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Abstract. An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically
non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent
foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of
steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the
frame members is taken into account in the optimum design algorithm. The performance of the ABC
algorithm is tested on three steel frames taken from literature. The results obtained from the design examples
demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization
algorithms in shorter time.

Keywords: artificial bee colony algorithm; geometrically non-linear steel frames; optimum design;
load and resistance factor design.

1. Introduction

Many meta-heuristic search methods have been developed for the optimum design of steel frames in

recent years. Genetic algorithms (GAs), ant colony optimization (ACO), particle swarm optimization

(PSO) and harmony search (HS) are among the most popular meta-heuristic search methods. The main

character of these methods is that they employ a population of individuals to optimize the problem. 

GAs are based on evolution theory of Darwin’s (Holland 1975) which applies the principle of

survival of robust individuals and the elimination of the others in a population. GAs has been used for

optimum design steel frames by many researchers (Camp et al. 1998, Pezeshk et al. 2000, Toropov and

Mahfouz 2001, Hayalioglu and Degertekin 2005, Liu et al. 2006, Degertekin et al. 2008a).

ACO and PSO are the most popular optimization methods in the swarm intelligence. ACO simulates

the positive feedback process exhibited by a colony of ants (Dorigo 1992) and PSO bases on the social

behaviour of swarms (Kennedy and Eberhart 1995). Both methods have been applied to the optimum

design of steel frames (Camp et al. 2005, Kaveh and Shojaee 2007, Hasancebi et al. 2009, 2010). 

HS bases on the analogy between the performance process of natural music and searching for

solutions to optimization problems. The method is proposed by Geem et al. (2001). It also applied to

the optimal design of steel frames (Degertekin 2008a, 2008b, Saka 2009, Hasancebi et al. 2009, 2010).

The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of
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honeybee swarm for solving the optimization problems. The method is originally introduced by

Karaboga (2005). Although it is relatively new meta-heuristic search method, it has been applied in a

variety of optimization problems. 

Karaboga and Basturk (2007) developed an ABC algorithm for optimizing multivariable functions.

The ABC algorithm was tested on five high dimensional numerical benchmark functions and the results

obtained by the ABC algorithm were compared with those of other meta-heuristic methods. The results

obtained by the study revealed that the proposed the ABC algorithm could be efficiently used for

multivariable, multimodal function optimization. 

Karaboga (2009) introduced an ABC algorithm for designing low and high order digital recursive

filters. The results obtained by the ABC were compared with the results obtained by a conventional

optimization algorithm and particle swarm optimization. It was observed from the results that the ABC

algorithm seemed as an alternative optimization algorithm for designing low and high order digital

recursive filters.

Singh (2009) proposed an ABC algorithm for the leaf-constrained minimum spanning tree problem.

The ABC algorithm is compared with three other meta-heuristic approaches; a genetic algorithm, an ant

colony optimization and a tabu search approach. The proposed ABC algorithm outperformed all the

other algorithms. 

An ABC algorithm was applied to solve the economic load dispatch problem by Hemamalini and

Simon (2010). The performance of ABC algorithm was demonstrated by using some test cases. They

compared the results with other population-based methods such as genetic algorithm, artificial immune

system, particle swarm optimization and evolutionary programming. From the results obtained, it was

concluded that ABC algorithm is a promising technique for solving complex non-smooth optimization

problems. 

Omkar et al. (2011) developed a model for multi-objective design optimization of laminated

composite components based on vector evaluated ABC algorithm. The method was validated for a

number of different loading configurations, unaxial, biaxial and bending loads. The performance of the

ABC algorithm was evaluated in comparison with other techniques like particle swarm optimization,

artificial immune system and genetic algorithm. The results of ABC were at par with that of those

algorithms for all loading configurations. 

Sonmez (2011a) presented an ABC algorithm for the discrete optimum design of truss structures. The

results obtained by this study showed that the ABC algorithm is very effective method for discrete

optimization designs of truss structures. 

