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 Abstract. In this study, fracture analysis of orthotropic FGM (Functionally Graded Material) plate having
center crack is performed, numerically. Material axis arbitrarily oriented and there is an angle θ o between
material and crack axes. Stress intensity factors at the crack tips for Mode I are calculated using Displacement
Correlation Method (DCM). In numerical analysis, effects of material properties and variation of angle θ o

between material and crack axes on the fracture behavior are investigated for four different boundary
conditions. Consequently, it is found that the effect of θ o on stress intensity factor depends on variation of
material properties. 

Keywords: orthotropic functionally graded materials; displacement correlation method; finite ele-
ment analysis; stress intensity factor; aerospace structures.

1. Introduction

Recently, application areas of Functionally Graded Materials (FGMs) rapidly increase in thermal

barrier coating, wear and impact resistant, energy conversion, dental implant industry due to their

advanced properties. FGMs are multi-phase materials in which the volume fractions of the constituents

vary as a function of position, typically in the thickness direction (Ayhan 2007). 

The microstructure of FGMs is generally heterogeneous, and the dominant type of failure in FGM is

crack initiation and growth from inclusions (Rao and Rahman 2003). Given the nature of processing

techniques for example plasma sprayed method, graded materials can become anisotropic. In order to

take the material orientation into account in the fracture analyses, graded materials are generally

modeled as orthotropic with principal directions parallel and perpendicular to the boundaries (Dag

2006). Chen et al. (2002) studied the transient internal crack problem for a functionally graded

orthotropic strip. Integral transforms and dislocation density functions were employed to reduce the

problem to singular integral equations. A theoretical treatment of mode I crack problem was put

forward for a functionally graded orthotropic strip by Guo et al. (2004). The internal crack and edge

crack perpendicular to the boundaries were investigated, respectively. The principal directions of

orthotropy were parallel and perpendicular to the boundaries of the strip. The singular integral equation

for solving the problem and the corresponding asymptotic expression of the singular kernel were
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obtained. The plane strain problems of semi-infinite cracks in an infinite functionally graded

orthotropic material were studied by Hongmin et al. (2008). Two uniform impact loading modes were

considered, i.e., opening and in-plane shear. Closed form solutions of the dynamic stress intensity

factors were obtained. It was observed that the stress intensity factors were not all proportional to the

square root of time as expected. Kim and Paulino (2002a) developed a finite element methodology for

fracture analysis of FGMs where cracks were arbitrarily oriented with respect to the principal axes of

material orthotropy. Stress intensity factors (SIFs) for mode I and mixed-mode two-dimensional

problems were evaluated and compared by means of the Modified Crack Closure (MCC) and the

Displacement Correlation Method (DCM) especially tailored for orthotropic FGMs. Dag et al. (2007)

examined mixed-mode fracture problems of FGMs under mechanical and thermal loading conditions.

In the case of mechanical loading, an embedded crack in an orthotropic FGM layer was considered. An

analytical solution based on the singular integral equations and a numerical approach based on the

enriched finite elements were developed to evaluate the mixed-mode stress intensity factors and the

energy release rate under the given mechanical loading conditions. Kim and Paulino (2003a) extended

the concept to orthotropic functionally graded materials and addressed fracture mechanics problems

with arbitrarily oriented straight and/or curved cracks. Stress intensity factors for mode I and mixed-

mode two-dimensional problems were evaluated by means of the interaction integral and the finite

element method. Quasi-static mixed mode stress fields for a crack in orthotropic inhomogeneous

medium are developed using asymptotic analysis coupled with Westergaard stress function approach by

Chalivendra (2009). Using the derived mixed-mode stress field equations, the isochromatic fringe

contours were developed to understand the variation of stress field around the crack tip as a function of

both orthotropic stiffness ratio and non-homogeneous coefficient. Zhou et al. (2007) investigated the

transient thermal fracture problem of a crack (perpendicular to the gradient direction) in a graded

orthotropic strip. Most of the materials properties were assumed to vary as an exponential function of

thickness direction. The transient two-dimensional temperature problem was analyzed by the methods

of Laplace and Fourier transformations. A system of singular integral equations was obtained and

solved numerically.

