
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 15, No. 1 (2013) 57-79 
DOI: http://dx.doi.org/10.12989/scs.2013.15.1.057                                                  57 

Copyright © 2013 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Dynamic stability analysis of laminated composite plates  
in thermal environments 

 

Chun-Sheng Chen1, Ting-Chiang Tsai2, Wei-Ren Chen3 and Ching-Long Wei1 

 
1 Department of Mechanical Engineering, Lunghwa University of Science and Technology, 

Guishan Shiang 33306, Taiwan 
2 Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan 

3 Department of Mechanical Engineering, Chinese Culture University, Taipei 11114, Taiwan 
 

(Received March 31, 2011, Revised April 29, 2013, Accepted June 04, 2013) 
 

Abstract.  This paper studies the dynamic instability of laminated composite plates under thermal and 
arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial 
differential equations of motion are established by a perturbation technique. Then, the Galerkin method is 
applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin’s 
method, the system equations of Mathieu-type are formulated and used to determine dynamic instability 
regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus 
ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal 
that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant 
influence on the thermal dynamic behavior of laminated plates. 
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1. Introduction 
 

Laminated composite plates have been used successfully in many engineering applications 
because they have better strength and modulus over traditional metal plates. During the operational 
life of typical engineering structures, elevated temperature acting throughout the laminated 
composite plates may be experienced. Due to this high temperature condition, thermolelastic 
properties of the composite plates will vary with the change of temperature and compressive 
stresses acting on the edges of the plates are induced. Meanwhile, a periodic in-plane load 
sometimes acting on a plate, may lead to the parametrically excited dynamic instability 
phenomenon. Thus, the study of dynamic stability behavior of laminated composite plates in 
thermal environments is of considerable importance in plate design engineering. Numerous 
references pertaining to the parametric resonance of plates can be found in the books by Bolotin 
(1964) and Evan-Ivanowski (1976). For the past years, the dynamic stability of laminate 
composite plates has been studied by many researchers using various approximate methods (Dey 
and Sinqha (2006), Chakrabarti (2008), Chen et al. (2009), Patel et al. (2009)). 

To efficiently use laminated composite plates in thermal environments, a good understanding of 
dynamic behavior for laminated composite plates under varying thermal conditions is needed. A 
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number of investigations dealing with thermal dynamic response of composite plate had been 
presented in the published literature. Makhecha et al. (2001) studied the realistic variation of 
displacements through the thickness for the dynamic response analysis of laminated plates. The 
influence of ply angle, aspect ratio, number of layers and thermal coefficient on the dynamic 
response of laminates was investigated. Shukla and Nath (2002) presented the dynamic buckling 
of laminated plates subjected to the time-dependent thermal-induced in-plane loading. The 
dynamic post-buckling deflection response was obtained and dynamic critical temperatures were 
estimated. The dynamic response of laminated plates exposed to thermomechanical loading and 
resting on an elastic foundation was analyzed by Shen et al. (2003). Analytical solutions of 
dynamic response for laminated plates under a transverse dynamic load and a uniform temperature 
rise were obtained. Effects of foundation stiffness, side-to-thickness ratio and temperature rise on 
the dynamic response were studied. Tylikowski (2003) dealt with the dynamics of laminated plates 
under uniform space and time-dependent temperature fields. The thermally induced instability and 
the dynamic thermal buckling of laminated plates were investigated theoretically. 

The dynamic thermoelastic response of a heated composite plate was investigated by Al-Huniti 
and Al-Nimr (2004). The plate was heated by a step-function heat source generated within the 
matrix. The spatial and time variation of the temperature were calculated and presented. Heidary 
and Eslami (2004) derived equations governing the dynamic response of a piezothermoelastic 
laminated plate based on the first-order shear deformation theory. The thermal loading and 
piezoelectric control analysis were solved using the time marching method. The displacements 
caused by temperature change are important in the precision sensing and control of distributed 
systems by piezoelectric materials. Fares et al. (2004) presented an optimal laminate dynamic 
response of cross-ply laminate plate under thermomechanical loadings. The optimization 
procedure aims to maximize the temperature, and to minimize the dynamic response subject to 
constraints on the thickness and control energy. The dynamic buckling of imperfect 
piezolaminated plates under suddenly applied thermal and mechanical loads was investigated by 
Shariyat (2009). Complex dynamic loading combinations of in-plane mechanical loads, heating 
and electrical actuations were considered. Moradi and Mansouri (2012) investigated the thermal 
buckling of composite laminated plates under a uniform temperature distribution based on the 
differential quadrature method. The influences of the aspect ratio, fiber orientation, modulus ratio, 
and restraint conditions on the critical temperature were studied. Thermal buckling load 
optimization of laminated plates with various intermediate line supports was studied by Topal 
(2012). The effects of the location of line supports, aspect ratios and boundary conditions on the 
critical thermal buckling load were investigated. 

To the best of our knowledge, there exists no literature concerning the dynamic stability of 
laminated composite plate subjected to an arbitrary dynamic load in the thermal environment. In 
the present study, the governing equations of laminated plates subjected to an arbitrary dynamic 
load and a thermal environment are established by using the perturbation technique. The 
temperature field is assumed to be a combination of uniform and linear temperature distribution 
along the plate thickness. The dynamic load is taken to be a combination of a periodic bending 
stress and axial stress in the example problems. The Galerkin method is applied to reduce the 
governing partial differential equations to ordinary differential equations. By using the Bolotin’s 
method, the Mathieu equations are formed and used to determine the regions of dynamic 
instability of laminated plates. The effects of load parameters, layer number, temperature rise and 
modulus ratio on the dynamic instability regions and dynamic instability index of laminated plates 
are investigated. 
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2. Theoretical formulations 
 
Following a similar technique by Chen (2007), the governing equations of motion of the 

initially stressed laminate composite plate in thermal condition are established using a perturbation 
technique. The governing equation can be expressed as 

sssiisisjij uFFu   ,,)(                          (1) 

where σij, σ̄is, ūs, F̄s and ΔFs are the initial stress, perturbing stress, displacement, perturbing body 
force and body force, respectively. 

