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Stochastic finite element analysis of composite plates
considering spatial randomness of material

properties and their correlations
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Abstract Considering the randomness of material parameters in the laminated composite plate, a scheme of
stochastic finite element method to analyze the displacement response variability is suggested. In the formulation
we adopted the concept of the weighted integral where the random variable is defined as integration of stochastic
field function multiplied by a deterministic function over a finite element. In general the elastic modulus of
composite materials has distinct value along an individual axis. Accordingly, we need to assume 5 material
parameters as random. The correlations between these random parameters are modeled by means of correlation
functions, and the degree of correlation is defined in terms of correlation coefficients. For the verification of the
proposed scheme, we employ an independent analysis of Monte Carlo simulation with which statistical results
can be obtained. Comparison is made between the proposed scheme and Monte Carlo simulation.

Keywords: Composite laminates, stochastic finite element analysis, spatial randomness, correlation,
coefficient of variation.

1. Introduction

It is of importance to consider the stochasticity of composite structures because the number of

parameters which can have randomness is, in general, greater than that of isotropic materials.

Accordingly, the effect of correlation between these random parameters on the response variability is

also of high concern. This is caused by complex manufacturing processes which render composite

materials random in nature. Even with this intrinsic randomness, the composite material has nevertheless

been used extensively in a variety of structures due to high specific strength and stiffness to weight

ratios, high design flexibility, durability to fatigue and corrosion, and so on (Singh et al., 2002).

Therefore, the reliable estimation of degree of uncertain response of the structures built with composite

materials is of great importance.

While the stochastic analysis on the effect of random excitation to the structure has been extensively

established (Nigam, 1994), the investigation on the effect of material randomness on the response is to

a degree limited (Singh et al., 2002) due to the complexity in taking into account the various random

parameters. Even though the Monte Carlo analysis provides a general way of computing random

responses owing to the simplicity of the scheme, it needs to generate numerically the complex random

fields complying with the pre-assigned probabilistic characteristics of the analysis domain and more

importantly, an additional statistical operation is necessary on a set of deterministic analyses. In
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response to these drawbacks, some non-statistical methodologies have been developed (Antonio and

Hoffbauer 2007, Cavdar et al. 2008, Lal et al. 2007, Noh 2004, Noh and Park 2006, Ngah and Young

2007, Papadopoulous et al. 2006). The weighted integral method, among others, which has been

applied to analyze truss, beam, plane-problems, plate bending and so on, is known to give a more

accurate response variability than the other schemes available in the literature (Deodatis 1991, Graham

and Deodatis 1998, Noh and Park 2006, Schuëller 2001, Stefanou 2009). In the weighted integral

method, the random variable is defined as an integration of a stochastic field function multiplied by a

deterministic function over a finite element domain.

In this study, we suggest a formulation using a weighted integral scheme to the analysis of composite

laminate plates considering material parameters as random. The random parameters we take are elastic

moduli E1, E2 and in-plane and out-of-plane shear moduli G12, G13 and G23. The correlation between

aforementioned 5 random parameters are modeled with corresponding auto- and cross-correlation functions

The proposed scheme is verified with some numerical illustrations, and is also compared with the

Monte Carlo analysis based on the local averaging scheme, which is told to give more accurate results

than the mid-point rule.

2. Constitutive relation of laminate composite

2.1 Constitutive relation matrix

When we deal with the randomness in material parameters we need to investigate into constitutive

relations since effects of the material parameters on the response is condensed in these relations. The

constitutive relation for composite material is widely known to be as follows

(1a)

or using brief matrix notations we get

(1b)

The first part has to do with in-plane behavior and the second part is for shear deformation. The

expression in Eq. (1) is for (k)-th lamina. The respective entries in Eq. (1) is given as Eq. (2). 

(2)

The elastic moduli E1, E2 correspond to two principal axes of the material. The value of the

parameters depends on the volumetric portion of two materials that constitute the composite. Due to
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a ratio of lateral strain along j-direction to axial strain along i-direction, appear. The modulus for in-

plane shear is G12, and those of out-of-plane are G23, G13.

