed to the ceramic 
property. As expected, the thermal buckling temperature will be maximum for the pure-ceramic 
plate (tC / h = 1) in the cases of uniform and linear temperature distribution through the thickness of 
the plate. However, in case of nonlinear temperature distribution (Fig. 6(c)), the thermal buckling 
temperature will be minimum for the pure-ceramic plate and the thermal buckling temperatures 
increase with the increase in volume fraction index. 
 
 
5. Conclusions 

 
The thermal buckling behaviors of functionally graded sandwich plates are described and 

discussed in this paper using a new hyperbolic displacement model. The number of primary 
variables in this theory is even less than that of first- and higher-order shear deformation plate 
theories. The theory gives parabolic distribution of transverse shear strains, and satisfies the zero 
traction boundary conditions on the surfaces of the plate without using shear correction factors. 
The material properties of an FGM varies according to a simply power law along the thickness. 
The buckling analysis of FGM sandwich plates under different types of thermal loadings is 
presented. In conclusion, it can be said that the proposed new hyperbolic displacement model is 
accurate and simple in solving the thermal buckling behaviors of FGM sandwich plates. 
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