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Abstract.  The study of the tensile strength of composite materials is far more complex than analysis of the 
properties of elasticity and plasticity. Indeed, during mechanical loading, micro-cracks in the matrix, the 
fibers break, debonding of the interfaces are created. The failure process of composites is of great diversity 
and cannot be described if even we know: the strength criterion of each individual component, the state of 
stress and strain in the material, the propagation phenomena cracks in the structure and nature of the 
interface between the matrix and the reinforcement. This information is only partially known and the 
obtained by the analysis of a stress limit beyond which there is destruction of the material is almost 
impossible. To partially process the issue, a solution lies in a mesoscopic approach of seeking a law to locate 
the ultimate strength of the material for a plane stress state. Tests on rectangular plates in bending 
PEEK/APC2 and T300/914 three were made and this in order to validate our approach, the calculation has 
been implemented in a nonlinear finite element code (Castem 2000), in order to make comparison with the 
numerical results. The results show good agreement between numerical simulation and the two materials; 
however, it would be interesting to consider other phenomena in the criterion. 
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1. Introduction 

 
Often, the use of various criteria (TSAI-HILL, HASHIN, ...) existing in the literature, all 

depend on a number of parameters that are precisely ultimate strengths for elementary stresses, 
unlike the test, a law allows estimate the strength characteristics of the composite, and highlights 
some aspects of the failure mechanism taking into account the strength characteristics of various 
components of the material. Hachemane et al. (2006), Ladèveze et al. (2000), Rosen (1964), Chen 
et al. (2011), Scop and Argon (1964). 

The work presented in this article aims, the study of the behavior of composite materials, taking 
account of their damage during the solicitation and their fracture behavior under monotonic axial 
loading. A mesoscopic approach end of the continuum mechanics based on the theory of periodic 
homogenization Boutaous et al. (2006), Reese (2003) was adopted and coupled with damage, this 
damage model was proposed and presented by Allen (2001), Boutaous et al. (2006), Reese (2003): 
to take into account the degradation at the fiber matrix interface. 
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2. Reminder on modeling the elementary layer 
 
Damageable elastoplastic model of the elementary layer presented by Blassiau (2005), Blassiau 

et al. (2006), Blassiau et al. (2008) is based on models developed by Boutaous et al. (2006), 
Lemaitre (1985) in these models, the formulation of the evolution of damage is implicit since we 
have. 

),(=   wherefrom)(=),,(=),(=  dldYldordgYfWe  
The evolution of damage is formulated explicitly, since we have d = l(ε), the problem of 

singularity for “d = 1” no longer arises. Moreover this model written in deformation respects the 
symmetry matrices of rigidities associated with incremental forms of constitutive equations. 

The energy density of elastic deformation which is taken as thermodynamic potential is given 
by 
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The constraints are expressed in terms of deformation as follows 
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Taking into account the relationship of symmetry from the existence of a thermodynamic 

potential we must have 
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And the following definition C11, we note that 

22
2
12112112111111211211 )1( CvEvvECEvvC   

In this form, the stress value σ22 = C22(ε22 + v12ε11) apparatus clearly. 
The elastic strain energy can be written now Boutaous et al. (2006). 
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2.1 Damage to the elementary layer 
 
2.1.1 Model assumptions 
The model is developed at the meso level based on the characteristics of damage at the micro 

level, as it was observed that the damage ceremonial form of cracks located in the matrix and 
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arranged parallel to the fibers. More damage is assumed to occur only in transverse shear and 
tension. Indeed, in transverse compression cracks tend to close, and do not create further damage. 
Finally in the fiber direction, there is a fall of longitudinal modulus in compression due to 
localized buckling of the fibers. 

At the basic layer, the modules are affected by damage and two variables. The module is 
affected by a variable “ξ11” translating the loss of stiffness of the fibers in longitudinal 
compression and the brittle fracture in tension in the direction of fibers Boutaous et al. (2006). 

He then comes to the elastic moduli of the material 
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where the subscript “0” denotes the state of virgin material, and lack of experimental information 
on other modules they are not supposed to be damaged. 

From where 
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The modulus E22 and Poisson’s ratio v21 are also affected by the damage. However, d″ is the 
variable that is affecting E22 i.e. 
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d22  and d″ are thus linked by the relationship between C22 and E22 thereby according d22 to clarify d″ 
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Variables d″ and d22 are substantially identical. 
 
2.1.2 Damage to the matrix and fiber matrix interface 
The matrix damage by transverse tensile microcracking and degradation suffered by the 

fiber-matrix interface shear and transverse tension, and finally the nonlinear behavior of fibers in 
longitudinal compression, weak in tension in the direction of fibers, respectively, are modeled by 
internal variables D12, D22, δ12, δ22, ξ11. 

