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Abstract. In this paper, the thermal buckling analysis of rectangular composite laminated plates is 
investigated using the Differential Quadrature (DQ) method. The composite plate is subjected to a uniform 
temperature distribution and arbitrary boundary conditions. The analysis takes place in two stages. First, pre-
buckling forces due to a temperature rise are determined by using a membrane solution. In the second stage, 
the critical temperature is predicted based on the first-order shear deformation theory. To verify the accuracy 
of the method, several case studies were used and the numerical results were compared with those of other 
published literatures. Moreover, the effects of several parameters such as aspect ratio, fiber orientation, 
modulus ratio, and various boundary conditions on the critical temperature were examined. The results 
confirm the efficiency and accuracy of the DQ method in dealing with this class of engineering problems.
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1. Introduction

Laminated composites, which have high strength-to-weight and stiffness-to-weight ratios and diversity,

have been used extensively in important applications ranging from aerospace to automobile industries. 

In some applications, these structural components are under high temperature and thermal gradient 

environments. As a result, with certain types of boundary conditions, these components are susceptible 

to thermal buckling. The thermal buckling of composite laminated plates is one of practical importance 

for structures operating at elevated temperatures and therefore, there have been continued research 

interests on the topic in recent years.

The thermal buckling of thick symmetric angle-ply laminates were analyzed by Huang and Tauchert 

(1992) based on the first-order shear deformation theory by using a Fourier series and the finite element 

method. Sun and Hsu (1990) produced a close-form solution for the thermal buckling of simply supported,

symmetric cross-ply laminates, taking into account the through-thickness shearing action. Prabhu and 

Dhanaraj (1994) considered the thermal buckling of laminated composite plates subject to a uniform 

temperature rise using finite element method in the context of shear deformation plate theory (SDPT). 

Chen et al. (1991) and Thangaratnam et al. (1989) have also conducted such studies but with non-

uniform temperature fields. The critical buckling temperature of symmetric and anti-symmetric composite
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plates subject to uniform and non-uniform temperature variations were analyzed by Dawe and Ge 

(2000). They used finite strip method based on a first order shear deformation theory (FSDT). Kant and 

Babu (2000) used first and higher order shear deformable finite elements model to obtain the thermal 

buckling of skew fiber-reinforced composite and sandwich plates. Based on a FSDT Prakash et al.

(2006) investigated the axisymmetric free vibration and thermal stability behavior of functionally 

graded spherical caps by a three nodded curved shell element. Matsunaga (2006 and 2007) used a two-

dimensional global higher order deformation theory to evaluate the buckling temperature in laminated 

composite angle-ply plates and cross-ply shallow shells by using the method of power series expansion. 

Based on double Fourier series, an analytical solution for the thermal buckling of thick symmetric 

angle-ply laminated plates under clamped boundary conditions was obtained by Kabir et al. (2007). 

Shariyat (2007) used a layerwise plate theory and finite elements method to study the thermal buckling 

of rectangular composite plates under uniform temperature rise. Shiau et. al. (2010) studied the thermal 

buckling behavior of composite laminated cross-ply and angle-ply plates using a higher order triangular 

plate element.

Bellman and Casti (1971) introduced the differential quadrature method in early seventies. It is based 

on the weighted sum of function values as an approximation to the derivatives of that function. Since 

then, several researchers have applied the method to solve varieties of problems in different areas of 

science and technology (Bert and Malik (1996), Hakimi and Moradi (2010), Hu et al. (2009), Karami 

and Malekzadeh (2006)). Using a higher order shear deformation theory Li and Cheng (2005) solved 

the problem of nonlinear vibration of orthotropic plates with finite deformation by DQ method. Farid et 

al. (2010) studied the three-dimensional temperature dependent free vibration of functionally graded 

material curved panels using a hybrid semi-analytic DQ method. The method has been shown to be a 

powerful contender in solving systems of differential equations. Therefore, it has become an alternative 

to the existing numerical methods such as finite difference and finite element methods.

The non-linear bending analysis of plates under the thermal load was investigated by Lin et al. 

(1994). Jane and Hong (2000) used the DQ method to analyze the bending of simply supported 

rectangular thin symmetric cross-ply laminated plates subject to a uniform thermal load and a uniform 

pressure. They have also studied the thermal analysis of simply supported, cross-ply and angle-ply 

laminated composite plates subjected to a sinusoidal thermal load based on FSDT (2003). 