The Boundary Element Method (BEM) and meshless methods have been successfully applied for

crack problems in FGM with a general orientation for material gradation in 2-d and 3-d analyzes. The

efficient interaction integral method for evaluation of stress intensity factors was also discussed in the

literature (Gao et al. 2008, Sladek et al. 2008a, Sladek et al. 2008b) 

In all studies mentioned above fracture mechanics analyses of orthotropic functionally graded

materials are carried out that principle orthotropy axis is parallel or perpendicular to the boundaries of

plate under mechanical loading. Since crack and material axes may be differ by an angle in graded

coatings that are subjected to tensile loads in various applications, computational methods to calculate

fracture mechanics parameters in orthotropic FGMs are also required. 

The present study concerns fracture analysis of orthotropic FGM plate having center crack. Behavior

of FGM plate is exponential. Material axis is oriented arbitrarily with respect to the crack axis and there

is an angle θ o between principal material orthotropy (1 and 2) and crack axes. In the literature, material

axis is taken as a constant value θ o = 0o or 90o and crack axis is changed from 0o to 90o (Dag 2006, Dag

et al. 2007, Kim and Paulino 2002a, Kim and Paulino 2003a, Kim and Paulino 2003b, Kim and Paulino

2005, Rao and Rahman 2003). But in the present study, crack axis is constant (θ = 0o), material axis is

changed from 0o to 90o. Stress intensity factors at the crack tips for Mode I are calculated using DCM.

ANSYS 12.1 finite element package program is used to calculate displacements at the crack face.

Gradient of material properties for FGM, boundary condition and numerical model are defined with the
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help of a subroutine prepared by using APDL (ANSYS Parametric Design Language) codes. In the

numerical analysis, effects of material properties and variation of angle θ o between material and crack

axes on fracture behavior are investigated for four different boundary conditions. 

2. Orthotropic FGM plate

This study investigates the fracture analysis of orthotropic FGMs and the effect of the θ o on stress

intensity factors using the finite element method (Fig. 1). Material properties of orthotropic FGMs are

defined as

(1)

(2)

(3)

where E11, E22 and G12 are longitudinal, transverse and shear modulus of material, respectively. x1 is

the direction of material gradation and β is material nonhomogeneity parameter. On the other hand, the

Poisson’s ratio v12 is assumed to be constant. If material properties in x(x1, x2) (inclined by θ o with

respect to the X1 coordinate) are transformed to the global coordinate system X(X1, X2), they can be

obtained as (Kim and Paulino 2005) 
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Fig 1 Geometry and notation for crack problems in an orthotropic FGM plate



190  Mete Onur Kaman and Fatih Cetisli

For pure Mode I, the relationship between displacements and stress intensity factor (KI) in the vicinity

of the crack tip are (Kim and Paulino 2002a) 

(8)

(9)

for polar coordinate system (r, α). Similarly, for pure Mode II, the relationships between displacements

and stress intensity factor (KII) in the vicinity of the crack tip are

(10)

 (11)

In the above equations,  and  denote the Eigen values of the compatibility equations with

positive imaginary part (Sills et al. 2005).  and  must be calculated at the location of a crack tip

and global coordinate system X(X1, X2) for FGMs.

(12)

where ’s (i, j = 1, 2, 6) are the compliance coefficients at the crack tip and can be written as

(13)

The strain-stress relationships of an orthotropic material in plane stress state can be given as
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in terms of averaged Young modulus E as

(15)

the effective Poisson’s ratio v is written as

(16)

the stiffness ratio δ 4 is written as

(17)

and the shear parameters κ0 is written as

(18)

for generalized plane stress (Kim and Paulino 2003b). These parameters assist to define orthotropic

FGM properties, easily. Besides,  and  (k = 1, 2) are given by

(19)

(20)

3. Numerical study 

 

3.1 Displacement correlation method (DCM)

 

In order to obtain the stress intensity factor numerically, easy-applicable numerical method, DCM is

used. For singular finite element model at the crack tip (Fig. 2), the Crack Opening Displacement

(COD) and Crack Sliding Displacement (CSD) are given as follows (Kim and Paulino 2002a, Shih

et al. 1976)
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the X1 and X2 direction at locations as shown in Fig. 2. Displacements at the crack tip using Eqs. (8-11)

can be written by combination of two modes KI and KII as

(23)

(24)

Using Eqs. (21, 24) and Eqs. (22, 23), stress intensity factor formulas for pure Mode I ( ) and Mode

II ( ) can be obtained.