According to the rule of mixture, the material properties of composite can be determined in terms of

volume fractions for two materials, fiber and matrix, which constitute the composite laminate. If we

denote elastic moduli of materials a and b as Ea, Eb, the total volume as V = Va + Vb, and the volume

ratio of these materials as ra = Va / V, rb = Vb / V, then the elastic moduli along the fiber direction E1 and

perpendicular to fiber, E2, are obtained as follows

(3a)

(3b)

The in-plane shear modulus G12 and the Poisson’s ratio v12 can both be given in terms of volume

ratios as follows

(4)

(5)

2.2 Transformation of constitutive relation

One of the characteristics of the laminated composites is that the material axes do not coincide with

the global axes of a structure, which forms an angle θ known as a stacking angle, between these two

sets of coordinate systems. Accordingly, the constitutive relation has to be transformed into appropriate

directions. Performing the transformation, the elements of the constitutive relation can be found to be a

function of original coefficients of constitutive relation and the angle between global and material axes,

(6)

where, c and s denote cosθ and sinθ, respectively.

The detailed expressions for coefficients of the constitutive matrix in the transformed coordinate are

given as follows
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(7b)

2.3 Material parameters with stochasticity

In this study we assume that all the elastic moduli are uncertain in the spatial domain. Owing to the

representative expression for random material properties, where the modulus is assumed to consist of

mean parameter plus the deviator component, the two elastic and three shear moduli can be expressed as

(8a)

(8b)

where αi(x), i = 1,2,...,5 denote stochastic field functions for respective random material parameters,

which represent the fluctuating component of randomness over the structural domain. The mean of the

respective random parameters are designated with over-bar symbol as , and

accordingly we can note that the mean of respective stochastic field function αi vanishes.

With a direct substitution of Eq. (8) into Eq. (2), and using the relation given in Eq. (7), we can

rearrange the constitutive relations as gathered together having corresponding stochastic field function

αi, with an omission of position vector x for the simplicity of the notation as follows

(9)

where,  where i,j = 1,2,6, l = 1,2,3 and  where i,j,l = 4,5
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(10c)

(10d)

The stress resultants for extensional, bending and extensional-bending coupling parts, Aij, Bij and Dij

respectively, can be obtained by means of integration over thickness as follows

   

     (11)

where, i, j = 1,2,6 and ‘t’ denotes the thickness of the laminate.

In a similar way, the coefficients of stress resultant for shear are obtained as follows

(12)

In Eq. (12), κ denotes shear correction factor, and a value of 5 / 6 is employed.

Consequently, total constitutive matrices for an element are given in terms of matrices A, B, D and As

as follows
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(14)

If we directly substitute constitutive matrices in Eq. (13) into Eq. (14), the stiffness matrix is divided

depending on the kinds of stochastic fields as follows

(15)

In the context of weighted integral scheme, where the integration of the stochastic field that is

multiplied by a deterministic function over the finite element domain is considered as a random

variable, the stiffness matrix in Eq. (15) becomes a function of random variable . The random

variable is defined as follows for the k-th stochastic field αk and deterministic function gij.

(16)

If we see the detailed form of Eq. (15) as given in Eq. (17),
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4. Response statistics of the displacement vector

4.1 Taylor’s expansion on the displacement vector

Employing first order Taylor’s expansion on the displacement vector with respect to the mean

random variable , we obtain the following

(19)

where, the subscript ‘ε’ denotes an evaluation at the mean, ‘e’ and ‘r’ are the indices for the finite

elements and the random variable. In order to represent the expansion in a more direct way, we can

replace the partial differentiation on the displacement vector with that on the global stiffness by

performing partial differentiation on the equation KU = F, which results in

(20)

where Ko stands for the deterministic global stiffness matrix, which is exactly the same as the mean

stiffness in the current formulation. It is noted here that the proposed scheme is applicable to the

stochastic problems with small coefficient of variation because the first order linear Taylor’s expansion

is used in the formulation.

4.2 Mean and covariance of the displacement

The mean displacement can be obtained employing the mean operation on Eq. (20). With mean

operation, it is apparent that the term in the parentheses vanishes because the operation changes 

into . As a result, the mean displacement is the following

(21)

In estimating the covariance of the displacement, we need to obtain the variation in the displacement

with respect to the mean, i.e., , which is given as follows
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rearranged as the following expression

. (24)

Since the term  is in the form of an element-related load vector, we assign , thus

the covariance operation becomes

(25)

In total, we have 5 square terms plus 10 additional pair terms for the variance and covariance between

extensional, bending, extension-bending coupling, and shear. The numerical evaluation of respective

terms in Eq. (25) can be performed based on the following double integration

(26)

where B can be BABD or BS depending on the effects that are under consideration.

4.3 Functions for correlation between random parameters

The random characteristics of respective random parameters can be directly represented if we use the

data practically acquired in the field or the data obtained by means of the numerical generation.

However, from the viewpoint of non-statistical stochastic analysis schemes, the random characteristics

are taken into account in an indirect way. One of generally accepted methods is to use correlation

functions which represent the random characteristics by an expectation on the data at two distinct points

having relative distance d.