In this paper, a first-order shear deformation plate theory is used to analyze the dynamic 
behavior of laminated composite plates. Both effects of rotary inertia and transverse shear 
deformation are taken into account. Thus, the incremental displacements are assumed to be of the 
forms. 
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Here ux, uy and w are displacements at the midplane in the x, y and z directions, respectively; φx 
and φy are rotation angles about y and x axes, respectively. The x and y axes of the coordinates are 
set to coincide with the two edges of the rectangular laminate plate. The constitutive relationship 
for a kth lamina accounting for the thermal effect is given by 
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In this study, we consider a rectangular laminated plate of uniform thickness h subjected to an 
arbitrary time-dependent initial stress. The arbitrary dynamic load is assumed to have the form 

   
),,,(     

cos2
cos

2

zyxji
h

tz
t

h

z

Dm
ij

Sm
ijD

ij
S
ij

m
ijn

ijij














             (4) 

which consists of the spatially uniform longitudinal, transverse, shear, bending and twisting stress. 
Here σS

ij and σD
ij denote the static and dynamic components of the periodic normal or shear 

stress; σS
i
m
j and σD

i
m
j are the static and dynamic components of the periodic pure bending or torsion 

stress; ϖ is the angular frequency of excitation. Substitute Eqs. (2)-(4) into Eq. (1), perform all 
necessary partial integrations and group terms together by the displacements variation to yield the 
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dynamic equations for the rectangular laminated plate as follows 
 
 
 

xx

yxx
T
xyxx

T
xyyx

T
yyyx

T
yy

xzyzxxxyxxxyyxyyyxyyyy

xyyxxxxyyxyyxx

xyx
T
xyyx

T
xyxx

T
xxxx

T
xx

xzxzyxxyyxxyxxxxxxxxyy

xyyxxxyyxyyxxx

uIf

MuNMuN

uNMuNMuNB

BBuuAuAuA

MuNMuN

uNMuNMuNB

BBuAuuAuA

1

,,,,,

,,,,,,26

,,66,16,,66,26,16

,,,,,

,,,,,,12

,,16,11,12,,16,11

)()(

)()(

   

































































      (5) 

 
 

xx

yxy
T
xyxy

T
xyyy

T
yyyy

T
yy

yzxzxyxyxyxyyyyyyyyyyy

xyyxxxyyxyyxxx

xyy
T
xyyy

T
xyxy

T
xxxy

T
xx

yzxzyyxyyyxyxyxxxyxxyy

xyyxxxyyxyyxxx

uhf

MuNMuN

uNMuNMuNB

BBuAuuAuA

MuNMuN

uNMuNMuNB

BBuAuuAuA



































































,,,,,

,,,,,,22

,,26,12,22,,26,12

,,,,,

,,,,,,26

,,66,16,26,,66,16

)()(

)()(

   

     (6) 

 
 

 
  wIfwNwNwNwN)(wA)(wA

wNwNwNwN)(wA)(wA   

z,y,y
T
yy,x

T
xy,yyy,xxyy,yx,x

,x,y
T
xy,y

T
xx,yxy,xxxy,yx,x

14445

4555








    (7) 

 
 

    xxyxzyyxzyxzzxxxzxxxzxx

yxx
T
yyxx

T
xyyx

T
yyyx

T
yy

xzyzxxxyxxxyyxyyyxyyyy

xyyxxxyyxyyxxx

xyx
T
xyyx

T
xyxx

T
xxxx

T
xx

xzxzyxxyyxxyxxxxxxxxyy

xyyxxxyyxyyxxx

ImMuNNMuNwA

uMuMMuM

uMMuMMuMD

DDuBuuBuB

MuMMyM

uMMuMMuMD

DDBuuBuB















3,,,,,55

,,
*

,,
*

,

,,
*

,,
*

,,22

,,66,16,26,,66,16

,,,,,

,,,,,,12

,,16,11,12,,16,11

)()(

)()(

   

























































       

(8) 

60



 
 
 
 
 
 

Dynamic stability analysis of laminated composite plates in thermal environments 

    yxyyzyyyzyyzzxyxzxyxzyy

yxy
T
xyxy

T
xyyy

T
yyyy

T
yy

yzxzxyxyxyxyyyyyyyyyyy

xyyxxxyyxxxyxx

xyy
T
xyyy

T
xyxy

T
xxxy

T
xx

yzxzyyxyyyxyxyxxxyxxyy

xyyxxxyyxyyxxx

ImMuNNMuNwA

uMuMMuM

uMMuMMuMD

DDuBuBuuB

MuMMyM

uMMuMMuMD

DDuBuuBuB















3,,,,,44

,,
*

,,
*

,

,,
*

,,
*

,,22

,,26,12,22,12,,26

,,,,,

,,,,,,26

,,66,16,26,,66,13

)()(

)()(

   

























































      

(9)

 

where 

 
 
 
 
  
















dzzzII

yxjidzzzTCMMN

zyxjidzzzMMN

jidzzzCDBA

jidzzzCDBA

ijij
T
ij

T
ij

T
ij

ijijijij

ijijijij

ijijijij

),1)((,

),,(     ),,1(,,

),,,(     ),,1(,,

)5,4,(     ),,1(,,

)6,2,1,(     ),,1(,,

2
31

2*

2*

2

2









                (10) 

Here Cij’s are the elastic constants of the stiffness matrix; ρ is the mass density; Aij, Bij and Dij 
are the laminate stiffness coefficients; κ is the shear correction factor; Nij, Mij and M *

ij are arbitrary 
initial stress resultants; N T

ij, M
T
ij and M*

jj are thermally stress resultants; fx, fy, fz, mx and my are the 
lateral loadings. All the integrations are carried out through the thickness of the plate from – h/2 to 
h/2. 
 