Sonmez (2011b) proposed an ABC algorithm with an adaptive penalty function approach (ABC-AP)

in order to minimize the truss structures. The results obtained from this study demonstrated that ABC-

AP algorithm provides results as good as or better than other heuristic search algorithms. However,

ABC-AP shows very poor convergence capability compared with other heuristic algorithms. 

A modified ABC algorithm for constrained optimization problems is proposed by Karaboga and

Akay (2011). For constraint handling, ABC algorithm uses Deb’s rules (Deb 2000) consisting of three

simple heuristic rules and a probabilistic selection scheme for feasible solutions based on their fitness

values and infeasible solutions based on their violation values. Moreover, a statistical parameter

analysis of the modified ABC algorithm is conducted and appropriate values for each control parameter

are obtained using analysis of the variance and analysis of mean statistics. The performance of the

modified ABC algorithm is compared with those of state-of-the-art algorithms for a set of constrained

test problems. The numerical results shows that ABC algorithm can be efficiently used for solving

constrained optimization problems.
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The literature survey reveals that although the ABC algorithm has been applied for different

optimization problems in the last several years, it only has been applied for the sizing optimization of

truss structures in the field of structural optimization. 

This study aims at introducing the ABC algorithm into the optimum design of a different structural

system, i.e., geometrically non-linear steel frames, under the actual design constraints of American

Institute of Steel Construction (AISC)-Load and Resistance Factor Design (LRFD) specification

(AISC-LRFD 2001). Discrete design variable selected from the standard set of AISC wide-flange (W)

shapes are used in the optimal design of frames. The efficiency of the ABC algorithm is verified by

using three steel frames taken from literature. The results obtained using the ABC algorithms are

compared with the other meta-heuristic search algorithms. 

The remainder of this paper is organized as follows: the formulations of optimum design problem are

described in Section 2. The artificial bee colony algorithm is defined in Section 3; Optimum design of

geometrically non-linear steel frames using the ABC algorithm is explained in Section 4. The design

examples taken from the literature are presented in Section 5. Finally, the results obtained from the

design examples are discussed in Section 6.

2. The formulations of optimum design problem

The minimum weight design problem for a frame structure can be formulated as

Minimize (1)

where I is the vector containing the design variables I = I1, I2, ..., Ing, Ii ∈ Isl, (i = 1, 2, …, ng), Isl is the

standard set of AISC wide-flange (W) shapes, ng is the total numbers of groups (i.e. number of design

variables) in the frame, mk is the total numbers of members in group k, ρi and Li are the density and the

length of member i, Ak is the cross-sectional area of member group k. A design variable in the

optimization problem denotes a member group in a steel design. Design variables are selected from a

section list and each of section is represented by a sequence number in that list (Degertekin et al.

2008b). The unconstrained objective function could be expressed as

 (2) 

where C is the constraint violation function, κ is the penalty function factor. The constraint violation

function is expressed as

 (3)

where , , ,  and  are the constraints violations for displacement, interstorey drift, size

constraint for beams, size constraint for columns and interaction formulas of AISC-LRFD (2001)

specification, respectively. m and nl are the number of restricted displacements and the total number of

loading conditions. ns and nsc are the number of storeys in the frame and the number of columns in a

storey, nj and ncl are the total number of joints in the frame excluding supports and the total number of

columns in the frame except the ones at the bottom floor, nm is the is total number of members in the

frame. The constraint violation C is defined as follows
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 (4)

The displacement and interstorey drift constraints are imposed on the steel frames

, j = 1, ......., m, l = 1, ......., nl (5)

, j = 1, ......., ns, i = 1, ......., nsc, l = 1, ......., nl (6)

where δjl is the displacement of the j-th degree of freedom due to loading condition l, δju is its upper

bound, ∆jil is interstorey drift of i-th column in the j-th storey due to loading condition l, ∆ju is its limit.

The size constraints are given as

, k = 1, ......., nj (7)

, n = 1, ......., ncl (8)

where bfbk and bfck are the flange widths of the selected beam and column respectively. dun and dbn are

depths of steel sections selected for upper and lower floor columns. 