To the authors’ best knowledge, the validity of DQ method in treating the thermal buckling of 

laminated composite plates has not yet been explored. Hence, in this study, the DQ method is applied to 

analyze the bifurcation buckling of rectangular composite plates for predicting the critical temperature. 

The integrity of the method is verified through several case studies. The effects of several parameters, 

such as aspect ratio, fiber orientation, modulus ratio, as well as various boundary conditions are also 

investigated.

2. Thermal buckling

Consider a laminated composite plate having NL layers. The geometry of the plate is shown in Fig. 1. 

Here a, b and h are the length, width and the thickness of the plate, respectively. Each layer is 

considered to be homogeneous and orthotropic. It is assumed that the temperature is constant through 

the thickness and its changes are measured from the stress-free state. Moreover, the material properties 

are independent of temperature variations. It is further assumed that after the thermal load is applied, 

the plate remains flat until the temperature reaches its critical value. Then, the buckling occurs and the 
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plate bifurcates. It should be noted that, an eigenvalue analysis cannot be carried out for every 

composite laminated plate and there are some limitations on the type of lamination, which result in a 

bifurcation buckling (Prabhu and Dhanaraj (1994), Dawe and Ge (2000), Leissa (1986), Qatu and 

Leissa (1993)).

In order to account for shear deformation effects in the plate, the displacement components are taken as

(1)

where u0, v0 and w0 are associated mid-plane displacements in the x, y and z directions and, ψx and ψy

are the rotations of a transverse normal about the y and x axes, respectively. The coordinate frame is 

chosen in such a way that the xy plane coincides with the mid-plane of the plate.

The strain-displacement relations are defined as

(2)

here εx and εy are normal strains and, γxy, γzx and γzy are shear strains, respectively. Furthermore, in the 

presence of a temperature rise ∆T, the thermal strains are expressed as

(3)

where the thermal strains are shown by εT and, αx, αy and αxy are thermal expansion coefficients. Then, 

based on generalized Hook’s law, the stress-strain relationship of each lamina is given by (Whitney 

(1987))
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Fig. 1 Geometry of a composite laminated plate.
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(4)

here the superscript k denotes kth layer, σi and  are stress components and transformed stiffness 

matrix coefficients related to the kth layer, respectively. 

Stress resultants, as shown in Fig. 2, are defined as

(5)

where Nx, Ny and Nxy are in-plane forces per unit length, Mx, My and Mxy are the bending and torsional 

moments per unit length, and Qx and Qy are transverse shear forces per unit length, respectively. After 

substituting Eq. (4) into Eq. (5), and performing the indicated integrations, the stress resultants can be 

expressed as
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Fig. 2 Stress resultant in a plate element
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(6)

here

   i, j = 1,2,6

                               i, j = 4,5 (7)

 

and

   

 (8)

where

 (9)

k' is shear correction factor. Aij, Dij and Bij are extensional stiffness, flexural stiffness, and flexural-

extensional coupling stiffness coefficients, and ,  and  are the thermal in-plane forces, 

respectively. α1 and α2 are thermal expansion coefficients in principal directions and θ is the fiber 

orientation of kth layer ( It’s measured counter clockwise from x axes).

The equilibrium equations of linear elasticity are (Whitney (1987))
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Substituting N, M, and Q from Eq. (6) into Eq. (10), the equations of equilibrium are derived in terms 

of displacements and rotations. Under a uniform temperature field, these equations are expressed as 

follow 

(11a)

(11b)

(11c)

(11d)

 (11e)

Using the following non-dimensionalized parameters (Chia (1980))

 (12)

and applying the DQ method to the Eqs. (11a) to (11e), one can obtain the following system of 

algebraic equations
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(13a)

 (13b)

(13c)
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(13d)

(13e)

where Nx(xi,yj), Ny(xi,yj) and Nxy(xi,yj) are membrane pre-buckling forces, which for the pre-buckling 

analysis should be determined. For the buckling analysis they are known functions obtained from the

pre-buckling analysis. 

The thermal load creates in-plane compressive forces that cause the buckling of the plate. In order to 

find the critical buckling temperature, it is important to determine these pre-buckling in-plane forces. 

Therefore, the analysis takes place in two separate steps. First, pre-buckling forces are determined by 

using a membrane solution at arbitrary temperature. The magnitude of the temperature can be defined 

with respect to a temperature factor λ. The plate remains flat at this state, so the quantities of w, ψx and 

ψy are set to zero. The solution of the first two equations of (13) along with the corresponding boundary 

conditions, which will be discussed later, give the pre-buckling in-plane displacements, forces and 

thermal stresses.