 
The matrix 
The matrix has a damage behavior both in transverse tensile shear. Two internal variables are 

defined. 
• D12 associated with the shear modulus G

m
12, 

• D22 associated with the module cross C
m
12. 

The energy density of elastic deformation of the matrix can be written 
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Thermodynamic forces associated with internal variables are calculated as follows 
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To study the type of damage, the amount representing the state of stress within the material that 
seems best suited, is a form of energy release rate G = GI +GII. There is also a coupling between 
D12 and D22. The area of damage cannot be characterized by variable changes Yeq =  

.
2212 DD bYY   

The criterion function “g” Defining the scope of no damage is then given by 

hresholdfunction t the:=),( ewitheYeYg eqeq   

Supplementary laws as part of standard models are written 
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And the evolution laws of damage of the matrix are given by 
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where “sup” reflects the irreversibility of the damage. 
 
The fiber-matrix interface 
The interface has a behavior 
• damageable elastic shear, 
• transverse tensile elastic brittle. 
Two new internal damage variables are introduced. 
• associated shear, 
• associated with the transverse traction 
The interface is a zone of very thin with a stiff spring type where everything happens as if there 

was a moving surface discontinuity |])).([|=( ufn


  
Normal and tangential stresses in the fiber direction are related to jumps of displacements between 
the two circles by a linear elastic law 
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k22 whether or k66 tend to infinity, the interface is perfect. 
with: kii the terms of the tangent stiffness. 

If damage is taken into account, the law is written 
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The elastic energy density of the interface is taken as damaged thermodynamic potential and in 
the form 
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Associated variables are defined by 
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As with the matrix, complementary laws are written 
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And the evolution laws are given by 

Heavyside offunction 
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2.1.3 Homogenization of the elementary layer 
The calculation of homogenization is carried out on modules E22 and G12. The method of 

asymptotic expansions for periodic media is used by Altuni ik et al. (2010), Phoenix and Beyerlein 
(2000), Rosen (1964). By designating d12 and d22 loss of rigidity of the layer it comes Van den 
Heuvel et al. (1998) 
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With vm: the volume fraction of matrix. 
By performing an expansion near the “0” damage of the layer are then given by 
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For a relatively simple model and consistent with that developed by Herakovitch et al. (2000), 
to take the damage of the layer as a sum of elemental damage due respectively to the matrix and 
the fiber-matrix interface. 

 
2.1.4 Model of damage 
In the mesoscale model, there are only three internal variables: two variables and damage, d12 

and d22 a variable “ξ11” reflecting the loss of stiffness of the fibers in compression. 
Damageable elastic law reads 
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3. Nonlinear strain energy 
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3.1 Nonlinear strain tensors 
 
Rupture of the elementary layer results in a condition of instability of the tangential behavior. 

For this, we must derive the elastic damageable law and the law and obtain incremental. The 
failure criterion is reached when the determinant of matrix incremental changes sign (becomes 
singular). 

It is possible to give a more physical approach, specifying that it when there’s instability 
pageantry up on the stress-strain curve, For the failure criterion, we must calculate the instability 
condition given by 
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We can write the model as follows 
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Associated incremental law is in the form 
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with 
ε

c
11 denotes the longitudinal strain at rupture compression, and γ being the loss of stiffness in 

longitudinal compression that is given by 
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The model integrates itself the different failure criteria. Interface with brittle behavior in 
tension transverse, it is natural to introduce an indicator of rupture as 

χi = 0  until there is no break, i.e., as Y ′i < Y ′r, 

if Y ′i ≥ Y ′r then χi = 1. 
Similarly to the rupture of the transverse matrix compression, if the criterion is verified Hashin 

matrix breaks, which leads to define “χμ”, indicator of the breakdown of the matrix, as follows 

χμ = 0 until there is no break, i.e., as long as μ < 1, 
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if μ ≥ 1 then χμ = 1. 
Finally, for the fiber breakage criterion selected is a different criterion of maximum 

deformation in tension and compression, either 

“χf = 0” as there is no break, i.e., as long as ε
c
11 < ε11 < ε

t
11, 

if ε11 ≥ ε
t
11 or ε11 ≥ ε

c
11 then χf = 1, where ε

t
11 and ε

c
11 denote the longitudinal strains at failure in 

tension and compression. 
However 
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The thermodynamic variables associated with internal variables are defined by 
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Variables and thresholds defining the areas of damage are not given by 
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• initial threshold of damage to the matrix, 
• initial threshold of damage to the interface, 
• strength of the matrix, 
• resistance of the interface transverse tensile, 
• resistance of the interface shear, 
• loss of stiffness in longitudinal compression, 
• coupling coefficient that quantifies the relative influence and material degradation 
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We put: F = (1- χi)H(1-z)H(1-z′) 

























121211
0
122222121212

11
0
12222212122222

1111111111

~)](~~[=

)](~~[)(=

)()(=

(9) whichfrom












FAb
b

FB
d

bBFHd

HH c

 