In this study, we employ exponentially decaying auto- and cross-correlation functions as in Eq. (27).

With theses functions, the degree of correlation is assumed to decrease as the relative distance between

two distinct points increases. The function used is as follows
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where, the coefficient of variation of the stochastic field α is denoted as σαα and the correlation distance

as d. The component of relative distance vector ξ is denoted as ξ, η as shown in Fig. 1.

The cross-correlation between individual random parameters is modeled using a similar correlation

function by introducing the correlation coefficient ρα,β as follows
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As expected, the correlation coefficient takes a value in the unit interval, i.e., .

For the numerical integration on Eq. (26) adopting Eq. (27) or Eq. (28), we employ a Lobatto

integration scheme, which is known to give more accurate results for exponential functions such as in

Eqs. (27), (28).
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4.4 State of correlation between random parameters

Since we have 5 random parameters, in total 10 (5C2) correlation coefficients ρij can be defined in

between the random parameters. The number of independent correlation coefficients, however, is

restricted to only 4. For instance, if we have correlation coefficient ρ12 between parameters 1 and 2 and

ρ23 between 2 and 3, then the correlation ρ13 between 1 and 3 depends on the previous correlation

coefficients. As a result, the other coefficients all depend on these 4 independent coefficients.

Accordingly, there exists in total 16 cases of correlation state if we consider only the positive and

negative perfect correlations for respective correlation coefficient, i.e., ρij = ± 1. Namely, for independent

correlation coefficients ρ12, ρ23, ρ34, ρ45, we have 16 states as listed in Table 1.

Among the 16 correlation states, we will choose some representative ones, and the results are shown

for chosen correlation states only. Obviously, if we do not consider the randomness of the out-of-plane

shear moduli, then the correlation coefficients  and  become zero, and in

this case the number of independent correlation coefficients and the ‘Case numbers’ in Table 1 reduce

to 2 and 4, respectively. 

ρ34 ρG
12
G

13
= ρ45 ρG

13
G

23
=

Fig. 1 Relative distance vector between two distinct points in the domain of analysis

Table 1 Number of cases of correlation state for 4 independent correlation coefficients for perfectly positive
and negative correlations.

Case
number

ρ12 ρ23 ρ34 ρ45
Case

number
ρ12 ρ23 ρ34 ρ45

1 +1 +1 +1 +1 9 −1 +1 +1 +1

2 +1 +1 +1 −1 10 −1 +1 +1 −1

3 +1 +1 −1 +1 11 −1 +1 −1 +1

4 +1 +1 −1 −1 12 −1 +1 −1 −1

5 +1 −1 +1 +1 13 −1 −1 +1 +1

6 +1 −1 +1 −1 14 −1 −1 +1 −1

7 +1 −1 −1 +1 15 −1 −1 −1 +1

8 +1 −1 −1 −1 16 −1 −1 −1 −1
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5. Numerical validation

5.1 Modeling of composite plate

5.1.1 Ply orientation and stacking schemes

In case of structures made of composite materials, the layering schemes affect the structural behavior

resulting in characteristic responses. In the numerical verification for the proposed stochastic FE(finite

element) analysis formulation, we investigate the random response of composite plates of cross-ply

laminate and angle-ply laminate as well. As depicted in Fig. 2, the cross-ply laminate denotes stacking

scheme having stacking angles of 0 and 90 degree for consecutive laminae, whereas the angle-ply

laminate denotes stacking scheme having orientation of α and β for sequential lamina, where

. From the viewpoint of stacking sequence with respect to the mid-surface, the

composite plates can be divided into two kinds: symmetrical ones such as (α / β / β / α) and

asymmetric ones such as (α / β / α / β) (Fig. 3).

5.1.2 Geometry and materials for example plate

For an example plate, a 20 × 20 (m2) plate is taken which is exerted by a uniformly distributed load

having density of 1.0 per unit area. The materials are Graphite- Epoxy (T300/934) and Glass-Epoxy.

For a finite element analysis, we model the plate with 36 (6 × 6) elements exclusively. The thickness of

α β, 0 90,[ ]∈

Fig. 2 Ply orientation: Schemes of cross-ply and angle-ply

Fig. 3 Stacking schemes: symmetric and asymmetric
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the plate is 0.1 if not mentioned otherwise. We used (0/90)4 and (45/-45)4 for cross-ply and angle-ply

laminations, respectively.