The flat laminated plate is acted upon by the pre-buckling membrane stresses, which are computed in 
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previous step. The aim now in the second step of the analysis is to determine, in the context of well-

known Reissner-Mindlin first-order shear deformation theory, the critical temperature that causes the 

buckling of plate. At the buckling, all displacements and other quantities derived from them are 

assumed to be occurred at constant temperature. Therefore, it should be noted that there are no thermal 

in-plane forces, NT, in this step.

The following boundary conditions have been used in this study:

simply supported immovable edges, S1

 (14a)

simply supported movable edges (in normal direction), S2

 (14b)

simply supported movable edges (in tangential direction), S3

 (14c)

clamped immovable edges, C1

 (14d)

These boundary conditions can be placed to the first point around the boundaries of Eqs. (13a) to 

(13e). Then, combining the equilibrium equations along with the corresponding boundary conditions 

gives an eigenvalue problem. The solution of this eigenvalue problem by a standard eigensolver 

provides the critical temperature.

3. Numerical results and discussion 

The formulation presented in the preceding section was implemented into a computer code for 

evaluating the thermal buckling response of a composite laminated plate as shown in Fig. 1. To show 

the validity of DQ method for the selected application, several case studies were investigated. In all 

cases, the temperature distribution was assumed to be uniform, boundary conditions had the same type 

on all four edges and shear correction factor k' was 5/6. 

To verify the validity of DQ method, the critical temperature of a thin square isotropic plate under 

different boundary conditions are compared with the results obtained by the Finite Element Method 
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(FEM) (Thangaratnam et al. (1989)) and the Finite Strip Method (FSM) (Dawe and Ge (2000)), as 

shown in Table 1. Different number of sampling points has been used to obtain the critical buckling 

temperature of S3 and C1 plates. As can be seen from the table the DQ method converges quickly, good 

agreement stands amongst the results and deviations are negligible. The table also shows the effect of 

the number of sampling points on the convergence of the buckling temperature.

3.1 Symmetric laminates

The results of the DQ method for a square single-layer plate subject to a uniform thermal field are 

compared with those of FEM (Huang and Tauchert (1992)), FSM (Dawe and Ge (2000)), and Fourier 

series method (Huang and Tauchert (1992)), as presented in Table 2. The material properties of the 

plate are listed in Table 3. The first set of the material properties have been selected for this case study. 

Table 1. Critical temperatures of square isotropic plate (a / h = 100, υ = 0.3, α = 2 × 106)

Tcr (
oC)

Solution Method nx×ny S3 C1

Present - DQ 5 × 5 62.13 187.71

6 × 6 62.30 188.58

7 × 7 63.25 167.46

8 × 8 63.25 167.44

9 × 9 63.23 167.48

10 × 10 63.23 167.48

11 × 11 63.23 167.48

FEM (Thangaratnam et al. (1989)) 63.33 167.70

FSM (Dawe and Ge (2000)) 63.22 167.5

Table 2. Critical temperatures of square single-layer plate with C1 boundary conditions and material property 
set 1 – (b/h = 40)

Tcr (
oC)

Solution Method θ = 0o
θ = 45o

DQ - (11 × 11) 152.19 129.99

Fourier series (Huang and Tauchert (1992)) 152.47 131.88

FEM (Huang and Tauchert (1992)) 152.30 129.91

FSM (Dawe and Ge (2000)) 151.2 129.3

Table 3. Orthotropic material properties

Material 
Seta

v12

1 76 5.5 2.3 2.3 1.5 0.34 -4 79

2 40 1 0.6 0.6 0.5 0.25 0.02 22.5

3 181 10.3 7.17 5.98 2.39 0.28 0.02 22.5

4 40 1 0.6 0.6 0.5 0.25 1 2

a Eo = 105GPa, αo = 10−6 / oC

E1

Eo

-----
E2

Eo

-----
G12

Eo

--------
G13

Eo

--------
G23

Eo

--------
α1

αo

-----
α2

αo
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Here a 11 × 11 grid spacing was used to discretize the domain. The comparison of the results shows a 

good agreement between the DQ and the aforementioned methods. However, the DQ results are closer 

to the results obtained by FEM compare with those of the FSM and Fourier series method. 