 

3. Numerical examples 
 

Because there are so many parameters will affect the dynamic behavior of the laminated plate 
under an arbitrary dynamic load, it would be difficult to present results for all cases. In the 
following, the dynamic stability of the simply supported laminated composite plate subjected to 
the periodic spatially uniform longitudinal normal stress and pure bending stress and under a 
combined uniform and linear temperature rise in the thickness direction will be investigated. With 
all other stresses being zero, the stress system Eq. (4) is reduced to 

hzσσ mnxx /2                             (11) 

with σn = σ
S
xx + σ

D
xx cosϖt = σ

S + σ
D cosϖt and σm = σS

x
m
x + σ

D
x
m
x cosϖt = σ

Sm + σ
Dm cosϖt. The stress 

components σS, σD, σSm and σDm are taken to be constants. Thus, the only nonzero loads are Nxx = 
hσn, Mxx = βh2σm / 6, M *

xx = h3σn / 12, where β = σm / σn is the bending ratio of bending stress to 
normal stress. 
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The temperature distribution in the laminated plate is assumed to be a function of variable z 
along the plate thickness. Here, temperature rise is taken to be linear through the plate thickness as 
follows 

go zTTT 2Δ   

where To is the uniform temperature rise and Tg is the temperature gradient. As a result of the 
temperature difference within the plate, the plate may experience thermal compressive stresses as 
well as thermal bending stresses. Thus, the nonzero thermal stress resultants are N T

ij = ‒ αijCijToh, 
M T

ij = ‒ αijCijTgh
2 / 6 and M T

i
*
j = ‒ αijCijToh

3 / 12 (i, j = x, y). 
The conditions for boundary sides along x = 0 and a, y = 0 and b of the rectangular laminated 

composite plate are all simply supported. To satisfy the simply supported boundary conditions, the 
following shape modes of displacement fields are used. 
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Assume that Δ(t) = [Umn, Vmn, Wmn, Ψxmn, Ψymn]
T =  Δ̄ f (t), in which Δ and Δ̄ denote the 

time-dependent and time-independent displacement vector, respectively. Then, substituting the 
assumed displacement fields into governing Eqs. (5)-(9) and applying Galerkin method lead to the 
equations of motion in matrix form. 
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where K, T, G and M are the respective elastic stiffness matrix, thermal effect matrix, geometric 
stiffness matrix and mass matrix. The system Eq. (13) is related to the eigenvalue problems of the 
thermal buckling, static buckling stability, free vibration and dynamic instability. 

To analyze the thermal buckling of laminated plates, the inertia term M and dynamic load term 
G are set to zero in Eq. (13). The eigenvalue equation now simplifies to 

  0   TK                               (14) 

which can be used to obtain the thermal buckling temperature. The condition for the existence of 
the non-trivial solution is that the determinant of the coefficients should vanish. The critical 
buckling temperature rise Tcr can be determined as the solution 

0*  TTK cr                               (15) 
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The eigenvalue equation for studying the free vibration of laminated plates without thermal 
effect can be obtained from Eq. (13) by setting T = G = 0 and f (t) = eiωt 

  0   2  MK                               (16) 

The roots of the determinant of the coefficients of Eq. (16) are the natural frequencies of the 
laminated plate. By letting T = 0 and f (t) = 1 in Eq. (13), the static buckling problem for laminated 
plates without thermal influence can be formed as 

  0   *  GPK cr                              (17) 

where Pcr is the static critical buckling load. 
The dynamic stability analysis of the laminated plate under non-zero periodic stress as given in 

Eq. (11) is presented next. The nonzero stress resultant Nxx can be obtained by integrating Eq. (11) 
with respect to variable z as 
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where αS = hσ S
xx / Pcr and αD = hσ D

xx / Pcr are the static and dynamic load parameter, respectively. Pcr 
is the buckling load of the plate subjected to uniaxial in-plane load. Then, substituting Eq. (18) into 
Eq. (13) gives 
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Mathieu Eq. (19) represents the dynamic stability problem of a parametrically excited plate 
subjected to a periodic in-plane load. To determine the regions of dynamic instability, Bolotin’s 
method (1964) is used. The boundaries of the dynamic instability regions can be constructed by 
the periodic solutions with period 2T and T respectively in Fourier series as 
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where ak and bk are arbitrary time invariant vectors. Substituting Eqs. (20) and (21) into Eq. (19) 
and separating the sin(kϖt / 2) and cos(kϖt / 2) parts, two sets of linear algebraic equations in ak 
and bk are obtained for each solution. Then, the boundaries between stable and unstable regions 
could be determined from the condition that the set of equations has nontrivial solutions. The 
determinant equation of infinite order for the dynamic stability boundaries with period 2T is given 
as 
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For the period T the determinant equation of infinite dimension are 
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02 








MGPαKGPα

GPαGPαK

crScrD

crDcrS

                    (24) 

However, it is impossible to solve the determinant equations of infinite order to obtain the 
stability boundaries. To look for the stability boundaries, different orders of approximation can be 
used to obtain results which are sufficiently close approximations of the infinite determinant Eqs. 
(22)-(24). The boundaries of primary instability region with period 2T are usually much larger than 
those of secondary instability region with period T, and are therefore of greater practical 
importance. As the first-order approximation (a1 and b1) of the primary instability region with 
period 2T is capable of obtaining a sufficiently close approximation of the infinite eigenvalue 
problem (Chen and Yang (1990)), only the first-order solution of primary instability region will be 
presented in this study, which is given by 

02
4
1

2
1  MGPαGPαK crDcrS                        (25) 

 
 
4. Results and discussions 

 
To check the accuracy of the present study, the critical temperatures, vibration and dynamic 

excitation frequencies of different laminate plates of the present model and those by other 
investigators are shown in Tables 1-3. It can be observed that the present results agree well with 
those obtained by Matsunaga (2005), Liu and Huang (1996) and Wang and Dawe (2002). 