 The parameters assumed to have randomness is two elastic moduli, E1, E2, and three shear moduli,

G12, G13, G23. The deterministic values of the material constant for Graphite-Epoxy (Gr-Ep) are: =

131 GPa, / = 12.67. The in-plane shear modulus = 6.895 GPa, and the out-of-plane shear

moduli are assumed to be , = 6.2055 GPa. The Poisson’s ratio v12, which is assumed as

deterministic, is 0.22. The values of the material constant for Glass-Epoxy (Gl-Ep) are: =

38.612 GPa, / = 4.67. The in-plane shear modulus  and out-of-plane shear moduli , 

are 4.317 GPa, 3.448 GPa and 4.317 GPa, respectively. The Poisson’s ratio v12 is 0.26. For all

individual random parameters, 0.1 of coefficient of variation is assumed. In the analysis, in order to

investigate into the effect of constraints, not only a fixed but also a simply supported boundary

condition is employed. The coefficient of variation (COV) of the displacement is obtained at the center

of the plate.

For a numerical validation of the proposed weighted integral stochastic finite element scheme, we

perform the crude Monte Carlo analysis adopting the so-called local averaging scheme, which is

recognized to give a more accurate solution than the mid-point rule (Stefanou 2009). For Monte Carlo

analysis, we generated 6,480 samples that comply with the spectral condition required by the

correlation functions of Eqs. (27) and (28). 

5.2 Numerical example analyses

5.2.1 Response variability depending on correlation states

Fig. 5 shows the variation of the COV of center displacement in terms of the ‘correlation state’ when

the correlation distance d is fixed at 10.0. Even though the fluctuation of the two graphs look different

from each other, we can clearly see that the variation patterns are similar, i.e. the tendency of increase

and decrease between the two graphs. In particular, the pairs (2,4), (6,8), (10,12) and (14,16) for

Graphite-Epoxy laminates, which correspond to the case where the sign of the correlation coefficient

ρ34 in between G12 and G13 is reversed, show almost identical COVs. In fact, the situation is the same

for the Glass-Epoxy laminates. This indicates that the in-plane and out-of-plane shear moduli are

E1

E1 E2 G12

G23 G13

E1

E1 E2 G12 G23 G13

Fig. 4 Geometry of example plate
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almost independent from each other in the viewpoint of stochasticity.

The maximum and minimum response variability are obtained at the case number 1 and 9,

respectively, where the sign of ρ12, the correlation coefficient between E1 and E2, is reversed and the

others are in perfect positive correlation. In the case when the correlations ρ23, ρ34, ρ45, are mixed as

perfect positive and negative or all negative, the effect of sign change in the correlation ρ12 is mitigated

resulting in the small difference between the corresponding correlation cases (e.g. case pair (2, 10),

(3,11), and so on). The same is observed for the Glass-Epoxy composites where the sign of correlation

coefficient ρ12 remains the same for respective clustering. On the other hand, the effect of shear moduli

is observed to be pronounced in the case of Graphite Epoxy composites. In passing, it should be noted

that ‘state 1’ is an ideal state because all the material parameters are assumed to be in the same form of

spatial variation over the analysis domain, such that it is far away from an actual circumstance of

distribution of random material parameters.

Figs. 6-8 show the response variability of composite plate for individual correlation states as the

correlation distance d varies. As seen in the figures, even though the trends of COV are similar to each

other for almost all the cases, the COV itself shows remarkable difference for respective correlation

states. In particular, in the case of Glass-Epoxy composite, there appears decreasing COV for the

correlation distance d after 10.0 for correlation state 9. As shown, the effect of correlation between

shear moduli, i.e., the correlation coefficients ρ34(in between correlation states 1 and 3), ρ45(in between

states 15 and 16), is as small as to be ignored. This is because the thickness of the plate is relatively

small as 0.1. The adequacy of the proposed results is approved by MCS analyses, which are given with

solid symbols in the figures. Even though we observed good agreements between the proposed scheme

and the MCS for all the cases, only a few is given in Figs. 6-8 for the sake of brevity of presentation.

We need to note here that ‘state 1’, in fact, is an ideal state where all the random parameters take

exactly the same fluctuation fashion over the analysis domain. This means that the other states are, at

least, more realistic representation of the correlation state in the composite plates between the 5 random

parameters under consideration. Furthermore, since we have the largest response variability for

correlation state 1, we can deduce that the composite plates will show lower response variability than

the plate of isotropic materials. In the case of isotropic plate the variation of the response variability

shows a similar trend to that of correlation state 1 (Graham and Deodatis 1998, Noh and Park 2006).