(25)

(26)

where A, B, C and D are given as follows
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Fig 2 Finite element model at the crack tip
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(30)

3.2 Finite Element Model

The orthotropic FGM plate having center crack is modeled using ANSYS finite element package

program for numerical solution and two dimensional Plane82 is used as the element type (ANSYS

2009). Plane82 provides more accurate results for mixed (quadrilateral-triangular) automatic meshes

and can tolerate irregular shapes without much loss of accuracy. The 8-node Plane82 element is defined

by eight nodes having two degrees of freedom at each node: translations in the nodal X1 and X2 axes.

The element may be used as a plane element or as an axisymmetric element. The element has plasticity,

creep, swelling, stress stiffening, large deflection, and large strain capabilities. 

The problem is solved by assuming as generalized plane stress. The numerical model is developed for

four different boundary conditions. Boundary conditions of problem and dimensions of orthotropic

FGM plate are given in Fig. 3. Plate dimensions are a/W = 0.1 and L/W = 1.0. All finite element models

D Re
i

µ1 µ2–
----------------- q2 q1–( )=

Fig 3 Dimensions of orthotropic FGM plate for four different boundary conditions; (a) Model 1, (b) Model 2,
(c) Model 3, (d) Model 4
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consist of 2881elements and 8649 nodes. As illustrated by Figs. 3(a)-(d), the variations of E11, E22, and

G12 are assumed to be exponential functions of x1 (Eqs. (1)-(3)) and proportional to one another, while

the Poisson’s ratio v is constant. Note that the crack is not parallel to the material direction and the

average Young’s modulus is defined as  where .

Figs. 3(a) and 3(b) show a crack of length 2b located in a finite two-dimensional plate under remote

uniform tension loading for two different boundary conditions. The boundary conditions are defined

such that u1 = 0 along the left and right edges and u2 = 0 for the node in the middle of the left edge as

seen Fig. 3(a), u2 = 0 along the bottom edge and u1 = 0 at the left corner node of the bottom edge as seen

Fig. 3(b) (Kim and Paulino 2002a).

Fig. 3(c) shows a crack of length 2b located in a finite two-dimensional plate under uniform crack

pressure loading. The displacement boundary condition is defined such that u1 = u2 = 0 for the node in

the middle of the left edge and u2 = 0 for the node in the middle of the right edge. The applied load

corresponds to ±σ (–1 ≤  X1 ≤ +1) along the crack faces.

Fig. 3(d) shows a center crack of length 2b located in a finite two-dimensional plate under constant

applied tension load. The applied load corresponds ±σ (–10 ≤  X1 ≤ +10, X2 = ±10) along the top and

bottom edges. The displacement boundary condition is prescribed such that u1 = u2 = 0 for the node in

the middle of the left edge and u2 = 0 for the node in the middle of the right edge. Fig. 4 shows finite

element model of FGM plate.

3.3 The implementation of orthotropic FGMs to the finite element model

As ANSYS does not offer variation in assigned material properties across elements directly, the

material property gradient is applied via a spatial variation in assigned nodal temperatures. As the finite

element formulation leads to an interpolation of temperatures within the elements, this results in a

continuous variation in properties (Rousseau and Tippur 2000). Therefore gradient of material

properties for FGM are defined as a function of temperature with the help of a subroutine prepared by

using APDL codes. Then the Young’s modulus is defined as a linear function of temperature and the

coefficient of thermal expansion is set to zero to avoid the presence of thermal residual stresses

(Tilbrook et al. 2005). So it is provided that meaningful property of temperature does not physically

remain and exponential variation of material properties E11, E11 and G12 is defined with using

temperature as shown in Fig. 5. 
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Fig 4 Finite element model of orthotropic FGM plate for Plane82 element
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4. Results and discussion 

In this analysis, the effect of variation of angle θ o between material gradient x(x1, x2) and principal

X(X1, X2) axes on stress intensity factor which is significant parameters of fracture analysis, is investigated

for orthotropic FGM plate having center crack. On the other hand, effects of nonhomogeneity material

parameter (βb), Poisson’s ratio (v), ratio of E11/E22 (δ 4) and different boundary conditions with

changing of θ o on stress intensity factor are examined by using finite element method, DCM. 

