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Elasto-plastic behaviour of perforated steel plates
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Abstract. The aim of this work is to provide some insights into the elasto-plastic behaviour of plate girder
web square and rectangular panels with centred and eccentric holes under both compression and in-plane
bending moment. The numerical study was validated comparing the numerical results obtained for one simple
steel plate configuration with the corresponding experimental results, obtained at the University of Padova,
observing the influence of the initial out-of-plane imperfections on the force vs. displacement relationship and
ultimate strength. Once validated the numerical approach, the effect of bending moment on the stability of the
plate is studied and some differences with respect to the uniform compression load case are shown. The
influence of dimension and position of the hole, the plate aspect ratio and the steel grade on elasto-plastic
behaviour is observed. Some indications regarding the critical slenderness (at which transition from elastic to
plastic collapse occurs) are given for square and rectangular plates with symmetric and eccentric holes having
small, medium and large diameter.
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1. Introduction

The problem of plate stability is of particular interest for steel structures particularly bridges. Holes

are often unavoidable in webs of steel beams and in plates, due to inspection, maintenance and also

aesthetic purposes. In these situations, presence of holes may cause redistribution of plane stresses in

plates with a significant reduction of stability. Considerable research on perforated thin plates has been

conducted by Roberts and Azizian (1984) about buckling and elasto-plastic collapse, Cheng and Fan

(2001) about non-linear theory, and Shanmugam et al. (1999) about axially compressed perforated plates.

Shanmugam et al. (2002) gave some insights on Finite Element modelling, Azhari et al. (2005) about

local buckling and El-Sawy and Martini (2007) about stability of bi-axially loaded rectangular plates.

Bedair (1997) studied the influence of in-plane restraint, Brown (1990) the concentrated loads, and Brown

et al. (1987) the rectangular holes. Other contributions were given by Durban and Zuckerman (1999)

about biaxial compression/tension, Narayanan and Chow (1984) about ultimate capacity of uniaxially

compressed perforated plates, Narayanan and Darwish (1985) about strength of slender webs having

eccentric holes and Pellegrino et al. (2009) about behaviour of perforated plates under shear loading.

The works of El-Sawy and Martini (2001) and El-Sawy et al. (2004) describe the results of an
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extensive research into linear and non-linear buckling analysis of perforated plates with uniformly

distributed loads and the works of Maiorana et al. (2008a) and Maiorana et al. (2009a) describes linear

and non-linear behaviour of plates under localised symmetrical loads.

While a number of studies have been developed about linear buckling behaviour of steel plates

without perforations, even subjected to patch loading and bending moment (Maiorana et al. 2008b),

few works are available on perforated plates and the particular case of elasto-plastic behaviour of

perforated plates under both axial compression and in-plane bending moment is not deeply

investigated. The linear buckling analysis was treated in Maiorana et al. (2009b). Komur and Sonmez

(2008a, 2008b) developed elastic buckling analyses of rectangular plates with a circular cutout under

linearly varying in-plane normal load. This work shows some new insights if compared with Maiorana

et al. 2009b and Komur and Sonmez (2008a, 2008b) since elasto-plastic behaviour is studied.

In this work the Straus7 FEM code (G + D Computing 2005) was used for a parametric investigation

in the elasto-plastic field on perforated plates subjected to in plane loading derived from the

combination of both axial forces and bending moments. Stress ratios ψ = −1 (pure bending), −0.5, 0,

0.5, 1 (pure compression) were considered (see Fig. 1). The elastic behaviour until buckling load was

investigated by a linear buckling analysis whereas the plastic phase was studied by a non-linear large

deflection analysis.

The parameters taken into account are those mainly influencing the post-critical behaviour of

perforated panels and are: (a) diameter d and position ex of the hole; (b) panel slenderness λ and aspect

ratio α ; (c) yielding stress of the material fy. A36 steel with fy = 248 N/mm2, A50 with fy = 345 N/mm2

and A60 with fy = 414N/mm2 were considered and an elastic-perfectly plastic law was assumed for the

analysis.