The strength constraints are expressed in the following interaction equations (AISC-LRFD 2001).

For members subject to bending moment and axial force

for 

   i = 1, ..., nm, l = 1, ....., nl (9)

for 

   i = 1, ..., nm, l = 1, ....., nl (10)

where Pu is the required axial strength (compression or tension), Pn is the nominal axial strength

(compression or tension), Mux is the required flexural strengths about the major axis including second-

order effects (geometric non-linearity), Muy is the required flexural strengths about the minor axis (for two-

dimensional frames, Muy is 0), Mnx is the nominal flexural strength about the major axis, Mny is the nominal

flexural strength about the minor axis, φ = φc is the resistance factor for compression (equal to 0.85), φ = φt
is the resistance factor for tension (equal to 0.90), φb is the flexural resistance factor (equal to 0.90).

If axial force is compression in Eqs. (9) and (10), Pu is the required compressive strength, Pn is the

nominal compressive strength, φ = φc is the resistance factor for compression (equal to 0.85). The

explanation for the other terms is the same as the previous paragraph. The nominal compressive

strength of a member is computed as
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(11)

for (12)

for (13)

(14)

where Ag is cross-sectional area of member; K is effective length factor; E is modulus of elasticity; r is

governing radius of gyration; L is member length; and Fy is yield stress of steel. The effective length

factor (K) for unbraced frames is calculated from the following approximate equations (Dumonteil

1992)

(15)

where subscripts A and B denote the two ends of the column under consideration. The restraint factor

G is stated as

(16)

where Ic is the moment of inertia and Lc is the unsupported length of a column section; Ig is the

moment of inertia of a girder and Lg is unsupported length of a girder. Σ indicates a summation for all
members rigidly connected to that joint (A or B) and lying in the plane of buckling of the column under

consideration. 

The non-linear analysis of steel frames takes into account the geometric non-linearity of frame

members. For this purpose, a plane-frame member is modified to include geometric non-linearity effect

(P-∆ effect). The structure stiffness matrix is constructed by superimposing the member stiffness
matrices contain geometric non-linearity. The steps of this iterative process is explained in detail in

author’s previous work (Hayalioglu and Degertekin 2005) and not repeated here.

3. The artificial bee colony algorithm

The ABC algorithm is a colony-based meta-heuristic search method originally proposed by Karaboga

(2005). The method imitates the intelligent behaviour of honeybee swarm. Every bee colony consists of

three types of bee which are employed bees, onlooker bees and scout bees. Employed bees make up

half of the colony and onlooker bees make up the other half. If an employed or onlooker bee can not

find a better food source for a while, it turns into a scout bee. The employed bees visit a food source

within the neighbourhood of the food source in their memory and carry the loads of nectar from the

food source to the hive. Then, they share their information about the food source by dancing in the hive.

The more they have nectar, the more they dance. Onlooker bees observe the dance of the employed

bees in the hive and choose a food source according to the nectar amount of the food source. The food

sources, which have more nectar, are visited by more bees than the ones which have less nectar. The

scout bees are explorer bees which look for a new food source in the vicinity of the hive randomly. If a
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food source is exploited entirely, the employed bee which exploits that food source becomes a scout bee

(Karaboga and Basturk 2008). The employed and onlooker bees exploit the available food sources

while scout bees are exploring the new ones. 

The ABC algorithm consists of three stages. At the first stage, an initial bee colony is generated

randomly. In this process, a set of food sources is randomly selected by the bees and their nectar

amounts are determined. Each food source Ii in the colony (i = 1, 2, …, ntb) is represented by a ng-

dimensional vector. Here, ntb is the number of food sources (i.e., the number of artificial bee) and ng

denotes the number of design variables. The food sources in the colony are sorted according to their

nectar amounts. 