The aim of this section is to determine numerically stress intensity factor of orthotropic FGM plates

Fig 5 Applying of temperature distribution to the finite element model for β = 0.1, δ 4 = 4, v = 0.4 and θ = 60o

Fig 6 Dimensions and boundary conditions FGM plate having single edge crack
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having center crack. To verify the solution technique, different analyses in references (Kim and Paulino

2002a, Kim and Paulino 2002b, Kim and Paulino 2003b, Ozturk and Erdogan 1997, Ozturk and

Erdogan 1999, Sladek et al. 2005) are resolved with using ANSYS. 

The first problem of analyses is a single edge cracked rectangular homogeneous FGM body subjected

to tension as shown in Fig. 6. The dimensions of the body are L = 30 mm, w = 10 mm and b/w = 0.4.

The Plane82 element type is used in numerical model. The model consists of 1817 elements and 5546

nodes. Young’s modulus of FGM body is

(31)

where the material parameters are ,  MPa and =

. The Poisson’s ratio is. The single edge crack problem is solved with DCM. At the end of the

solution, all given stress intensity factor values are normalized with (Table 1)

(32)

(33)

The second problem of analyses is a center cracked rectangular orthotropic FGM body subjected to

fixed grip loading as shown in Fig. 7. The dimensions of the body are  L/W = 1.0 and b/w = 0.1. The

Plane82 element type is used in numerical model. The model consists of 2881elements and 8649

nodes. Center crack is parallel to the material gradation (θ = 0o). Material properties of FGM body are

(34)
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where the material parameters are βb = 0.5, κ0 = 0.5 and ε0 = 1.0. The Poisson’s ratio is v = 0.2 = constant.

The single edge crack problem is solved with DCM. At the end of the solution, all given stress intensity

factor values are normalized with Eqs. (32), (33). The normalized stress intensity factor results are
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Table 1 Normalized stress intensity factors for FGM plate, 

 E2/E1

 Sladek et al.  Kim and Paulino  Present

 LBIEM*  NASTRAN**  ANSYS

 1  2.108  2.110  -  2.113

 0.2  2.400  2.420  2.431  2.431

 2  1.970  1.960  -  1.959

 5  1.740  1.760  1.749  1.749

 *LBIEM : Local boundary integral equation method
 **NASTRAN : Finite element package program

KI KI σ bπ( )⁄=
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compared with available literature as seen in Table 2. There are negligible differences between the

present study and the references for both homogeneous and orthotropic FGM plate problems.

Attention will first be focused on the results of Model 1 (Fig. 3(a)). Variations of normalized Mode I

and II stress intensity factors at the –b and +b edges of center crack in a rectangular orthotropic FGM

plate are shown in Figs. 8 and 9. Fig. 8 shows variation of  and  and with material

angle θ o for v = 0.2, κ0 = 0.5, δ 4 = E11/E22 = 4. It is seen that  assumes its minimum value at

θ = 0o. This effect is most pronounced for greater values of βb. The effect of non homogeneity

parameter βb is greater when θ is smaller. On the other hand, maximum values of  are obtained

at θ = 45o and increases with increasing βb. is equal to the zero for all βb values for θ = 0o, because

there is pure Mode I state at this angle.  and  show the same behavior with  and

, respectively. But  values are greater than that of . This is expected due to the

nature of the exponential material gradation with the origin of the cartesian coordinate system at the

KI +b( ) KII +b( )
KI +b( )

KII +b( )

KI b–( ) KII b–( ) KI +b( )
KII +b( ) K +b( ) K b–( )

Fig 7 (a) Orthotropic FGM plate with a crack parallel to the material gradation under fixed grip loading, (b)
finite element model

Table 2 Normalized SIFs in an non-homogeneous orthotropic plate under fixed grip loading ( =
, , )

v
Ozturk and Erdogan Kim and Poulino Present

KI(+b)/K0 KI(-b)/K0 KI(+b)/K0 KI(-b)/K0 KI(+b)/K0 KI(-b)/K0

0.1 1.4183 0.6647 1.4451 0.6776 1.4438 0.6849

0.2 1.4233 0.6676 1.4488 0.6802 1.4484 0.6881

0.3 1.4280 0.6704 1.4522 0.6822 1.4527 0.6911

0.4 1.4325 0.6730 1.4559 0.6843 1.4567 0.6939

0.5 1.4368 0.6755 1.4593 0.6864 1.4605 0.6965

0.7 1.4449 0.6802 1.4655 0.6902 1.4669 0.7013

0.9 1.4524 0.6846 1.4718 0.6939 1.4696 0.7045
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center of the plate.