Fig 1. Loading scheme and boundary conditions for the validation (a) and the rest of the analyses (b). 
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Aspect ratios a / b = 1 (square plate), a / b = 2 and 3 (rectangular plates) and holes with small (d /b

= 0.1), medium (d /b = 0.3) and large (d /b = 0.5) diameters were considered. The following hole

positions were analysed: ex / b = 0.5 for square plates, ex / b = 0.5, 1 and 1.5 for rectangular plates.

These positions are significant according to the critical deformed mode of the plate when subjected to

uniform compression: they are the “nodal” point (ex / b = 1) where the sinusoidal shape does not show

any out-of-plane displacement and the “maximum” points (ex / b = 0.5 and 1.5) where the sinusoidal

shape shows the greatest value of the out-of-plane displacement (Maiorana et al. 2008a).

Critical slenderness (at which transition from elastic to elasto-plastic instability occurs) was

calculated for square and rectangular plates with symmetric and eccentric holes having small, medium

and large diameter when the stress ratio varies.

Linear buckling analyses were performed to obtain the elastic critical stress fcr (corresponding to the

critical value of σ0) and compare this value with the yielding stress fy on the basis of the ratio fcr / fy. If

fcr / fy > 1, the failure of the plate is due to excessive steel yielding in the plastic field; if fcr / fy < 1, plate

failure is due to instability and occurs in the elastic field (El-Sawy and Martini 2001). For thin plates

(i.e., with high values of slenderness) instability occurs for elastic buckling stress fcr less than yielding

stress fy, especially if the plate has small holes. On the contrary, instability could occur after material

yielding in stocky plates (i.e., with low slenderness values) or perforated plates with large holes.

2. Validation of the procedure

A sensitivity analysis to define the shape and dimensions of the elements was developed and

extensively described by the authors in Pellegrino et al. (2009). Discretizations with the following

elements were considered: (a) square elements for the entire model except the zone around the hole,

where trapezoidal elements with four nodes were used; (b) square elements for the entire model except

the zone around the hole, where triangular elements with three nodes were used; (c) triangular elements

for the entire model. Deformed shape and buckling coefficient are not significantly influenced by mesh

element shape or size, so that plate elements with four nodes and six degrees of freedom for each node

were used for the following analyses. The typical size of the element was about b / 20, and the elements

along the perimeter and near the hole had dimensions of b / 50 or πd / 40 (see Fig. 2). Further details on

the sensitivity analysis can be found in Pellegrino et al. (2009).

In order to validate the numerical approach and the discretization, a comparison between numerical

Fig 2. Sample mesh for rectangular plates with circular hole in different positions



134 Emanuele Maiorana, Carlo Pellegrino and Claudio Modena

and experimental results, in terms force vs. out-of-plane displacement diagram, obtained on panels

tested at the Materials Testing Laboratory of the Department of Structural and Transportation Engineering,

University of Padova, was developed.

The boundary conditions for the FE model used in the benchmarking are the same of the model used

in the rest of the theoretical study. The only difference is the load configuration (localised load for the

benchmarking and in-plane axial load plus bending moment for the rest of the study). In Fig. 1(a)

boundary conditions and load configuration for the benchmarking and in Fig. 1(b) boundary conditions

and load configuration for the rest of the analyses are shown. The four edges were simply supported in

the out-of-plane direction, in-plane rigid movements were constrained by means of restraints located as

shown in Fig. 1(a) and (b). The load was applied directly to the nodes as a system of conservative forces

that do not change direction after the deformation.