 
 
Table 1 Comparison of minimum critical temperatures of three-layer cross-ply laminated composite plate 

a/h Matsunaga (2005) Present 

20/10 0.3334 0.3438 

20/6 0.2465 0.2554 

20/5 0.2184 0.2216 

20/4 0.1763 0.1802 

20/3 0.1294 0.1299 

20/2 0.0746 0.0731 

20/1 0.0230 0.0219 
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Table 2 Comparison of vibration frequencies of a [0/90]s square plate in thermal environment 

To 
α1 / α2 

-0.05 0.1 0.2 0.3 

-50 
Liu (1996) 15.149 15.247 15.320 15.394 

Present 15.165 15.277 15.351 15.425 

0 
Liu (1996) 15.150 15.150 15.150 15.150 

Present 15.179 15.179 15.179 15.179 

50 
Liu (1996) 15.164 15.052 14.978 14.902 

Present 15.193 15.081 15.006 14.930 
 
Table 3 Excitation frequencies for a simply supported symmetrically four-layer cross-ply laminate plate with 
various static and dynamic loads 

αS αD 
Wang (2002) Present 

ωU ωL ωU ωL 

0.0 0.0 144.57 144.57 144.36 144.36 

0.0 0.3 155.03 133.29 155.64 133.79 

0.0 0.6 164.83 120.95 165.12 121.45 

0.0 0.9 174.08 107.21 174.43 107.63 

0.0 1.2 182.87 91.43 183.21 91.86 

0.0 1.5 191.25 72.28 191.75 72.62 

0.2 0.06 131.71 126.86 132.12 127.26 

0.4 0.12 117.45 106.24 117.96 106.82 

0.6 0.18 101.20 80.49 101.84 81.10 

0.8 0.24 81.78 40.89 82.31 41.32 

 
 

The dynamic instability behaviors of the initially-stressed cross-ply laminate plates in thermal 
environmental condition will be investigated next, based on the procedure described in the 
previous section. The effects of various variables on dynamic instability will also be given and 
discussed. The non-dimensional coefficients of excitation frequency, 2

22 / Ehb  , the 
width of the instability region, ΔΩ = ΩU ‒ Ω

L and the dynamic instability index, ΩDI = ΔΩ / (ωnf 
Kcr) are defined and used throughout the dynamic instability studies. Here ΩU and ΩL are the 
respective upper and lower boundary excitation frequency; 2

22 / Ehbnf   and Kcr = (Nxx)cr 

b2 / E2h
4 are the dimensionless fundamental natural frequency and critical buckling load. The 

dynamic instability index ΩDI represents a relationship among the instability region, fundamental 
natural frequency and static critical buckling load, which is used as an instability measure of the 
laminate plates under thermal condition. 

The effects of static and dynamic load parameter on the excitation frequency, instability region 
and dynamic instability index of laminated plates with various layer numbers in uniform 
temperature condition are presented in Tables 4-6 and Figs. 1-2. The static load parameter varies 
from 0 to 0.8 and the ratio of αD / αS is kept as 0.3. It can be seen that the increasing compressive  
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Table 4 Effect of layer number on the dynamic instability with different compressive static load parameters 
(a/b = 1, a/h = 10, E1 / E2 = 40, To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

N 
αS 

0 0.2 0.4 0.6 0.8 

2 

ΩU 15.0818 13.7402 12.2525 10.5573 8.5317 

ΩL 15.0818 13.2342 11.0829 8.3973 4.2661 

ΔΩ 0 0.5059 1.1697 2.1600 4.2655 

ΩDI 0 1.1645 2.6922 4.9716 9.8178 

4 

ΩU 21.4231 19.5174 17.4043 14.9963 12.1189 

ΩL 21.4231 18.7988 15.7428 11.9280 6.0597 

ΔΩ 0 0.7187 1.6615 3.0682 6.0592 

ΩDI 0 0.5771 1.3343 2.4640 4.8658 

6 

ΩU 22.2245 20.2475 18.0553 15.5572 12.5722 

ΩL 22.2245 19.5020 16.3317 12.3742 6.2864 

ΔΩ 0 0.7456 1.7236 3.1830 6.2858 

ΩDI 0 0.5363 1.2398 2.2895 4.5213 

8 

ΩU 22.4877 20.4873 18.2691 15.7415 12.7211 

ΩL 22.4877 19.7329 16.5251 12.5208 6.3609 

ΔΩ 0 0.7544 1.7440 3.2207 6.3602 

ΩDI 0 0.5238 1.2109 2.2362 4.4161 

 
Table 5 Effect of layer number on the dynamic instability with different tensile static load parameters (a/b = 
1, a/h = 10, E1 / E2 = 40, To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

N 
αS 

0 -0.2 -0.4 -0.6 -0.8 

2 

ΩU 15.0818 16.7265 18.2233 19.6062 20.8978 

ΩL 15.0818 16.3134 17.4584 18.5327 19.5481 

ΔΩ 0 0.4131 0.7650 1.0735 1.3497 

ΩDI 0 0.9507 1.7607 2.4708 3.1065 

4 

ΩU 21.4231 23.7594 25.8856 27.8500 29.6847 

ΩL 21.4231 23.1727 24.7990 26.3252 27.7675 

ΔΩ 0 0.5867 1.0866 1.5249 1.9172 

ΩDI 0 0.4712 0.8726 1.2246 1.5396 

6 

ΩU 22.2245 24.6482 26.8539 28.8918 30.7951 

ΩL 22.2245 24.0395 25.7267 27.3099 28.8062 

ΔΩ 0 0.6087 1.1272 1.5819 1.9889 

ΩDI 0 0.4378 0.8108 1.1378 1.4306 

8 

ΩU 22.4877 24.9400 27.1719 29.2339 31.1597 

ΩL 22.4877 24.3241 26.0313 27.6332 29.1473 

ΔΩ 0 0.6159 1.1406 1.6006 2.0125 

ΩDI 0 0.4276 0.7919 1.1114 1.3973 
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Table 6 Effect of layer number on the dynamic instability with different dynamic load parameters (a/b = 1, 
a/h = 10, E1 / E2 = 40, To / Tcr = 0.5, αD / αS = 0, β = 0) 