Figs. 10 and 11 show variation of ,  and ,  with material angle θ o

when βb = 0.25, κ0 = 0.5, δ 4 = E11/E22 = 4 for Model 1, respectively. The effect of variation of v =

 on stress intensity factor is very small and  increases with increasing v at θ = 0o. This

effect decreases with increasingθ. At θ = 90o, there is no Poisson’s effect on . In addition to

this,  values do not change with changing v at all material angles. These effects and behaviors

KI +b( ) KII +b( ) KI b–( ) KII b–( )

v12v21 KI +b( )
KI +b( )

KII +b( )

Fig 8 Normalized stress intensity factor when v = 0.2, κ0 = 0.5, δ4 = 4

Fig 9 Normalized stress intensity factor when v = 0.2, κ0 = 0.5, δ4 = 4

Fig 10 Normalized stress intensity factor when βb = 0.25, κ0 = 0.5, δ 4 = 4
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are valid for  and  (Fig. 11).

Figs. 12-14 show variations of  and  with θ when v = 0.2, κ0 = 0.5, δ 4 = 4 for

βb = 0.5, 025 and 0.1, respectively (Model 2). As can be seen in these figures, the effect of variation

of θ on SIFs decreases with decreasing βb.  values are greater than that of  for all βb

values. Maximum normalized stress intensity factor is obtained by = 1.967 when θ = 45o,

βb = 0.5, v = 0.2, κ0 = 0.5, δ 4 = 4 (Fig. 12).  and  increase by up to 45o, then decrease

when βb = 0.5. But and always decreases with increasing θ when βb = 0.25. This decreasing is very

small, in the other words, the effect of βb is almost non-existent for βb = 0.1. For all βb values,

 and ,  and  are equal to each other at the θ = 90o. For the reason of

this situation it can be said that material properties are the same at two crack tips (± b, 0) for this angle.

KI b–( ) KII b–( )
K +b( ) K b–( )

KI +b( ) KI b–( )
KI +b( )

KI +b( ) KI b–( )

KI +b( ) KI b–( ) KII +b( ) KII b–( )

Fig 11 Normalized stress intensity factor when βb = 0.25, κ0 = 0.5, δ 4 = 4

Fig 12 Normalized stress intensity factor when βb = 0.5, v = 0.2, κ0 = 0.5, δ4 = 4

Fig 13 Normalized stress intensity factor when βb = 0.25, v = 0.2, κ0 = 0.5, δ 4 = 4
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Figs. 15 and 16 show the effect of δ 4 = E11/E22 on normalized SIF when βb = 0.5, v = 0.2, κ0 = 0.5. δ 4

has a negligible effect on the  and . On the other hand,  and  increase

with decreasing E11/E22 at θ = 0o. For all δ 4,  and  values are very close to each other

at θ = 90o.

Now, attention will be focused on the results of Model 3 (Fig. 3(c)). To verify the solution technique

for orthotropic FGM, an analysis is resolved in references (Fig. 17). Center crack is perpendicular to the

material gradation (θ = 90o). Material properties of FGM body are

KI +b( ) KI b–( ) KII +b( ) KII b–( )
KII +b( ) KII b–( )

Fig 14 Normalized stress intensity factor when βb = 0.1, v = 0.2, κ0 = 0.5, δ 4 = 4

Fig 15 Normalized stress intensity factor when βb = 0.5, v = 0.2, κ0 = 0.5

Fig 16 Normalized stress intensity factor when βb = 0.5, v = 0.2, κ0 = 0.5
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Fig 17 Orthotropic FGM plate with a crack perpendicular to the material gradation under uniform crack
pressure loading

Table 3 Normalized SIFs in a non-homogeneous orthotropic plate with crack face pressure loading (κ0 = 5.0,
K0 = , δ 4 = 10)