Considering the non-linear buckling analyses developed in Maiorana et al. (2009c), it seems appropriate

to assume the deformed shape, corresponding to the first buckling mode, as initial configuration of the

panels with and without perforations to study their elasto-plastic behaviour since results in terms of

ultimate load for actual panels with measured imperfections and numerically deformed ones were

similar for each configuration of the load, dimension and position of the hole. In the non-linear analyses

the magnitude of the initial deformation, derived from the linear buckling analysis, is less than b/100

since Maiorana et al. (2009c) showed that the influence of the initial deformation on the ultimate load is

not significant when its magnitude is less than b/100.

The panel taken into consideration for the benchmarking is a square panel with dimensions

a = b = 500 mm and thickness t = 5 mm (slenderness λ = 100). Carbon steel grade S355J0 with

Young’s modulus E = 206000 N/mm2 and Poisson’s ratio v = 0.3 was used.

The test regards a panel similar to those studied in the paper. The only difference is the load

condition: in-plane symmetrical localized load is applied in the experimental investigation and in-plane

compression and bending was applied in the numerical study. This is due to the practical difficulty to

apply both in-plane compression and bending to the specimens during the experimental tests.

Nevertheless the experimental results can be used to validate the numerical approach even if the load

configuration was different.

The length of the localised load was kept constant (ratio between length of the load and dimension of

the panel ss / a = 0.2). The tests on the panels were carried out monotonically, under a 10000 kN

loading capacity machine, with loads increased between 0.5 and 2.5 kN/s. Pressure transducer mounted

on the loading machine was used to measure the applied loads. The panels were instrumented with a

number of linear variable differential transducers (LVDT) placed orthogonally to the web to measure

out-of-plane web displacements.

Fig. 3 shows a synthesis of the comparison between numerical and experimental results: Fig. 3(a)

shows the numerical and experimental deformed shapes at 25% and at 100% of the ultimate load, Fig.

3b the static scheme with the location of the measurement points, Fig. 3(b) the experimental force vs.

displacement diagram in one significant point compared with the numerical one obtained with an initial

deformed configuration corresponding to the first buckling mode with different maximum initial out-

of-plane displacements (1.25 mm, 2.5 mm and 5 mm).

It can be observed that the numerical results are in good agreement with the experimental ones both

in terms of out-of-plane deformed shape (Fig. 3(a)) and load vs. out-of-plane displacement diagram

with a small influence of the amplitude of the considered initial imperfection (Fig. 3(c)).



Elasto-plastic behaviour of perforated steel plates subjected to compression and bending 135

3. Square plates

In the following fcr / fy vs. λ diagrams are shown for square plates (a / b = 1) with small, medium and

large holes (d / b = 0.1, 0.3 and 0.5), located in the centre of the plate (ex / b = 0.5) subjected to pure in-

plane bending (ψ = −1), combination of axial compression and bending (ψ = −0.5, 0 and 0.5) and pure

compression (ψ = 1). A36, A50 and A60 steel plates were considered.

Fig. 4 shows, as an example, fcr / fy vs. λ diagrams for A36 ( fy = 248 N/mm2) steel square plates with

circular holes having d / b = 0.1 and 0.5 located in the centre of the panel (ex / b = 0.5). The grey curves

are obtained with linear buckling analysis, the black curves with non-linear analysis.

The diagrams in Fig. 4 have similar trends with progressive reduction of fcr / fy when λ increases. For

λ < λcr, where λcr is the critical slenderness at which transition between elastic and elasto-plastic fields

is observed, failure in plastic field occurs. Critical stresses are minor for large holes (d / b = 0.5) than

for small holes (d / b = 0.1): the increase of d / b causes the reduction of the stability. The plastic field,

in which the collapse occurs for steel yielding, increases with the reduction of since the collapse is due

to excessive plasticization for pure bending (ψ = −1). In the case of the ψ = −1, the elasto-plastic

curves are the same for different hole dimensions, hence, for pure bending, the diameter of y the hole

does not influence the critical stress of the plate. Such behaviour is due to the position of the hole in

relation to the stress ratio, since the effect of the applied load is small at the centre of the plate, where

Fig 3. Validation of the numerical model. (a) numerical and experimental deformed shape at 25% and 100%
of the ultimate load; (b) static scheme with measurement points; (c) numerical (with various values of
the initial imperfections) and experimental force vs. displacement diagram for point n. 9
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the hole is located, while it becomes maximum near the compression and tension edges, where the plate

has a solid continuous strip capable of carrying the load. The difference between the elasto-plastic

curves corresponding to small and large hole diameters increases with y and for pure compression (y

=1) the maximum stress is in the perforated zone.