At the second stage, an employed bee which is in the position i changes its position in order to find a

new food source as shown in the following equation

(17)

where i, k ∈ {1, 2, ..., neb} and j ∈ {1, 2, ..., ng} are the randomly selected indexes, i has to be
different from k, neb is the number of employed bees, j is the design variable, φij is a random number

which is uniformly distributed over the interval [-1,1]. After that, the employed bee evaluates the nectar

amount of the new food source. If the nectar amount is higher than that of the previous one, the bee

moves on new one. After all employed bees complete their search process, they share the nectar

information of the food sources and their position with the onlooker bees on the dance area. The

onlooker bees evaluate the nectar information given by the employed bees and choose a food source

depending on the probability in the following way (Karaboga and Basturk 2007)

(18)

in which ϕ(I)i is the objective function value of the solution i. This value is proportional to the nectar

amount of the food source in the position i. After the probability values of the employed bees have been

determined, the onlooker bee changes the selected employed bee’s position as follows

(19)

where l ∈ {1, 2, ..., nob} and j ∈ {1, 2, ..., ng} are the randomly selected indexes, φlj is a random
number which is uniformly distributed over the interval [-1,1] and nob is the number of onlooker bees.

If the nectar amount of the new source is higher than that of the previous one, the onlooker bee selects

the new position; otherwise, it remains in its previous position. This provides a greedy selection

strategy between the old food source and the new one and it is repeated for each onlooker bee.

At the third stage: if a bee in the colony could not improve its nectar amount in a predetermined

number of trials, the food source exploited by this bee is deserted and that bee becomes a scout bee. The

predetermined number of trials is equal to the limit value (lv). The aim of using the limit value is to

provide a new search space in the ABC algorithm. If the food source Iij is deserted, a new food source is

explored by scout bee as stated in the following equation (Hemamalini and Simon 2010)
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where Ij min and Ij max are the minimum and maximum limit values of j-th design variable. An iteration

is finished when the three stages are completed. The ABC algorithm repeats the search process until a

terminating criterion is satisfied.

In the classical approach, the steps are repeated until the predetermined total number of iterations is

performed or current optimum design remains the same during the execution of the predetermined

value of iterations of the maximum iteration number. It is obvious that this approach bases on the

computational experience which is obtained after numerous executions. For this reason, the following

termination criterion is implemented (Lamberti and Pappalettere 2009)

(21)

where ε = 10-7 and ntb is the total number of bees in the colony. Eq. (21) states that the ratio between

the standard deviation of objective functions and the average value of objective function for the designs

stored in the bee colony must be less than 10-7. 

There are two control parameters in the ABC algorithm: the total number of bees in the colony (ntb)

which is the sum of the number of employed bees (neb) and the number of onlooker bees (nob), the

predetermined limit value (lv). 

Selection processes performed by the ABC consist of four steps (Karaboga and Akay 2009): (i) A

global probabilistic selection process, in which the probability value given in Eq. (18) is used by the

onlooker bees to discover promising search areas. (ii) A local probabilistic selection process performed

by the employed bees and onlookers to determine a food source around the current food source using

Eqs. (17) and (19). (iii) A greedy selection process performed by the employed and onlooker bees.

They forget the previous food source and memorize the new one, if the nectar amount of the new one is

better than the previous one. (iv) A random exploration stage is performed by scout bees as shown in

Eq. (20).

An analogy between the ABC algorithm and the optimum design of steel frames is established in the

following way: an employed bee or onlooker bee in the colony denote a possible frame design in the

optimization process. The nectar amount of a food source represents the objective function value of the

design. 

4. Optimum design of geometrically non-linear steel frames using the ABC algorithm

The proposed ABC algorithm for optimum design of geometrically non-linear analysis of steel

frames could be explained in the following steps:

Step 1 : Initialize the ABC algorithm parameters: the total number of bees in the colony (ntb), the

predetermined limit value (lv). Set the iteration counter: it = 0.