It is therefore obtained 
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with: Ktg the tangent matrix behavior. 
For the failure criterion must therefore calculate the condition of instability. 
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0=)( tgKdet   

Finally after calculation we get 
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4. Test plates T300 and Peek subject to a three-point bending 
 

Six plates in this paragraph will be presented. Three are made of carbon fiber and epoxy resin 
Yasmin et al. (2003, 2006), Yasmin and Daniel (2004), they are denoted T300. the other three 
plates are made Peek/APC2 and will be called Peek. For each of these three types of stacking 
materials are studied. These three stacking sequences differ by the position occupied by the folds 
in the bedding. All these stacks are symmetric in the thickness and consist of eight elementary 
folds. These six plates are subject to a three-point bending (Fig. 1). 

The geometric characteristics of each material and each empliment sequence are shown above 
Allel et al. (2012). 

 
 

Fig. 1 Plate 3-point bending 
 
1 – T300 

Stacking Thickness Width Length Distance between supports 

[0/90/+45/–45] 0.001 m 0.01 m 0.04 m 80 mm 

[90/0/+45/–45] 0.001 m 0.01 m 0.025 m 50 mm 

[90/+45/0/–45] 0.001 m 0.01 m 0.025 m 50 mm 

 
2 – Peek 

Stacking Thickness Width Length Distance between supports 

[0/90/+45/–45] 0.00108 m 0.01 m 0.04 m 80 mm 

[90/0/+45/–45] 0.00108 m 0.01 m 0.04 m 50 mm 

[90/+45/0/–45] 0.00108 m 0.01 m 0.04 m 50 mm 
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4.1 Analysis of results for each stack 
 

4.1.1 [0/90/+45/–45] in T300 
All phenomena developing in the plate element are initialized in the center and they spread 

gradually towards the ends. 
If only the damage without compression of the fibers is taken into account, the results are 

identical to those of elasticity. 
The analysis of the values of damage variables can note that the shear damage d12 is negligible, 

and it occurs mainly in the layer 45? The transverse tensile damage is also very low before the 
rupture of the matrix in the layer 90? However, the loss of stiffness appearing in the layer 0? and 
due to the nonlinearity of the fibers in compression is more important than both damage and is not 
negligible. The evolution of these three variables is presented in Fig. 2. 

 
4.1.2 [90/0/+45/–45]s in T300 
All phenomena occur in the first element in the center of the plate. 

This suggests that in this case, damages are not negligible. However, analysis of changes in the 
various degradations (Fig. 3) show that they are very low until he breaks the ceremonial 
fiber-matrix interfaces in the layer 90? The fiber breaks occur only around 220 N and always in the 

 
 

Fig. 2 T300 plate in 3-point bending; damages 
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Fig. 3 T300 plate in 3-point bending; damages 

 
 
layer 0? Experimentally, the breakdown takes place around 238 N. In this case, the calculation is 
well aware of reality as the final fracture of the plate is detected to 240 N when there are breaks in 
the matrix transverse compression in the layer 90?, which in this test is on outer portions of the 
plate. 

It seems that for this stack, the damage models are well aware of the actual behavior of the 
structure. 

 
4.1.3 [90/+45/0/–45]s in T300 
Note also that ceremonial fiber-matrix debonding in the layers 90? and 45? hence the results of 

damage d12 and d22 in Fig. 4. Indeed, the damage reaches the maximum value of “1” for relatively 
low loads. In this case the damage is predominant in the overall behavior of the plate. This plate 
behaves essentially elastically damageable. For this case, the calculations are realistic, however, 
the final failure is detected too late. 

 
4.1.4 [0/90/+45/–45]s Peek 
In this plate element, the most sought is located once again at full center. The damage model 

gives similar results to those obtained if only the behavior of fibers is modeled. These two 
behaviors are somewhat more flexible and above all close to experimental results. 
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Fig. 4 T300 plate in 3-point bending; damages 

 
 

It seems that for this stack and the behavior of this material is predominant fibers and damage 
is negligible. This is confirmed by the analysis of damage curves shown in Fig. 5, where one can 
note that both types of damage are almost identical and that they reach very low values. This break 
is given by the rupture of the fibers in the layers 0? which are on the external faces of the plate. 

It seems legitimate to say that this plate has an almost elastic nonlinear behavior that appears to 
be characteristic brittle layers 0? to being in outer skins. 

 
4.1.5 [90/0/+45/–45]s Peek 
In this plate, it begins at the center of the plate and spread to the extremities. For this type of 

stack, the full damage model gives similar behavior. However they differ when disruptions occur 
fiber-matrix interface in layers 90? behaviors obtained are too soft. In this case, the breaks are 
detected too soon as they appear in the calculation to 300 N (due to rupture of the matrix transverse 
compression in the layer 90?). 