For ψ = −0.5 holes with d / b = 0.1 do not substantially influence the collapse of the plate for the

considered slenderness range; holes with major dimension (d / b = 0.5), instead, influence the failure

mode of the plate. The opposite situation occurs for uniform compression (ψ = 1) for which every hole

size strongly influences the failure mode even for smaller slenderness. Both curves, due to linear and

non-linear buckling analyses, become closer when ψ and λ increase.

For A50 ( fy = 345 N/mm2) steel square plates with circular holes having d / b = 0.1 and 0.5 located in

the centre of the panel, lower values of the ratio fcr / fy (with respect to A36 steel) are generally obtained

for each hole size with non-linear analysis; the curves obtained with the linear buckling analysis do not

depend on steel grade.

Fig 4. fcr / fy vs. λ diagrams for square plates and hole in ex / b = 0.5; A36 steel
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Furthermore, for A60 ( fy = 414 N/mm2) steel square plates with circular holes located in the centre of

the panel, lower values of the ratio fcr / fy (with respect to A36 and A50 steel) are generally obtained

with elasto-plastic analyses.

Less sudden plastic collapse occurs and post-critical mechanisms develop in steel plates with reduced

yielding strength.

Fig. 5 shows the limit between the elastic and plastic field in a d / b vs. λ diagram for square plates

and A36, A50 and A60 steel. The hole is located in ex / b = 0.5. The diagram for ψ = −1 shows only the

curve for A60 steel because the curves for A36 and A50 steel are out of scale.

Critical slenderness reduces when steel grade and ψ increases.

For holes with d / b = 0.1 the critical slenderness λcr does not vary with respect to the corresponding

unperforated plate since the distribution of stresses does not significantly vary. For holes with d /

b = 0.3, when ψ = 1 and 0, λcr is the same of the plates with d / b = 0.1 and without holes. For with d /

b = 0.3, when ψ = −0.5, λcr is instead significantly minor than the corresponding case of holes with d /

b = 0.1 due to the variation of the distribution of the plate stresses. For holes d / b = 0.5, an increase of

Fig 5. Elastic and plastic fields for square plates and hole in ex / b = 0.5; A36, A50 and A60 steel
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λcr and consequently widening of the plastic field occurs. In this case, the reduced amplitude of the

zone between hole edge and loaded edge make the plate more prone to yield rather than buckle even for

relatively high slenderness. 

Some slenderness limits, below which plastic collapse occurs, are found for various found for various

load conditions and hole dimensions. For small diameters: λ = 88 for ψ = −1, λ = 68 for ψ = -0.5,

λ = 56 for ψ = 0, λ = 50 for ψ = 0.5 and λ = 48 for ψ = 1.

4. Rectangular plates

4.1 Plates with a / b = 2 and eccentric hole in ex / b = 0.5

Fig. 6 shows fcr / fy vs. λ diagrams for A50 steel rectangular plates with a / b = 2 and circular holes,

having d / b = 0.1 and 0.5, located in the centre of the first sub-panel (ex / b = 0.5), subjected to pure

bending (ψ = −1), combined compression and bending (ψ = −0.5, 0 and 0.5) and uniform axial

compression (ψ = 1). The grey curves are obtained with linear buckling analysis, the black curves with

non-linear analysis.

The behaviour of the rectangular plate with eccentric (located in the centre of the sub-panel) hole is

similar to that of the square plate, with the only difference consisting in major resistance in the plastic

field given by the adjacent whole sub-panel. 