The effect of grid spacing on the buckling temperature was also investigated for the squared single-

layer plate with lamina fiber angle equal to zero, presented in the previous case study. Here we examine 

the effect of grid spacing through the use of the following sets of sampling points in the normalized 

region [0,1]

 (15)

 (16)

(17)

 (18)

where the first scheme is based on the uniform spacing, and the others are referred to as the zeros of 

the shifted Chebyshev, Legendre, and Chebyshev-Gauss-Lobatto polynomials, respectively. Similar 

spacing schemes for the sampling points were used in the y direction. Fig. 3 illustrates the performance 

of the above grid spacing for different number of sampling points. As can be seen from the figure, the 

Fig. 3 Convergence of DQ method with different grid spacing schemes
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critical buckling temperature for all grid spacing schemes converged rapidly to the solution. Moreover, 

using Chebyshev-Gauss-Lobatto sampling points produces the best convergence among all the schemes. 

Therefore, for the rest of this study we used this scheme. 

To study the effects of fiber orientation on the thermal buckling, a five-layer laminated symmetric 

plate (θ / -θ /θ /-θ /θ ) with different aspect ratios is considered for investigation. The material properties

of the lamina are the same as set 2 in Table 3. The critical temperature for the plate, which is subjected 

to a uniform temperature field, is calculated and compared with those of FEM and FSM. 

Fig. 5 Variation of critical temperature with fiber orientation for thin rectangular, symmetric angle-ply laminates
with C1 and S1 boundary conditions – (a / b = 2, b / h = 100). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe
and Ge (2000))

Fig. 4 Variation of critical temperature with fiber orientation for thin square, symmetric angle-ply laminates 
with C1 and S2 boundary conditions – (a / b = 1 , b / h = 100). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe
and Ge (2000))
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Figs. 4 and 5 show the results of the critical temperature for a thin plate under simply supported and 

clamped boundary conditions. The lamina fiber angle is successively rotated from 0o to 90o (with 

respect to the longitudinal, x-axis). As seen in the figures, the DQ results agree well with those of FSM 

and FEM. Moreover, in Fig. 4, the buckling temperature has a large variation around θ  = 45o for S2 and 

C1 boundary conditions of an squared plate, while for the plate with aspect ratio of two, the maximum 

buckling temperature occurs at 0o = 60o for S1 boundary conditions and at around θ = 55o for C1 

boundary conditions. These results are in agreement with those in (Prabhu and Dhanaraj (1994), Dawe 

and Ge (2000)). 

Figs. 6 to 9 show the effect of different modulus ratios on the critical buckling temperature of thick 

Fig. 6 Variation of critical temperature with fiber orientation for thick square, symmetric angle-ply laminates 
with S1 boundary condition – (a / b = 1 , b / h = 10). ([3]=Prabhu and Dhanaraj (1994))

Fig. 7 Variation of critical temperature with fiber orientation for thick rectangular, symmetric angle-ply 
laminates with S1 boundary condition – (a / b = 2 , b / h = 10). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe 
and Ge (2000))



142 S. Moradi and Mohammad Hassan Mansouri
symmetric angle-ply plates. As seen from these figures, the DQ results are in good agreement with 

those of FEM and particularly with FSM. Increasing modulus ratio would result in an increase in the 

overall buckling temperature. Furthermore, the maximum critical temperature occurs at the 45-degree 

fiber orientation for squared thin or thick plates. 

The DQ results for five-layers square symmetric cross-ply plate, (0 / 90 / 0 / 90 / 0), under simply-

supported and clamped boundary conditions with material property set 2, are compared with those of 

FEM in Fig. 10. As can be seen, good agreement stands between the results. The figure also shows that 

reduction in the thickness of the plate results in a drastic reduction of critical temperature.

Fig. 8 Variation of critical temperature with fiber orientation for thick square, symmetric angle-ply laminates 
with C1 boundary condition – (a / b = 1 , b / h = 10). ([3]=Prabhu and Dhanaraj (1994))

Fig. 9 Variation of critical temperature with fiber orientation for thick rectangular, symmetric angle-ply 
laminates with C1 boundary condition – (a / b = 2 , b / h = 10). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe 
and Ge (2000))
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3.2 Anti-symmetric laminates

The bifurcation buckling analysis can be used to analyze anti-symmetric angle-ply and cross-ply 

laminated plates. The results of the application of DQ method to the thermal buckling analysis of anti-

symmetric angle-ply composite plates for different fiber angles and aspect ratios are tabulated in Table 4.

In this table the DQ results, obtained by a 11 × 11 grid points, are compared with those of Dawe and Ge 

(2000). They used the FSM to analyze the thermal buckling problem of composite plates. In order to 

obtain the buckling temperature, they used a pre-buckling analysis followed by a buckling analysis 

using Reissner-Mindlin first order SDPT. 