βb v
Ozturk and Erdogan Kim and Poulino Present

KI(+b)/K0 KII(+b)/K0 KI(+b)/K0 KII(+b)/K0 KI(+b)/K0 KII(+b)/K0

0.5

0.15 1.0748 0.1252 1.0820 0.1143 1.0892 0.1198

0.30 1.0776 0.1252 1.0840 0.1144 1.0927 0.1199

0.45 1.0804 0.1251 1.0860 0.1144 1.0960 0.1201

1.0

0.15 1.1892 0.2511 1.1960 0.2273 1.2001 0.2400

0.30 1.1955 0.2512 1.1994 0.2274 1.2069 0.2404

0.45 1.2017 0.2512 1.2051 0.2274 1.2135 0.2408

σ πb

Fig 18 Normalized stress intensity factor when v = 0.2, κ0 = 0.5, δ 4 = 4
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Obtained compatible results are given in Table 3. Figs. 18 and 19 show variation of normalized SIF

with θ for different βb when v = 0.2, κ0 = 0.5, δ 4 = 4.  and  increase by up to θ = ~60o,

then decrease for βb > ~0.5. The normalized SIFs  and  increase with increasing βb

for all θ except for at θ = 0o (Fig. 18). But  increases with decreasing βb by up to θ = ~60o, then

increases. There is no effect of βb on  and  at θ = 0o (  and = 0 for all

KI +b( ) KII +b( )
KI +b( ) KII +b( )

KI b–( )
KII b–( ) KII +b( ) KII b–( ) KII +b( )

Fig 19 Normalized stress intensity factor when v = 0.2, κ0 = 0.5, δr4 = 4

Fig 20 Normalized stress intensity factor when βb = 1, v12 = 0.4, κ0 = 0.5

Fig 21 Normalized stress intensity factor when βb = 1, v12 = 0.4, κ0 = 0.5
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βb values). But  increases with increasingθ. At the θ = 90o, maximum values of SIF obtained

for βb = 1.5 ( = 0.382). Figs. 20 and 21 show the effect of Poisson’s ratio on normalized SIFs

when βb = 1, v12 = 0.4, κ0 = 0.5.  and  are completely insensitive to v. 

increases with increasing v at θ = 90o. This effect decreases with decreasingθ. At the θ = 0o, there is no

effect of v on normalized SIFs  and this behavior is valid for  (Fig. 21).

KII b–( )
KII b–( )

KII +b( ) KII b–( ) KI +b( )

KI +b( ) KI b–( )

Table 4. Normalized stress intensity factor for Model-4 when v = 0.2, δ 4 = 4

βb
θ κ0 = 0.5 κ0 = 0.5

(o) KI(+b)/K0 KII(+b)/K0 KI(-b)/K0 KII(-b)/K0 KI(+b)/K0 KII(+b)/K0 KI(-b)/K0 KII(-b)/K0

0.5

0 1.61123 0.00039 0.92427 0.00033 1.41996 0.00076 1.00645 0.00080

15 1.67078 0.20736 0.99043 0.09342 1.42015 0.15790 1.03115 0.06724

30 1.79295 0.36837 1.16199 0.15288 1.40804 0.22546 1.07922 0.06864

45 1.79650 0.39571 1.31927 0.12162 1.36422 0.21422 1.11482 0.01475

60 1.49288 0.26352 1.25989 0.00427 1.26833 0.16919 1.11307 0.05450

75 1.02097 0.12702 0.97275 0.10740 1.12615 0.12855 1.06254 0.10287

90 0.79719 0.10825 0.79721 0.10805 1.03423 0.11516 1.03407 0.11584

0.25

0 1.73827 0.00044 1.38984 0.00049 1.36796 0.00078 1.16243 0.00088

15 1.70508 0.05014 1.38031 0.00635 1.35020 0.03588 1.15716 0.00075

30 1.60069 0.08217 1.34192 0.00130 1.29959 0.05876 1.14014 0.00863

45 1.42458 0.08766 1.25662 0.01752 1.22385 0.06651 1.10965 0.02484

60 1.20919 0.07547 1.12717 0.04104 1.13708 0.06498 1.06886 0.04265

75 1.02702 0.06347 1.00055 0.05593 1.06225 0.06175 1.03225 0.05486

90 0.95109 0.05985 0.95115 0.05968 1.02460 0.05949 1.02440 0.05990

0.1

0 1.19405 0.00030 1.12820 0.00040 1.11708 0.00065 1.06251 0.00078

15 1.18285 0.00816 1.12077 0.00506 1.11187 0.00805 1.05976 0.00602

30 1.15184 0.01526 1.09995 0.01055 1.09740 0.01449 1.05219 0.01125

45 1.10837 0.02028 1.07032 0.01579 1.07700 0.01939 1.04177 0.01618

60 1.06335 0.02326 1.03957 0.02018 1.05540 0.02260 1.03167 0.02035

75 1.02840 0.02463 1.01734 0.02316 1.03760 0.02425 1.02569 0.02326

90 1.01219 0.02467 1.01227 0.02455 1.02734 0.02440 1.02712 0.02464

Fig 22 Normalized stress intensity factor when βb = 0.5, v = 0.2, δ 4 = 4
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In this stage, numerical results are examined for Model 4. Table 4 gives the effect of βb on