Fig. 5 COV of displacement depending on correlation cases: d=10.0, fixed support
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This fact indicates that the composite plates show more positive behavior than the isotropic plates from

the perspective of response variability.

Fig. 6 Symmetrically stacked plates with fixed support (Gr-Ep)

Fig. 7 Asymmetrically stacked plates with simple support (Gr-Ep)

Fig. 8 Asymmetrically stacked cross-ply lamination with simple support (Gl-Ep)
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5.2.2 Effect of thickness and randomness in the out-of-plane shear moduli
In order to investigate the effect of randomness of out-of-plane shear moduli G23, G13 on the response

variability for relatively thin plates, the thickness of the plate is considered as a variable, and two out-

of-plane shear moduli are assumed to be random or deterministic. 

The results for fixed support composite plate are shown in Table 2. It is clear that the COV is affected

only when the out-of-plane shear moduli are assumed to be deterministic. If the modulus is random, the

response COV is practically constant irrespective of the change in the plate thickness. It is also apparent

that the change in COV is larger for the thick plate than that of the thin plate. In short, the deterministic

assumption on the out-of-plane shear moduli underestimates the response COV, especially for the

relatively thick plates. Consequently, we need to consider the out-of-plane shear moduli as random in

particular when the plate is relatively thick. 

Figs. 9 and 10 further show the effects of thickness especially for the case of moderately thick plates.

To this end, we assume the thickness of the plate as 1.0. Contrary to Figs. 6-8, discrepancies in COV

between correlation states 1 and 3, and between 15 and 16, respectively, are large and thus not possible

to ignore. According to the results in Table 2, it is apparent that the effect of shear moduli is so small as

to be ignorable for thin plates, even though it increases as the thickness grows. For moderate thick

plates, we note that the randomness in shear moduli plays an important role in determining the

uncertain behavior of laminate composites.

Table 2 Effect of the plate thickness and out-of-plane shear modulus to the COV of displacement for moderately
thin laminates with thickness 0.2 and 0.02.

Ply 
scheme

Thickness

Correlation distance d % increase in (a)/(b)

10.0 1000.0 d = 10.0 d = 1000.0

random Deter. random Deter. random Deter. random Deter.

Angle
0.02(b) 7.2062 7.2056 9.9642 9.9634

0.0 0.72 0.0 0.74
0.2(a) 7.2067 7.1544 9.9642 9.8900

Cross
0.02(b) 7.1463 7.1459 9.9630 9.9625

0.0 0.54 0.0 0.54
0.2(a) 7.1464 7.1076 9.9630 9.9092

Note: (1) COV × 100 is given; (2) ‘Deter.’ signifies only the out-of plane shear modulus is deterministic (the
others are random); (3) Asymmetrically stacked and for correlation state 1.

Fig. 9 Asymmetrically stacked angle-ply lamination with
fixed support (Gr-Ep)

Fig. 10 Asymmetrically stacked cross-ply lamination with
fixed support (Gr-Ep)
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5.2.3 Investigation on the effect of the number of stacking layers
In order to investigate the effect of the number of stacking layers in the composite plates, we analyze

the plate with varying number of stacking layers. In the case of cross-ply laminate, the stacking scheme

of (0/90)2k is applied, and (45/-45)2k is employed for the angle-ply laminate, where the sub-index k

varies from 1 to 5. 

As seen in Fig. 11, though there is not any general rule in the trend of variation, there appears

convergence in COV approaching specific values as the number of layers increases for the respective

correlation state. In almost all cases, however, the increase of the number of layers tends to increase the

COV of center displacement. 

6. Conclusions

In this paper our aim was to propose a stochastic finite element scheme for an evaluation of the

response variability of composite laminate plates. As a result, a formulation which takes 5 random

material properties into account is suggested. The random variable is defined by the weighted integral

(or the stochastic integral). Moreover the randomness of the parameters is considered in the numerical

evaluation of the response variability by means of auto- or cross-correlation functions, which is

integrated by adopting the Lobatto numerical integration scheme.

Fig. 11 Effect of number of stacking layers for Graphite Epoxy laminates (d=10.0)
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From the numerical demonstrations on the Graphite Epoxy and Glass Epoxy composite laminate

plates, we found that the response variability of the composite plates is, in general, less than that of the

isotropic plates, which shows the advantages of the composite material over the conventional materials.

In addition, from the analysis on the plates having different thicknesses, we observed that the

randomness of out-of-plane shear moduli need to be taken into account if the plate thickness is

relatively large since the influence of these random parameters on the response variability is not so

small as to be ignored. All the results from the proposed scheme are in good agreement with those of

the MCS.
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