Step 2 : Randomly generate an initial colony which consist of frame designs. Each design variable in

a frame is generated between the first and the last AISC wide-flange (W) shapes in the standard section

list using Eq. (22)

     i = 1, 2, ..., ng,     j = 1, 2, ..., ntb (22)

The frame designs in the colony could be shown explicitly in the following matrix form
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      i = 1, 2, ..., ng,     j = 1, 2, ..., ntb (23)

Each row in the matrix denotes a frame design in the matrix. I1, I2, ......, Intb and ϕ(I1), ϕ(I2), ......,

ϕ(Intb) are the frame designs and the corresponding unconstrained objective function value,

respectively. The steel designs in the matrix are sorted by the objective function values in ascending

form (i.e. ϕ(I1) < ϕ(I2) < ...... < ϕ(Intb). Penalized designs can be also included in the matrix. The first

half of the frame designs is assigned as employed bees (neb) and the second half of the frame designs

are appointed as onlooker bees (nob).

Step 3 : Analyze the frames, obtain the nodal displacements and member forces. Calculate the

objective function ϕ(I) using Eq.(2). Sort the frame designs according to their ϕ(I) values in ascending

form. In this case, the best design with the lowest objective function value is placed in the first row of

the colony and the worst design (Iworst) with the highest objective function value (ϕ(Iworst)) is placed in

the last row of the colony.

Step 4 : Increase the iteration counter, it = it + 1.

Step 5 : Randomly select a frame design with the value of ϕ(Ir) objective function (Ir; r = 1, 2, ….,

neb) from the first half of the colony. Produce a modification on the selected design for finding a new

one. The new design is obtained by altering the value of all design variables using Eq. (17). Analyze the

new frame, obtain its response and the value of objective function (ϕ(Inew)).

Step 6 : If ϕ(Inew)<ϕ(Iworst), the new design is included in the colony and the worst one is excluded

from the colony. Sort the frames according to their ϕ(I) values.

Step 7 : Repeat the steps 5 and 6 until all designs in the first half of the colony are selected once.

Step 8 : Share the designs obtained from steps 5 and 6 with the ones in the second half of the colony.

A design from the first half of the colony is chosen with a probability pi. The Eq. (18) is suitable for

maximization problems. Nonetheless, the aim of the optimization problem presented in this study is to

minimize the weight of the frame structures. For this purpose, the Eq. (18) is modified as follows

   i = 1, 2, ..., neb (24)

Step 9 : Produce the modification on the position of the frame design using Eq.(19) and obtain a new

frame. If the value of ϕ(I) for the new frame design is less than the worst one in the colony, it is

replaced with the worst one. Otherwise, it is retained. Sort the designs according to their ϕ(I) values in

ascending form again. 

Step 10 : Repeat the steps 8 and 9 until all designs in the second half of the colony are selected once.

Step 11 : If a frame design except the best frame design in the colony is not improved in a

predetermined limit value (lv), abandon this design. Generate a frame design using Eq. (20). Record the

feasible design with the lowest objective function value and assign it as the current optimum.

Step 12 : Repeat the steps 4-11 until the Eq. (21) is satisfied. If it is satisfied, terminate the algorithm

and define the current optimum as the final optimum design.
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5. Design examples

The numerical efficiency of the ABC algorithm is investigated by solving weight minimization

problems of three steel frames. The results obtained by the ABC algorithm are compared with those of

the GA (Pezeshk et al. 2000, Hayalioglu and Degertekin 2005) and harmony search (HS) algorithm

(Degertekin and Hayalioglu 2010).

The ABC algorithm parameters are not assigned directly by the user. Sensitivity analysis is carried

out for the ABC algorithm in order to find the best combination of the ABC internal parameters. 

Since the proposed algorithm is stochastic in nature, 20 independent optimization runs are performed

for frame designs. The best and the worst designs obtained by the ABC algorithm along with the

number of structural analyses required to complete the optimization process are reported in the

following tables. The top storey drift and maximum inter-storey drift computed for the 20 independent

runs also are specified. The maximum interaction ratio eventually present at the optimum design also is

reported in the tables. The Young’s modulus and the yield stress of steel members are taken as E =

200 GPa and fy = 248.2 MPa, respectively. The ABC algorithm is coded in FORTRAN language.

Optimization runs are executed on a Intel Pentium Core 2 Duo 2.2 GHz computer.