Fig. 7 shows the limit between the elastic and plastic field in a d / b vs. λ diagram for rectangular

plates with a / b = 2, eccentric hole (ex / b = 0.5), and A50 steel. Load conditions are combined

compression and bending (ψ = −0.5, 0 and 0.5) and uniform axial compression (ψ = 1). The diagram

for ψ = −1 (pure bending) is not included because it is out of scale.

Comparing with square plates, an increment of λcr , and the consequent increase of the plastic field

amplitude, is observed for holes with d / b = 0.3 and 0.5. This is due to the major resistance in the

plastic field given by the adjacent whole sub-panel.

Some slenderness limits for A50 steel, below which plastic collapse occurs, are found for various

load conditions and hole dimensions. For small diameters: λ = 83 for ψ = −0.5, λ = 69 for ψ = 0,

λ = 62 for ψ = 0.5 and λ = 61 for ψ = 1.

4.2 Plates with a / b = 2 and centred hole with ex / b = 1

Fig. 8 shows fcr / fy vs. λ diagrams for A50 steel rectangular plates with a / b = 2 and circular holes,

having d / b = 0.1 and 0.5, located in the centre of the plate between the first and the second sub-panels

(ex / b =1), with stress ratios ψ = −1, −0.5, 0, 0.5, and 1. 

Comparing with the corresponding diagrams for square plates and rectangular plates with a / b = 2

and eccentric hole in ex / b = 0.5 (Fig. 6), the curves in Fig. 8 are less steep with higher values of the

ratio fcr / fy, particularly for plates with hole d / b = 0.5. The greater distance of the hole from the loaded

edge, with respect to the case of eccentric hole, allows more pronounced stress redistribution and a

reduction of stress concentrations near loaded edges; this circumstance means that the plate is, in this

last case, less prone to buckling. 

The curves obtained with linear buckling analysis for holes with d / b = 0.1 and 0.5 are closer than the

above cases confirming that the dimension of the hole has less influence for the stability of the plate if

the hole is in the “nodal” point of the critical deformed shape (the “nodal point” is assumed as the
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Fig 6. fcr / fy vs. λ diagrams for rectangular plates with a / b = 2 and hole in ex / b = 0.5; A50 steel

Fig 7. Elastic and plastic fields for rectangular plates with a / b = 2 and hole in ex / b = 0.5; A50 steel
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Fig 8. fcr / fy vs. λ diagrams for rectangular plates with a / b = 2 and hole in ex / b = 1; A50 steel

Fig 9. Elastic and plastic fields for rectangular plates with a / b = 2 and hole in ex / b = 1; A50 steel
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position where the sinusoidal shape does not show any out-of-plane displacement).

Fig. 9 shows the limit between the elastic and plastic field in a d / b vs. λ diagram for rectangular

plates with a / b = 2, centred hole (ex / b = 1), and A50 steel. Stress ratios ψ = −0.5, 0, 0.5 and 1 are

again considered. The diagram for ψ = −1 is not included because it is out of scale.

Smallest critical slenderness always corresponds to unperforated plates; this circumstance does not

always occur in the previous cases. In this case the increase of the hole diameter causes the increase of

the critical slenderness.

Comparing elastic and plastic fields for rectangular plates with a / b = 2 and centred hole in ex / b = 1

(Fig. 9) with corresponding plates having eccentric hole in ex / b = 0.5 (Fig. 7), a reduction of the elastic

field is observed for centred hole (ex / b = 1), particularly for holes with d / b = 0.3 and 0.5; this

confirms the major stability of the plate with centred hole. 

Some slenderness limits for A50 steel, below which plastic collapse occurs, are found for rectangular

plates with a / b = 2 and centred small hole in ex / b = 1: λ = 88 for ψ = −0.5, λ = 70 for ψ = 0, λ = 63

for ψ = 0.5 and λ = 61 for ψ = 1.