In this case, the degradation is negligible as can be seen on the Fig. 6. The transverse damage 
seems most important. 

 
4.1.6 [90/+45/0/–45]s Peek 
Models taking into account the various degradations have similar behavior until it becomes  
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Fig. 5 Plate Peek in 3-point bending; damages 

 
 
apparent disruptions of fiber-matrix interface in the layer 90? 

The damage in transverse shear and tensile are comparable and not significant before they 
reach the maximum value as a result of breaks as can be noted in Fig. 7. 

It seems that this plate has an elastic damageable behavior and that the calculations made with 
the degradation models adequately reflect the actual behavior of the plate in bending. 

 
 
5. Comparison between the two materials 

 
In all cases tested for the same piles, the Peek is stronger than the T300 as their final failure 

occurs at high load levels. Hachemane et al. (2006). 
For all the stacks and the two materials, it was found that the results are virtually identical to 

those with the damage model alone. 
Regardless of the material or the stacking sequence, all phenomena that occur in these plates, 

are initialized at the center of the plate and then spread to the ends of the plate. 
For the stacking sequence [0/90/+45/–45]s, calculations simulating different models give 

similar results for both materials processed. Indeed, in both cases, it is the fibers that are 
predominant and essentially governing the behavior overall plate. 
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Fig. 6 Plate Peek in 3-point bending; damages 

 
 

For the stacking sequence [90/0/+45/–45]s was similar behavior for both materials although at 
higher charge levels for Peek. In this case, these are the models with damage that best reflect the 
actual behavior of these plates. In addition, the breaks that appear for the two materials are similar 
but different loads. 

For the stacking sequence [90/+45/0/–45]s, both materials exhibit the same behavior patterns 
and ruptures are similar in terms of quality. 

 
 
6. Comparison of results following the stacking sequence 

 
6.1 T300 
 
For all the stacks, the degradation occurring in the first place in the center of the plates and then 

progressing toward the ends of these plates. 
For the stack where the crease 0? is in the outer skin are the fibers that are dominant, while the 

laminate whose fold 0? is the innermost behavior is essentially a damageable. Finally, the plate 
having the fold in a second position where all behavior modeled degradations has a significant 
influence. 
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Fig. 7 Plate Peek in 3-point bending; damages 

 
 

The more resistant plate is the one with the stacking sequence with the 0? outside fold. 
 
6.2 PEEK 
 
The plate with the fold on the 0? outside has a behavior that is governed by the behavior of 

fibers. This is the stack with the more rigid behavior. its break is given by fiber breakage in layers 
0? 

For the stacking sequence with the fold 0? at the second position, behaviors obtained 
numerically are more flexible than in reality. The behavior of this plate is rather damageable. 

Finally, the stack where the fold 0? is inside has a behavior that takes into account all the 
phenomena of degradation modeled. 

Based on these observations, the position of the fold in a stack has an important influence on 
the behavior of the structure. 

Finally, in light of these results, the Peek is a stronger material than the T300 as it breaks for 
higher load levels. It is also a more rigid material because for a given load level gives lower 
distortion. 

The study carried out on plates T300 and Peek with different stacking sequences depending on 
the position of the fold 0? to the stratification, shows that the Peek is stronger than the T300. The 
numerical results are behaving fairly close to reality. It was found that depending on the position 
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of the fold in 0? the plates do not have the same behavior. 
Indeed, the laminates where the folds are 0? outer behaves essentially as the fibers resiliently 

i.e., non-linear, whereas the other stacks have an elastic behavior rather damageable. 
It therefore appears that the stacking sequence is a factor in optimizing essential calculating 

laminated composite structures. 

 
 
7. Conclusions 

 
For validation of plasticity models the results are very satisfactory, since it is observed that 

different simulated stacks reflect behavior very similar to experimental results. 
For the plate in the form of a specimen, the model that best accounts for the actual behavior is 

that which models all types of degradation coupled to the kinematic plasticity non-linear hardening. 
Two meshes have been studied for that structure and it was found that in uniaxial tension the mesh 
has practically no influence on behavior. It is therefore not penalizing the perform calculations on 
crude meshes. 

For plates formed by the superposition of folds at 0° and 90°, it was noted that the overall 
behavior is essentially dictated by the behavior of the fold at 0°. Moreover, the fact of the 
composite symmetrical in its thickness increases its resistance. 

The study performed on plates with T300 and Peek different stacking sequences depending on 
the position of the fold at 0° in the stratification, shows that the Peek is stronger than T300. 
Numerical results show behavior that is quite close to reality. It was found that the position of the 
fold at 0° plates do not have the same behavior. 

Indeed, the laminates where the folds at 0° external skins are essentially behave as fibers i.e., 
elasic and non-linear, whereas the other stacks have an elastic behavior rather damageable. 
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