Because of the stochastic nature of the ABC algorithm, random number sequences are generated

during the search process. Random numbers always produce the same number for different executions

if the same SEED value is used in each run. In order to provide exact comparison in the 20 runs, the

same SEED value is used for the initial population in each run. 

5.1 Design of two-bay, three-storey frame

The two-bay three-storey frame shown in Fig. 1 is the first design example. This frame was optimized

using GA (Pezeshk et al. 2000) under a single load case shown in Fig. 1.

Displacement and size constraints are not imposed for the design. The beam members are selected

from a list with 267 W sections and the maximum depth of the column sections are restricted to the

25.4 cm. The member effective length factors Kx is calculated from the approximate equation proposed

by Dumonteil (1992). For each column, the out-of-plane effective length factor (Ky) is considered as

1.0. The out-of-plane effective length factor for each beam member is specified to be 0.167. The length

Fig. 1 Two-bay, three-storey frame
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of the unbraced compression flange for each column member is directly calculated during the design

process while the length of the unbraced compression flange for each beam member is specified to be

0.167 of the span length (Pezeshk et al. 2000). The penalty function factor remained constant at k = 1.

The results of the sensitivity analysis carried out to obtain the appropriate values of the ntb and lv in

the ABC algorithm are presented in Table 1. It can be seen that the minimum weight design for the

ABC algorithm is found by setting ntb = 60 and lv = 500.

Table 2 compares the results obtained by the ABC algorithm with the GA algorithm (Pezeshk et al.

2000). The ABC algorithm yielded 3.7% lighter design than that of the GA (Pezeshk et al. 2000). It is

also noted that the ABC algorithm obtained its best design in 65% of the 20 runs. The average weight of

20 runs is calculated as 84.71 kN, with a standard deviation of 1.53 kN.

Fig. 2 provides the interaction ratio for the each member at the optimum design. It is seen from Fig. 2

that interaction ratio of four member is within 90% of maximum interaction ratio at the optimum. Fig. 3

shows the convergence curves of the ABC algorithm and the GA (Pezeshk et al. 2000). It is obvious

that the ABC algorithm required slightly less structural analyses than the GA algorithm (Pezeshk et al.

2000) and the convergence capability of the ABC is more powerful than that of the GA’s.

Table 1 Results of sensitivity analysis carried out to find the best combination of internal
parameters of the ABC algorithm for the three-storey two-bay frame

Cases ntb lv Weight (kN)

1 20 500 96.50

2 20 1000 96.50

3 20 1500 92.96

4 40 500 86.79

5 40 1000 86.79

6 40 1500 92.96

7 60 500 83.59

8 60 1000 86.79

9 60 1500 86.79

10 80 500 92.96

11 80 1000 92.96

12 80 1500 96.50

Table 2 Optimum results obtained for the two-bay three-storey frame

Member group GA ABCworst ABCbest

 Pezeshk et al. (2000) This study

Beam  W 24×62  W 24×62  W 24×62

Column  W 10×68  W 10×68  W 10×60

Weight (kN)  86.79  86.79  83.59

Top storey drift (cm)  *  1.37 1.52

Max. inter-storey drift (cm)  *  0.93 1.05

Max. interaction ratio  *  0.95  0.99

Number of structural analyses  1800  1380  1620

*Not available
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5.2 Design of one-bay, ten-storey frame

Fig. 4 shows the frame configuration, dimensions, loading and numbering of grouping of members.

This frame was optimized by Pezeshk et al. (2000) using GA under a single load case shown in Fig. 4.

The strength constraints taken from AISC-LRFD (2001) specification are used and a interstorey drift

constraint is imposed as: interstorey drift < storey height/300. Beam element groups are chosen from

267 W-sections and five column groups are selected from only W14 and W12 sections. The effective

length factors of members are calculated as Kx ≥ 1 using the approximate equation proposed by

Dumonteil (1992), whereas the out-of-plane length factor Ky is assigned as 1. For each beam member,

the out-of-plane effective length factor is specified to be Ky = 0.2 i.e., floor stringers at 1/5 points of the

span.