4.3 Plates with a / b = 3 and hole with ex / b = 0.5, 1 and 1.5

Fig. 10 shows fcr / fy vs. λ diagrams for A50 steel rectangular plates with a / b = 3 and circular holes,

having d / b = 0.1 and 0.5, located in the centre of the first sub-panel (ex / b = 0.5), with stress ratios

ψ = −1, −0.5, 0, 0.5, and 1.

The comments are similar to those following Fig. 6 (plate with a / b = 2 and hole in ex / b = 0.5).

Fig. 11 shows the limit between the elastic and plastic field in a d / b vs. λ diagram for rectangular

plates with a / b = 3, hole in ex / b = 0.5, and A50 steel. Stress ratios ψ = −0.5, 0, 0.5 and 1 are again

considered.

Some slenderness limits for A50 steel are found for rectangular plates with a / b = 3 and hole in ex /

b = 0.5: λ = 84 for ψ = −0.5, λ = 69 for ψ = 0, λ = 63 for ψ = 0.5 and λ =  60 for ψ = 1.

Fig. 12 shows fcr / fy vs. λ diagrams for rectangular plates with circular holes between the first and the

second sub-panel (ex / b = 1).

The comments are similar to those following Fig. 8 (plate with a / b = 2 and hole in ex / b = 1).

Critical stresses obtained for plates with a / b = 3 are higher than those for plates with a / b = 2 due to

major reserve of strength of the longer plate in plastic phase.

Fig. 13 shows elastic and plastic fields in a d / b vs. λ diagram for ex / b = 1. Critical slenderness for

plates with a / b = 3 are lower than those of the corresponding plates with a / b = 2 and hole in ex /

b = 1, for d / b = 0.3 and 0.5 (see Fig. 9). Hence an increase of the elastic field amplitude occurs when

the aspect ratio a / b increases.

Slenderness limits for rectangular plates with a / b = 3 and hole in ex / b = 1 (A50 steel) are the same

of the plates with a / b = 2 and hole in ex / b = 1 (Fig. 9).

Fig. 14 shows fcr / fy vs. λ diagrams for rectangular plates with a / b = 3 and circular holes, having d /

b = 0.1 and 0.5, with the centre in the second sub-panel (ex / b = 1.5).

Critical stresses obtained for plates with a / b = 3 and hole in ex / b = 1.5 are near to those for plates

with a / b = 3 and ex / b = 0.5 (see Fig. 10). Both the positions of the centre of the hole correspond, for

the considered load conditions, to “maximum” points (assumed as the position where the sinusoidal

shape shows the maximum out-of-plane displacement) of the critical deformed shape of the

unperforated plate. This is the worst position of the hole as regards stability behaviour. The increase of

the critical stresses from hole in ex / b = 0.5 to hole in ex / b = 1.5 is due to the fact that the hole is far
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Fig 10. fcr / fy vs. λ diagrams for rectangular plates with a / b = 3 and hole in ex / b = 0.5; A50 steel

Fig 11. Elastic and plastic fields for rectangular plates with a / b = 3 and hole in ex / b = 0.5; A50 steel
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Fig 12. fcr / fy vs. λ diagrams for rectangular plates with a / b = 3 and hole in ex / b = 1; A50 steel

Fig 13. Elastic and plastic fields for rectangular plates with a / b = 3 and hole in ex / b = 1; A50 steel
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from the loaded edge when ex / b = 1.5.

Critical stresses obtained for plates with a / b = 3 and hole in ex / b = 1.5 are near to those for plates

with a / b = 3 and ex / b = 1 (see Fig.12) Although the geometric configuration of hole in ex / b = 1

corresponds to a “nodal” point (assumed as the position where the sinusoidal shape does not show any

out-of-plane displacement). Holes having the centre in “nodal” points have a reduced influence on the

stability of the plate.