N 
αD 

0 -0.2 -0.4 -0.6 -0.8 

2 

ΩU 15.0818 16.5212 17.8449 19.0770 20.2342 

ΩL 15.0818 13.4896 11.6823 9.5386 6.7450 

ΔΩ 0 3.0317 6.1626 9.5384 13.4893 

ΩDI 0 6.9778 14.1842 21.9541 31.0477 

4 

ΩU 21.4231 23.4679 25.3482 27.0983 28.7421 

ΩL 21.4231 19.1615 16.5943 13.5493 9.5809 

ΔΩ 0 4.3064 8.7538 13.5490 19.1612 

ΩDI 0 3.4583 7.0298 10.8806 15.3875 

6 

ΩU 22.2245 24.3457 26.2964 28.1120 29.8173 

ΩL 22.2245 19.8782 17.2151 14.0561 9.9393 

ΔΩ 0 4.4675 9.0813 14.0559 19.8780 

ΩDI 0 3.2134 6.5320 10.1101 14.2978 

8 

ΩU 22.4877 24.6340 26.6077 28.4448 30.1703 

ΩL 22.4877 20.1136 17.4189 14.2226 10.0570 

ΔΩ 0 4.5204 9.1888 14.2223 20.1133 

ΩDI 0 3.1386 6.3800 9.8749 13.9652 

 
 

Fig. 1 Effect of static load parameters on instability region (a/b = 1, a/h = 10, 
To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

 

67



 
 
 
 
 
 

Chun-Sheng Chen, Ting-Chiang Tsai, Wei-Ren Chen and Ching-Long Wei 

Fig. 2 Effect of dynamic load parameters on dynamic instability index (a/b = 1, 
a/h = 10, To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

 
 

static load parameters (αS > 0) decreases the excitation frequency but the tensile load (αS < 0) has 
the reverse trend. Furthermore, the compressive static load parameters produce a greater influence 
on the instability region and dynamic instability index than the tensile ones. As the dynamic load 
parameter increases, the upper excitation frequency increases, but lower excitation frequency 
decreases. The width of the unstable zone ΔΩ increases with the increasing static and dynamic 
load, and the region is becoming much wider at the higher dynamic load parameter. The dynamic 
instability index ΩDI is increased with the increase in static and dynamic load parameter. However, 
the dynamic load parameter has more apparent influence on dynamic instability index than the 
static load parameter. As shown in Figs. 1-2, the increasing layer number increases the width of 
the instability region and decreases the dynamic instability index. This is due to the fact that the 
increase in number of layer will increase the natural frequency and buckling load, which result in a 
decrease of dynamic instability index. Thus, the dynamic instability of laminate plates is 
significantly affected by the dynamic load parameter and layer number. 

The effects of static and dynamic load parameters on the excitation frequency ratio Ω / ωnf are 
given in Figs. 3 and 4, respectively. As can be seen, the primary instability region occurs in the 
vicinity of Ω equal to 2ωnf, namely Ω / ωnf = 2. The increasing static compressive load parameter 
decreases the upper and lower boundary of frequency ratio Ω / ωnf, but the static tensile load 
parameter has a reverse effect. Meanwhile, the distance between the two boundaries becomes 
wider as the static load parameter increases. With the increase in dynamic load parameter, the 
upper excitation frequency ratio increases and the lower excitation frequency ratio decreases. From 
the comparison between the results in Figs. 3 and 4, the effect of dynamic load parameter on the 
excitation frequency ratio is more significant than that of static load parameter. Same behavior can 
also be observed for the laminated plates with different values of layer number, thermal 
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temperature and materials property. With variation in material, geometric size and thermal 
condition, both the natural frequency and exciation frequency will certainly change. However, the 
variation of the excitatation frequency ratio Ω / ωnf against the respective static and dynamic load 
factor remains unchanged as shown in Figs. 3 and 4, while the material, geometric size or thermal 
condition is varied. 
 
 

Fig. 3 Effect of static load parameters on Ω / ωnf (a/b = 1, a/h = 10, αD / αS = 0.3, β = 0) 

Fig. 4 Effect of dynamic load parameters on Ω /ωnf (a/b = 1, a/h = 10, αS = 0.1, β = 0) 
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Table 7 Effect of compressive static load parameters on the dynamic instability under various temperature 
rise (a/b = 1, a/h = 10, E1 / E2 = 40, N = 2, αD / αS = 0.3, β = 0) 

To / Tcr 
αS 

0 0.2 0.4 0.6 0.8 

0 

ΩU 21.3287 19.4314 17.3275 14.9301 12.0653 

ΩL 21.3287 18.7158 15.6733 11.8753 6.0327 

ΔΩ 0 0.7155 1.6542 3.0548 6.0326 

ΩDI 0 0.5823 1.3461 2.4859 4.9092 

0.25 

ΩU 18.4712 16.8281 15.0061 12.9299 10.4490 

ΩL 18.4712 16.2085 13.5736 10.2845 5.2248 

ΔΩ 0 0.6196 1.4325 2.6455 5.2242 

ΩDI 0 0.7763 1.7948 3.3145 6.5453 

0.5 

ΩU 15.0818 13.7402 12.2525 10.5573 8.5317 

ΩL 15.0818 13.2342 11.0829 8.3973 4.2661 

ΔΩ 0 0.5059 1.1697 2.1600 4.2655 

ΩDI 0 1.1645 2.6922 4.9716 9.8178 

0.75 

ΩU 10.6646 9.7159 8.6640 7.4653 6.0330 

ΩL 10.6646 9.3582 7.8369 5.9379 3.0168 

ΔΩ 0 0.3578 0.8271 1.5273 3.0161 

ΩDI 0 2.3289 5.3842 9.9428 19.6345 

 
Table 8 Effect of tensile static load parameters on the dynamic instability under various temperature rise (a/b 
= 1, a/h = 10, αD / αS = 0.3, β = 0) 