The results of the sensitivity analysis carried out to find the best combination of internal parameters

for the ABC algorithm are presented in Table 3. The same values of internal parameters as in the three-

storey two-bay frame are found also for the ten-storey one-bay frame.

Fig. 2 Interaction ratios for the two-bay, three-storey frame

Fig. 3 Convergence curves for the two-bay, three-storey frame
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Fig. 4 One-bay, ten-storey frame

Table 3 Results of sensitivity analysis carried out to find the best combination of internal
parameters of the ABC algorithm for the one-bay ten-storey frame

Cases ntb lv Weight (kN)

1 20 500 315.97

2 20 1000 322.08

3 20 1500 322.08

4 40 500 313.06

5 40 1000 313.06

6 40 1500 319.92

7 60 500 308.68

8 60 1000 313.06

9 60 1500 313.06

10 80 500 319.92

11 80 1000 315.97

12 80 1500 319.92
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Table 4 compares optimization results with the corresponding data reported in literature. It can be

seen that the ABC found 1.4% lighter design than that of the GA (Pezeshk et al. 2000). It is interesting

to note that the ABC algorithm obtained its best design in 55% of the 20 runs. For 20 runs, the average

weight is obtained as 314.153 kN, with a standard deviation of 3.72 kN.

The highest interaction ratio for each group at the optimum design is shown in Fig. 5. It is apparent

that the highest interaction ratio for the four member group is within 90% of maximum interaction ratio

at the optimum.

Table 4 Design results for the one-bay, ten-storey frame

Group number GA
Pezeshk et al. (2000)

 ABCworst ABCbest

 This study

1  W 14×233 W 14×233  W 14×233

2  W 14×176 W 14×176  W 14×176

3  W 14×132 W 14×159  W 14×145

4  W 14×99 W 14×99  W 14×99

5  W 12×65 W 14×68  W 12×58

6  W 36×150 W 36×150  W 36×150

 7  W 33×130 W 33×118  W 33×118

8  W 27×94 W 27×94  W 27×84

9  W 16×50 W 24×68  W 24×68

Weight (kN)  313.13 317.595  308.68

Top storey drift (cm)  * 9.54 9.98

Max. inter-storey 
drift (cm)

 * 1.23 1.23

Average weight (kN)  *  314.153

Standard deviation (kN)  *  3.72

Max. interaction ratio  * 0.94  0.98

Number of structural analyses  3000 2820  2880

*Not available

Fig. 5 The highest interaction ratio for each group for the one-bay ten-storey frame
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Interstorey drifts also are demonstrated in Fig. 6. The worthwhile result obtained from the ABC

algorithm that the interstorey drift is within 90% of the maximum interstorey drift between stories 2 to

6 and 7 to 8 as shown in Fig. 6. This indicates that interstorey drift constraint is dominant at the

optimum.

The convergence curve for the best design is shown in Fig. 7. The ABC converged to the optimum

after 2880 structural analyses which are slightly less than that of the GA (Pezeshk et al. 2000).

5.3 Design of four-bay, ten-storey frame

The last example is the four-bay, ten-storey frame shown in Fig. 8. This frame was optimized using

the GA (Hayalioglu and Degertekin 2005) and the HS (Degertekin and Hayalioglu 2010).