Fig. 15 shows elastic and plastic fields in a d / b vs. λ diagram for ex / b = 1.5. Critical slenderness for

plates with a / b = 3 and centred hole in ex / b = 1.5 are lower than those of the corresponding plates

with a / b = 3 and hole in ex / b = 1 (Fig. 13) for holes with d / b = 0.3 and 0.5. Hence an increase of the

elastic field amplitude occurs, for rectangular plates with a / b = 3, when the hole moves towards the

centre of the plate. Critical slenderness for plates with a / b = 3 and centred hole in ex / b = 1.5 are

higher than those of the corresponding plates with a / b = 3 and hole in ex / b = 0.5 (Fig. 11) for holes

with d / b = 0.3 and 0.5. The critical slenderness, instead, does not vary for plates with hole size

d / b = 0.1 with respect to the unperforated plate.

Fig 14. fcr / fy vs. λ diagrams for rectangular plates with a / b = 3 and hole in ex / b 1.5; A50 steel



Elasto-plastic behaviour of perforated steel plates subjected to compression and bending 145

Slenderness limits for rectangular plates with a / b = 3 and small hole in ex / b = 1.5 (A50 steel) are as

follows: λ = 88 for ψ = −0.5, λ = 70 for ψ = 0, λ = 62 for ψ = 0.5 and λ = 60 for ψ = 1. 

5. Conclusions

In this work the elasto-plastic behaviour of plate girder web square and rectangular panels with

centred and eccentric holes under both compression and bending moment was studied. 

In order to validate the numerical approach, a comparison between numerical and experimental

results, in terms of force vs. out-of-plane displacement diagram and deformed shape, obtained on

panels tested at the University of Padova, was developed and a good agreement was obtained.

The influence of the following parameters on stability and elasto-plastic collapse was numerically

investigated:

- shape of the plate (square – a / b =1 – and rectangular – a / b = 2, 3);

- steel grade (A36, A50, and A60 with fy = 248, 345 and 414 N/mm2 respectively);

- dimension (d / b = 0.1, 0.3, and 0.5) and position of the circular hole (ex / b =  ratio);

- load configuration corresponding to uniform compression (ψ =1), combination of axial force and

bending moment (ψ = 0.5, 0 and −0.5) and pure bending (ψ = −1).

The following conclusions can be drawn.
● Elastic curves of plates with different hole dimensions become closer when stress ratio ψ increases

while distance between elasto-plastic curves of plates with different hole dimensions increases

when stress ratio ψ increases.
● Plastic field reduces (critical slenderness decreases) when ψ increases. 
● The increase of the hole size causes the reduction of the plastic strength.
● Rectangular perforated plates show more pronounced plastic behaviour than square plates

(depending on hole position).
● Rectangular plates with the centre of the hole in the “maximum” point of the critical deformed

shape of the corresponding unperforated plate, far from the loaded edge, show major stability and

higher plastic strength than square plates. Any appreciable differences have been observed between

square and rectangular plates with hole in ex / b = 0.5 (near the loaded edge).
● Plates with the centre of the hole in the “nodal” point of the critical deformed shape show major

stability and higher plastic strength than plates having the centre of the hole is in the “maximum”

point of the critical deformed shape.

Fig 15. Elastic and plastic fields for rectangular plates with a / b = 3 and hole in 1.5; A50 steel
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Appendix 1: Notation.

Symbol Description

a panel length

b panel width

d hole diameter

E elastic Young’s modulus of plate’s material

Fu ultimate load

fcr elastic critical stress

fy yielding stress

t thickness of the panel

x hole position along horizontal axis

α aspect ratio of rectangular plate (a/b)

λ plate slenderness (a/t)

λcr critical slenderness at which buckling type changes from elastic to elasto-plastic

σ0 reference stress value applied at panel ends

ψ stress ratio of the linearly varying end stress

ν Poisson’s ratio of plate’s material