To / Tcr 
αS 

0 -0.2 -0.4 -0.6 -0.8 

0 

ΩU 21.3287 23.6546 25.7715 27.7273 29.5539 

ΩL 21.3287 23.0705 24.6897 26.2091 27.6451 

ΔΩ 0 0.5842 1.0818 1.5182 1.9088 

ΩDI 0 0.4754 0.8803 1.2354 1.5533 

0.25 

ΩU 18.4712 20.4856 22.3188 24.0125 25.5944 

ΩL 18.4712 19.9797 21.3820 22.6978 23.9414 

ΔΩ 0 0.5059 0.9369 1.3148 1.6530 

ΩDI 0 0.6338 1.1738 1.6472 2.0710 

0.5 

ΩU 15.0818 16.7265 18.2233 19.6062 20.8978 

ΩL 15.0818 16.3134 17.4584 18.5327 19.5481 

ΔΩ 0 0.4131 0.7650 1.0735 1.3497 

ΩDI 0 0.9507 1.7607 2.4708 3.1065 

0.75 

ΩU 10.6646 11.8275 12.8860 13.8639 14.7772 

ΩL 10.6646 11.5355 12.3451 13.1048 13.8228 

ΔΩ 0 0.2921 0.5409 0.7591 0.9544 

ΩDI 0 1.9014 3.5212 4.9415 6.2129 
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Table 9 Effect of dynamic load parameters on the dynamic instability under various temperature rise (a/b = 1, 
a/h = 10, αD / αS = 0.3, β = 0) 

To / Tcr 
αD 

0 0.4 0.8 1.2 1.6 

0 

ΩU 21.3287 23.3644 25.2364 26.9789 28.6154 

ΩL 21.3287 19.0770 16.5211 13.4895 9.5385 

ΔΩ 0 4.2874 8.7153 13.4894 19.0769 

ΩDI 0 3.4890 7.0923 10.9773 15.5242 

0.25 

ΩU 18.4712 20.2342 21.8554 23.3644 24.7817 

ΩL 18.4712 16.5212 14.3078 11.6823 8.2608 

ΔΩ 0 3.7130 7.5476 11.6821 16.5209 

ΩDI 0 4.6520 9.4563 14.6363 20.6988 

0.5 

ΩU 15.0818 16.5212 17.8449 19.0770 20.2342 

ΩL 15.0818 13.4896 11.6823 9.5386 6.7450 

ΔΩ 0 3.0317 6.1626 9.5384 13.4893 

ΩDI 0 6.9778 14.1842 21.9541 31.0477 

0.75 

ΩU 10.6646 11.6824 12.6184 13.4897 14.3079 

ΩL 10.6646 9.5387 8.2608 6.7450 4.7696 

ΔΩ 0 2.1437 4.3576 6.7447 9.5383 

ΩDI 0 13.9553 28.3676 43.9069 62.0934 

 
 

Fig. 5 Effect of static load parameters on instability region under uniform temperature rise 
(a/b = 1, a/h = 10, αD / αS = 0.3, β = 0) 
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Fig. 6 Effect of static load parameters on dynamic instability index under uniform temperature 
rise (a/b = 1, a/h = 10, αD / αS = 0.3, β = 0) 

 
 

Tables 7-9 present the effect of static and dynamic load parameter on the excitation frequency, 
instability region and dynamic instability index for laminated plates with different uniform 
temperature rise. As expected, the increase of static and dynamic load parameter always increases 
the dynamic instability index and instability region of laminated plates regardless of the 
temperature rise. However, the increasing uniform temperature rise decreases the excitation 
frequency of the instability region, but increases the dynamic instability index. Moreover, higher 
temperature rise has a more apparent influence on the dynamic instability than the dynamic load 
parameter. Hence, the laminated plate becomes more dynamically unstable when it is subjected to 
a higher temperature rise. 

Figs. 5-6 show the effect of static loading type on the instability region and dynamic instability 
index of laminated plates with various uniform temperature rise. As can be observed, the static 
load parameter ǀαSǀ always increases the instability region and dynamic instability index. However, 
the increase in temperature rise will increase the dynamic instability index and shift the instability 
region to lower excitation frequency. Therefore, the higher the temperature rise and compressive 
static load is, more dynamically unstable the laminated plate is. 

Tables 10-12 show the dynamic stability of laminated plates with different modulus ratios. The 
excitation frequency and instability region are increased and dynamic instability index decreased 
when the modulus ratio is increased. The laminated plate is becoming more dynamically unstable 
as the modulus ratio decreases. The effects of the different static load types on the instability 
region and dynamic instability index for laminated plates with various modulus ratios are given in 
Figs. 7 and 8. It can be found that the instability region and dynamic instability index are enlarged 
significantly with the increasing compressive static load. Thus, the laminated plate with lower 
modulus ratio under compressive static load is more dynamically unstable than that with higher 
modulus ratio under tensile one. 
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Table 10 Effect of modulus ratio on the dynamic instability with different compressive static load 
parameters (a/b = 1, a/h = 10, To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