The structure is divided into 12 groups of elements as shown in Fig. 5. Four different types of loads are

employed: dead load (D), live load (L), roof live load (Lr), and wind loads (W). The following loads are

applied: D = 30.65 kN/m, L = 21.37 kN/m, Lr = 12.26 kN/m, W = 34.22 kN. Four load combinations are

considered, per AISC LRFD specification: I: (1.4D), II: (1.2D + 1.6L + 0.5Lr), III: (1.2D + 1.6Lr +

0.5L) , and IV: (1.2D + 1.3W + 0.5L + 0.5Lr). The allowable sway of the top storey must not exceed

Fig. 6 Interstorey drifts for the one-bay ten-storey frame

Fig. 7 Convergence curve for the one-bay, ten-storey frame
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Fig. 8 Four-bay, ten-storey frame

Table 5 Designs results for four-bay, ten-storey frame

Group no.
 GA

Hayalioglu and 
Degertekin (2005)

 HS
Degertekin and 

Hayalioglu (2010)

 ABCworst  ABCbest

This study

1 W 24×104 W 24×104 W 24×101 W 21×101

2 W 27×146 W 27×146 W 27×147 W 21×147

3 W 16×77 W 18×86 W 18×76 W 14×68

4 W 21×122 W 21×101 W 18×106 W 18×97

5 W 12×53 W 16×67 W 14×53 W 14×53

6 W 14×68 W 12×53 W 14×68 W 14×68

7 W 10×54 W 14×74 W 10×54 W 12×53

8 W 12×53 W 10×60 W 12×53 W 12×50

9 W 24×55 W 21×44 W 21×44 W 21×44

10 W 18×46 W 21×44 W 18×46 W 18×46

11 W 24×55 W 21×44 W 18×46 W 21×44

12 W 21×50 W 18×46 W 16×45 W 21×44

Weight (kN) 424.42 388.08 390.16 381.51

Top storey drift (cm) 3.45 4.24 4.81 4.74

Max. inter-storey drift (cm) * * 0.64 0.63

Max. interaction ratio * 0.99 0.92 0.98

Number of structural analyses 28000 12560 6480 6960
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15.85 cm. Size constraints presented in Eqs. (7) and (8) also are imposed on the design. The parameters

used in this example are selected the same as the ones of the first example.

Table 5 compares the ABC algorithm result with the GA (Hayalioglu and Degertekin 2005) and the

HS (Degertekin and Hayalioglu 2010) algorithms. Table 5 shows that the ABC algorithm yielded 10%

and 1.7% lighter design than those of the GA (Hayalioglu and Degertekin 2005) and the HS

(Degertekin and Hayalioglu 2010), respectively. For 20 runs, the average weight is obtained as 385.21

kN, with a standard deviation of 3.60 kN. 

The highest interaction ratio for each group at the optimum design is displayed in Fig. 9. It is obvious

from Fig. 9 that the highest interaction ratio for the seven member group is within 90% of maximum

interaction ratio at the optimum. However, it is seen from Table 5 that top storey drift is far below the

allowable sway of the top storey. This indicates that strength constraints are dominant at the optimum

design. 

The convergence curve for the ABC algorithm also is shown in Fig. 10. The ABC required 6960

structural analyses whereas the GA (Hayalioglu and Degertekin 2005) and the HS (Degertekin and

Fig. 10 Convergence curve for the four-bay, ten-storey frame

Fig. 9 The highest interaction ratio for each group for the four-bay, ten-storey frame
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Hayalioglu 2010) converged to the optimum designs after 28000 and 12560 structural analyses,

respectively. 

6. Conclusions

This study presented an artificial bee colony algorithm for the optimum design of geometrically non-

linear steel frames. The ABC algorithm was tested in three steel frames taken from literature.

Optimization results suggest the following considerations. The ABC algorithm implemented in this

study found better designs than the GA and the HS algorithms presented in literature. The

computational effort of the ABC was lower than that observed for the GA and the HS algorithms.

It is important to note that standard deviation of optimized weights obtained over 20 independent runs

always was quite small compared with average optimized weight. This indicates that the ABC

algorithm presented in this paper possess the inherent ability of converging to a nearly global optimum

design.

However, it should be noted that although the ABC found lighter designs than other meta-heuristic

algorithms, it seemed that the ABC algorithm did not showed significantly computational advantage. In

view of this, it appears that gradient-based ABC algorithm will be an important area for further research

aimed at reducing the computational cost of the ABC algorithm.
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