The results of FSM are presented for two different types of formulation. The first type considers the 

full expression for potential energy of the pre buckling stresses, while the second type uses a reduced 

and approximate expression. As seen from this table, the results of the DQ method are in excellent 

agreement with type 2 FSM results of Dawe and Ge (2000), while showing a small difference with 

those of type 1. 

Figs. 11 and 12 show the results of the DQ, FEM and FSM for square anti-symmetric angle-ply plates 

Table 4. Critical temperatures of antisymmetric angle-ply plates with S3 boundary conditions and material 
property set 3 – (a/h = 20).

Tcr (
oC)

a/b Lay-upa DQ – (9 × 9) FSM, Type 1* FSM, Type 2*

1/2 [26.9/-31.4]a 1841.23 1834 1841

2/3 [25.5/-31.9]a 1856.54 1849 1857

1 [45/-45]a 2032.55 2025 2033

3/2 [-64.5/58.3]a 3735.43 3697 3735

2 [-63.1/58.6]a 5938.29 5849 5938

a
*(Dawe and Ge (2000))

θ1/θ2[ ]a θ1/θ2/ θ2/ θ1––( )≡

Fig. 10 Variation of critical temperature with b/h ratio for square symmetric cross-ply laminates with S1 and 
C1 boundary condition – (a / b = 1 , E1 / E2 = 40). ([3]=Prabhu and Dhanaraj (1994))
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subjected to a uniform thermal field under simply supported and clamped boundary conditions. The 

plates have 4 and 8 layers in the form of (θ / -θ) layup with constant thickness and material property set 

4. The figures show that there are an excellent agreement between these methods for the simply 

supported plates, while the results of FEM have some differences compare with those of DQ and FSM 

for the clamped plates. In this case, the FEM predicts higher quantities, particularly for the 0 and 90 

deg. lamina angles. For anti-symmetric square plates, similar to symmetric angle-ply plates, the critical 

temperature variations are symmetric with respect to 45 deg. lamina angle. The critical temperatures of 

a square antisymmetric cross-ply composite plate, under clamped boundary conditions, for different 

aspect ratios are shown in Table 5. 

Fig. 11 Variation of critical temperature with fiber orientation for thick square, antisymmetric angle-ply 
laminates with S3 boundary condition – (a / b = 1, a / h = 20). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe
and Ge (2000))

Fig. 12 Variation of critical temperature with fiber orientation for thick square, antisymmetric angle-ply 
laminates with C1 boundary condition – (a / b = 1 , a / h = 20). ([3]=Prabhu and Dhanaraj (1994), [6]=Dawe
and Ge (2000))
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4. Conclusions

In this study the application of DQ method to the thermal buckling analysis of laminated composite 

plates were investigated. The critical load was obtained under a uniform temperature distribution and 

arbitrary boundary conditions. A pre-buckling membrane analysis followed by an eigenvalue analysis 

based on FSDT was used to find the critical buckling temperature. Several case studies were investigated to 

establish the applicability and the integrity of the proposed methodology. These included the symmetric 

and anti-symmetric thin and thick composite plates with different boundary conditions. The results 

validate the applicability of the method for solving such engineering problems. The method provides 

accurate results with relatively minimal computational and modeling efforts.
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CC

Appendix A. A review of differential quadrature method

Bellman and Casti (1971) introduced the DQ method for solving linear or nonlinear differential

equations. The method states that the partial derivative of a function with respect to a space variable can 

be approximated by a weighted linear combination of function values at some intermediate points in the 

domain of that variable. To show the mathematical representation of DQ method, consider a function f

=f(x,y); the rth-order derivative of function f with respect to x, the sth-order derivative of function f with 

respect to y and the r+sth-order derivative of function f with respect to both x and y at an intermediate 

discrete point identified by coordinates xi and yj can be approximated by the weighted linear sum of the 

function values as:
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(A.1)

Here, the domain is divided into nx discrete points (sampling points) in the x direction and ny in the y 

direction.  and  are the weighting coefficients of the rth and the sth order partial derivative of f

with respect to x and y, respectively. The weighting coefficients may be determined explicitly once and 

for all discrete points, irrespective of the position and number of sampling points as proposed by Shu 

and Richards (1992). They used Lagrange interpolating function as the test function and derived the 

following recurrence formulae for the weighting coefficients

(A.2)

where

(A.3)

The above relations are not affected by the number of sampling points and thus, significantly reduce 

the computational effort.

ci j

r( )
ci j

s( )
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