E1 / E2 
αD 

0 0.2 0.4 0.6 0.8 

5 

ΩU 10.0719 9.1760 8.1825 7.0504 5.6975 

ΩL 10.0719 8.8381 7.4013 5.6078 2.8487 

ΔΩ 0 0.3379 0.7812 1.4425 2.8488 

ΩDI 0 2.6111 6.0365 11.1475 22.0146 

10 

ΩU 11.0511 10.0681 8.9780 7.7358 6.2515 

ΩL 11.0511 9.6973 8.1209 6.1530 3.1258 

ΔΩ 0 0.3707 0.8571 1.5828 3.1257 

ΩDI 0 2.1688 5.0141 9.2595 18.2859 

20 

ΩU 12.6239 11.5009 10.2557 8.8368 7.1413 

ΩL 12.6239 11.0774 9.2767 7.0288 3.5709 

ΔΩ 0 0.4235 0.9790 1.8080 3.5704 

ΩDI 0 1.6621 3.8426 7.0961 14.0132 

40 

ΩU 22.4877 20.4873 18.2691 15.7415 12.7211 

ΩL 22.4877 19.7329 16.5251 12.5208 6.3609 

ΔΩ 0 0.7544 1.7440 3.2207 6.3602 

ΩDI 0 0.5238 1.2109 2.2362 4.4161 

 
Table 11 Effect of layer number on the dynamic instability with different tensile static load parameters (a/b 
= 1, a/h = 10, αD / αS = 0.3, β = 0) 

E1 / E2 
αS 

0 0.2 0.4 0.6 0.8 

5 

ΩU 10.0719 11.1703 12.1700 13.0935 13.9561 

ΩL 10.0719 10.8945 11.6591 12.3766 13.0547 

ΔΩ 0 0.2759 0.5109 0.7169 0.9014 

ΩDI 0 2.1317 3.9478 5.5401 6.9655 

10 

ΩU 11.0511 12.2563 13.3531 14.3665 15.3129 

ΩL 11.0511 11.9536 12.7926 13.5799 14.3239 

ΔΩ 0 0.3027 0.5605 0.7866 0.9890 

ΩDI 0 1.7707 3.2792 4.6018 5.7858 

20 

ΩU 12.6239 14.0005 15.2534 16.4110 17.4921 

ΩL 12.6239 13.6548 14.6131 15.5124 16.3623 

ΔΩ 0 0.3457 0.6403 0.8985 1.1297 

ΩDI 0 1.3570 2.5130 3.5267 4.4340 

40 

ΩU 22.4877 24.9400 27.1719 29.2339 31.1597 

ΩL 22.4877 24.3241 26.0313 27.6332 29.1473 

ΔΩ  0.6159 1.1406 1.6006 2.0125 

ΩDI  0.4276 0.7919 1.1114 1.3973 
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Table 12 Effect of layer number on the dynamic instability with different dynamic load parameters (a/b = 1, 
a/h = 10, αS = 0, β = 0) 

E1 / E2 
αD 

0 0.4 0.8 1.2 1.6 

5 

ΩU 10.0719 11.0333 11.9173 12.7401 13.5129 

ΩL 10.0719 9.0086 7.8017 6.3700 4.5043 

ΔΩ 0 2.0246 4.1156 6.3701 9.0086 

ΩDI 0 15.6458 31.8040 49.2258 69.6158 

10 

ΩU 11.0511 12.1059 13.0759 13.9787 14.8266 

ΩL 11.0511 9.8844 8.5602 6.9894 4.9423 

ΔΩ 0 2.2215 4.5157 6.9893 9.8844 

ΩDI 0 12.9960 26.4176 40.8889 57.8255 

20 

ΩU 12.6239 13.8287 14.9367 15.9680 16.9366 

ΩL 12.6239 11.2911 9.7784 7.9841 5.6457 

ΔΩ 0 2.5376 5.1583 7.9839 11.2909 

ΩDI 0 9.9597 20.2455 31.3356 44.3152 

40 

ΩU 22.4877 24.6340 26.6077 28.4448 30.1703 

ΩL 22.4877 20.1136 17.4189 14.2226 10.0570 

ΔΩ 0 4.5204 9.1888 14.2223 20.1133 

ΩDI 0 3.1386 6.3800 9.8749 13.9652 

 
 

Fig. 7 Effect of static load parameters on instability region under various modulus ratio 
(a/b = 1, a/h = 10, αD / αS = 0.3, β = 0) 
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Fig. 8 Effect of static load parameters on dynamic instability index under various modulus 
ratio (a/b = 1, a/h = 10, To / Tcr = 0.5, αD / αS = 0.3, β = 0) 

 
Table 13 Effect of gradient temperature on the dynamic instability ΩDI with different static load parameters 
(a/b = 1, a/h = 10, αD / αS = 0.3, n = 2, E1 / E2 = 10) 

To / Tcr Tg / To 
αS 

0 0.2 0.4 0.6 0.8 
0 0 0 1.0845 2.5072 4.6299 9.1434 

0.25 

0 0 1.4459 3.3428 6.1731 12.1909 
10 0 1.4463 3.3439 6.1763 12.2063 

20 0 1.4474 3.3473 6.1860 12.2530 

40 0 1.4518 3.3611 6.2250 12.4462 

0.5 

0 0 2.1688 5.0141 9.2595 18.2859 

10 0 2.1721 5.0243 9.2884 18.4262 

20 0 2.1821 5.0553 9.3769 18.8713 

40 0 2.2235 5.1856 9.7591 21.1629 

0.75 

0 0 4.3375 10.0277 18.5179 36.5684 
10 0 4.3673 10.1205 18.7826 37.8948 

20 0 4.4609 10.4157 19.6529 43.3141 

40 0 4.9081 11.9308 23.0649 65.357 

 
 

The influence of static and dynamic load parameters on the dynamic instability index of 
laminated plates under linear temperature gradient rise is presented in Tables 13 and 14. The effect 
of linear temperature gradient rise Tg on the dynamic stability is less apparent than uniform 
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Table 14 Effect of gradient temperature on the dynamic instability ΩDI with different dynamic load 
parameters (a/b = 1, a/h = 10, αS = 0, n = 2, E1 / E2 = 10) 