normalized SIF for different angles θ when v = 0.2, δ 4 = 4. As can be seen in this table, the effect of

variation of θ on SIFs decreases with decreasing βb as in Model 2. Figs. 22 and 23 give variation of

normalized SIFs with q for different κ0 when βb = 0.5, v = 0.2, δ 4 = 4. The effect of θ on SIFs decreases

with increasing κ0.  values are greater than .  increases with decreasing κ0 for

θ < ~65o and increasing κ0 for θ > ~65o.  and  are equal to the zero for all κ0 at the

θ = 0o.  increases with decreasing κ0 for ~25o < θ < ~65o. The outside of this range, the opposite

behavior is valid for .

Figs. 24 and 25 show normalized SIFs in a non-homogeneous orthotropic plate under uniform

tension for four different boundary conditions for a fixed stiffness ratio δ 4 = 4 and constant

Poisson’s ratio v = 0.2 with material nonhomogeneity βb = 0.5. This figure clearly indicates that the

boundary conditions have a significant influence on SIFs. The normalized SIFs values  of

Model 1 and Model 3 are ~0.79 at θ = 90o. Additionally, these values are ~1.06 for Model 2 and Model 4.

This situation is caused by having similar boundary conditions between the models. The similar

behavior of the SIF values can be obtained for .

KI +b( ) KII b–( ) KI +b( )
KII +b( ) KII b–( )

KI b–( )
KI b–( )

KI +b( )

KI b–( )

Fig 23 Normalized stress intensity factor when βb = 0.5, v = 0.2, δ 4 = 4

Fig 24 Normalized stress intensity factor when βb = 0.5, v = 0.2, κ0 = 0.5, δ4 = 4
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5. Conclusion

This study represents numerical SIF results of orthotropic FGM plate having center crack the axis and

exponential material axis of which differ by θ o. Besides, effects of nonhomogeneity material parameter

(βb), Poisson’s ratio (v), ratio of E11/E22 (δ
4) and different boundary conditions with changing of θo on

stress intensity factor are investigated by using displacement correlation method. The concluded points

may be listed as follow:

• The non-homogeneous parameter (βb) determines the effect of variation of angle θo between

material gradient x(x1, x2) and principal X(X1, X2) axes on stress intensity factor for different boundary

conditions. The effect of θo on SIF increases with the increase in βb for all models, namely boundary

conditions.

• The effect of variation of  on stress intensity factor is very small and  increases

with the increase of v at θ = 0o for Model 1. This effect decreases with the increase of θ. There is no

Poisson’s effect on  at θ = 90o.

• δ 4 has a negligible effect on the  and  for Model 2. On the other hand,  and

 increase with the decrease in E11/E22 at θ = 0o and are very close to each other at θ = 90o.

• The effect of Poisson’s ratio is investigated on normalized SIF values when v12 = constant for

Model 3.  and  are completely insensitive to v.  and  increase with the

increase of v at θ = 90o. This effect decreases with the decrease of θ. There is no effect of v on

normalized SIFs when v12 = constant at the θ = 0o.

• The variation of normalized SIF values with κ0 for different angles is investigated for Model 4. It

can be said that, the effect of θ o on SIF values decreases with an increase in κ0.

• The boundary conditions have a significant influence on SIF values and this situation changes the

effect of θ on SIFs, too.

• The gradient of material properties for orthotropic FGM is defined as a function of temperature with

the help of a subroutine prepared by using APDL codes. The negligible differences are obtained between

the results of present study using this technique and the references. This result is very important since it

can easily provide prediction of more complex models. 

• The numerical solution technique DCM is easily applicable method. Besides this method, the

analysis can be expanded by the application of the M integral and displacement extrapolation methods. 

v v12v21= KI +b( )

KI +b( )
KI +b( ) KI b–( ) KII +b( )

KII b–( )

KII +b( ) KII b–( ) KI +b( ) KI b–( )

Fig 25 Normalized stress intensity factor when βb = 0.5, v = 0.2, κ0 = 0.5, δ 4 = 4
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