To / Tcr Tg / To 
αS 

0 0.4 0.8 1.2 1.6 

0 0 0 6.4982 13.2093 20.4452 28.9138 

0.25 

0 0 8.6641 17.6120 27.2597 38.5510 
10 0 8.6659 17.6159 27.2666 38.5640 

20 0 8.6713 17.6276 27.2872 38.6031 

40 0 8.6929 17.6745 27.3706 38.7611 

0.5 

0 0 12.9960 26.4176 40.8889 57.8255 

10 0 13.0121 26.4526 40.9510 57.9428 

20 0 13.0608 26.5586 41.1393 58.3011 

40 0 13.2615 26.9969 41.9257 59.8427 

0.75 

0 0 25.9907 52.8325 81.7734 115.6446 
10 0 26.1365 53.1498 82.3374 116.7167 

20 0 26.5900 54.1404 84.1175 120.2256 

40 0 28.6861 58.8167 93.0203 144.4015 

 
 
temperature rise To. Hence, the lower temperature gradient and smaller load parameter has a minor 
influence on the dynamic instability of the laminated plate. The effects of static load type and 
linear temperature gradient rise on the dynamic instability index of laminate plates under various 
dynamic loads are presented in Table 15. The tensile static load reduces the effect of the 
temperature gradient and dynamic load on the dynamic stability but the compressive static load 
has an opposite influence on the dynamic instability index. Meanwhile, the increasing temperature 
gradient causes a greater change in the dynamic instability index for the laminated plate under the 
compressive static load. Tables 16 and 17 give the effect of the bending stress coefficient β on the 
dynamic instability. The dynamic instability index increases with the increases in bending stress 
ratio, especially for the laminated plate under the compressive load and a higher gradient 
temperature. The laminated plate is more dynamically unstable when it is subjected to the 
compressive load, higher bending stress and temperature gradient. 

 
 
Table 15 Effect of static load type and gradient temperature on the dynamic instability ΩDI with different 
dynamic load parameters (a/b = 1, a/h = 10, n = 2, E1 / E2 = 10, To / Tcr = 0.75) 

αS Tg / To 
αS 

0 0.2 0.4 0.6 0.8 1.0 

-0.4 

0 0 10.9345 21.9112 32.9745 44.1727 55.5611 

10 0 10.9774 21.9979 33.1068 44.3533 55.7943 
20 0 11.1095 22.2648 33.5139 44.9098 56.5135 

40 0 11.6921 23.4435 35.3170 47.3833 59.7269 
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Table 15 Continued       

0 

0 0 12.9458 25.9907 39.2431 52.8325 66.9281 

10 0 13.0173 26.1365 39.4694 53.1498 67.3539 

20 0 13.2394 26.5900 40.1740 54.1404 68.6888 

40 0 14.2620 28.6861 43.4573 58.8167 75.1249 

0.4 

0 0 16.7505 33.8715 51.8419 71.4719 94.7175 
10 0 16.9071 34.2029 52.3955 72.3633 96.3371 

20 0 17.4052 35.2628 54.1846 75.3158 102.1926

40 0 19.9755 40.8908 64.3859 93.0182 118.924 

 
Table 16 Effect of the bending stress ratio on the ΩDI dynamic instability with different gradient temperature 
(a/b = 1, a/h = 10, αD / αS = 0.3, n = 2, E1 / E2 = 10, To / Tcr = 0.75) 

αS Tg / To 
β 

0 10 20 30 40 

-0.4 

0 6.5580 6.5521 6.5344 6.5049 6.4636 

10 6.6304 6.6658 6.6894 6.7012 6.7012 
20 6.8574 6.9370 7.0045 7.0600 7.1037 

40 7.9499 8.1428 8.3224 8.4889 8.6425 

0.4 

0 10.0277 10.0391 10.0734 10.1305 10.2108 

10 10.1383 10.2486 10.3827 10.5410 10.7238 

20 10.4856 10.7026 10.9455 11.2151 11.5124 

40 12.1560 12.6496 13.1791 13.7465 14.3543 

 
Table 17 Effect of static load type and dynamic load parameters on the dynamic instability ΩDI under 
various bending stress ratio (a/b = 1, a/h = 10, αS = 0, n = 2, E1 / E2 = 10, To / Tcr = 0.75, Tg / To = 40) 

αS Tg / To 
β 

0 10 20 30 40 

-0.4 
0.2 13.2552 13.5772 13.8769 14.1549 14.4115 
0.4 26.5617 27.2093 27.8130 28.3737 28.8920 

0.8 53.5479 54.8744 56.1174 57.2784 58.3589 

0.4 

0.2 20.3058 21.1355 22.0266 22.9829 24.0088 

0.4 41.0607 42.7918 44.6630 46.6861 48.8751 
0.8 86.6420 90.9986 95.9296 101.5897 108.2341 

 

 
5. Conclusions 

 
The dynamic stability of laminate plates subjected to thermal load and periodic dynamic loads 

has been investigated. The dynamic instability is sensitive to the thermal load and periodic 
dynamic load. Based on above discussions, the preliminary results are summarized as follows: 
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1. The excitation frequency, instability region and dynamic instability index are significantly 
affected by the static load component, dynamic load amplitude, layer number, modulus ratio 
and uniform temperature rise. They are slightly affected by the temperature gradient rise and 
bending stress. 

2. The dynamic instability index increases with the increasing static loading, dynamic loading 
and temperature rise, but reduces with the increase in the number of layer and modulus ratio. 
The compressive static load has a more apparent influence than tensile load on the dynamic 
instability. 

3. Though the natural frequency and exciation frequency will change with variation in material, 
geometric size and thermal condition, the variation of the excitatation frequency ratio against 
the respective static and dynamic load factor remains unchanged. 
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