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Forced vibration of an embedded single-walled carbon
nanotube traversed by a moving load using

nonlocal Timoshenko beam theory
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Abstract. Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a
moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal
Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations
and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and
the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A
detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the
SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For
comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously
published study. Good agreement is observed. The results show that the above mentioned effects play an
important role on the dynamic behaviour of the SWCNT.
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1. Introduction

The physics of carbon nanotubes (CNTs) has rapidly evolved into a research field since their

discovery by Iijima (1991) in multiwall form and as single-walled tubes two years later. Since then,

theoretical and experimental studies in different fields, such as mechanics, optics, and electronics have

focused on both the fundamental physical properties and on the potential applications of nanotubes.

The modeling for the analysis of CNTs is generally classified into two categories. The first one is the

atomistic modeling which is computationally expensive and is not suitable for analyzing large scale

systems. Thus, the continuum mechanics models, such as beam and shell models, have been applied to

bending, buckling and vibration of CNTs by several researchers. Although there are many studies

related to vibration of nanotubes (Yoon et al. 2003, Yoon et al. 2004, Zhang et al. 2005, Wang et al.

2006, Aydogdu and Ece 2007, Aydogdu 2008, Mir et al. 2008) based on the classical continuum theory,

the small-size scale and nanoscale surface effect associated with nanotechnology become significant

and consequently the classical or local continuum theory can not predict the behavior of the nanoscale

structures. The theory of nonlocal continuum mechanics was initiated by the studies of Eringen (1972,
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1983) and Eringen and Edelen (1972). In the classical or local continuum theory, the stress state at a

given point is dependent uniquely on the strain state at the same point whereas the nonlocal continuum

theory assumes that the stress state is a function of the strain states of all points in the body. Thus, the

nonlocal continuum theory contains information about long range forces between atoms, and the

internal length scale is introduced into the constitutive equations simply as material parameter. In this

context, application of nonlocal continuum theory to nanotechnology problems was initially addressed

by Peddieson et al. (2003), in which the static deformation analysis of Euler-Bernoulli beams are

analyzed. The nonlocal continuum theory has been further extended to static (Wang and Liew 2007,

Lim and Wang 2007, Reddy 2007, Civalek et al. 2009), buckling (Zhang et al. 2004, Zhang et al. 2006,

Wang et al. 2006, Adali 2008, Kumar et al. 2008, Murmu and Pradhan 2009, Sato and Shima 2009),

free vibration (Zhang et al. 2005, Ece and Aydogdu 2007, Li and Wang 2009, Lim et al. 2009, Civalek

et al. 2010, Demir et al. 2010, Civalek and Akgöz 2010), and wave propagation analysis (Wang and Hu

2005, Lu et al. 2006, 2007, Lu 2007, Tounsi et al. 2008, Heireche et al. 2008, Hu et al. 2009, Narendar

and Gopalakrishnan 2009) of carbon nanotubes. In addition to these studies, Reddy and Pang (2008)

developed the nonlocal theories of Euler-Bernoulli and Timoshenko beams and derived analytical

solutions for various boundary conditions for static analysis, buckling and free vibration of straight

nanobeams. Aydogdu (2009) developed a nonlocal elastic rod model to investigate the small-scale

effect on axial vibration of nanorods. Aydogdu (2009) proposed a generalized nonlocal beam theory

based on Euler-Bernoulli, Timoshenko, parabolic shear deformation and general exponential shear

deformation theory (Aydogdu 2009) to study bending, buckling and free vibration of nanobeams.

Murmu and Pradhan (2009) investigated the effect of the small-scale parameter on free vibration of

nonuniform nanocantilever by using differential quadrature method. Murmu and Pradhan (2009)

studied the thermal vibration of SWCNTs based on the thermal elasticity mechanics and nonlocal

Euler-Bernoulli beam theory by differential quadrature method. Wang (2009) developed a nonlocal

Euler-Bernoulli beam theory for vibration and instability of tubular micro- and nanobeams conveying

fluid by using differential quadrature method. Wang (2009) presented a nonlocal double-elastic beam

model based on Euler-Bernoulli beam theory for the vibration analysis of DWCNTs conveying fluids.

Lee and Chang (2009) analyzed the influences of nonlocal effect, viscosity effect, aspect ratio and

elastic medium constant on the fundamental frequency of a viscous-fluid conveying SWCNT

embedded in an elastic medium. Ke et al. (2009) studied nonlinear free vibration of embedded DWCNTs

based on the nonlocal Timoshenko beam theory and von-Kármán geometric nonlinearity. XiaoDong

and Lim (2009) investigated nonlinear free vibrations of a nanobeam due to finite stretching of the

beam by using multiple scales method. Pradhan and Sarkar (2009) carried out bending, buckling and

vibration analyses of functionally graded tapered beam using Eringen’s nonlocal elasticity theory and

Rayleigh-Ritz method. Pradhan and Phadikar (2009) studied the static, buckling and vibration analyses

of nonhomogeneous nanotubes having various boundary conditions by general differential quadrature

(GDQ) method. Murmu and Pradhan (2010) applied the nonlocal Euler-Bernoulli beam model to

buckling analysis of a simply-supported SWCNT subjected to an axial compressive load and with the

effect of temperature change and surrounding elastic medium. More recently, Kiani and Mehri (2010)

have carried out the dynamic analysis of single-walled carbon nanotubes under excitation of a moving

nanoparticle modeled by a moving constant load based on the nonlocal Euler–Bernoulli, Timoshenko

and higher order beam theories. im ek (2010) has recently studied the dynamic behavior of a single-

walled carbon nanotube subjected to a moving harmonic load based on Eringen’s nonlocal elasticity

theory.

The motion of neutral atoms and nanoparticles in nanotubes has been of considerable interest in view
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of the rapid progress of nanotechnology (Dedkov and Kyasov 2007), and carbon nanotubes are used as

molecular channels for the transportation of nanoparticles, such as water and protons (Hummer et al.

2001). During these applications, nanotubes may be subjected to moving loads, and this leads to

transverse vibration of nanotubes. Due to this fact, it is very important to understand the dynamical

behavior of nanotubes under moving loads. However, the above review clearly shows that nearly all

investigators have so far investigated static analysis, buckling or free vibration of nanotubes or

nanobeams based on the local and the nonlocal elasticity theory. In this context, although there are

many studies related to beams under moving loads using classical continuum models at macro-scale

(i.e., Timoshenko and Young 1955, Fryba 1972, Lee 1994, Zheng et al. 1998, Wang 1997, Wang and

Lin 1998, Wang and Sang 1999, Zhu and Law 1999, Abu-Hilal and Mohsen 2000, Klasztorny 2001,

Kocatürk and im ek 2006a,b, im ek and Kocatürk 2007, Ling et al. 2008, Sniady 2008, im ek and

Kocatürk 2009a, b, im ek 2010a, b), to the best knowledge of the author, there is no reported work on

the dynamic analysis of embedded carbon nanotubes subjected to moving loads based on the nonlocal

Timoshenko beam theory. Therefore, this study is the first attempt on the vibration of embedded carbon

nanotubes under action of a moving load. 

In the present study, the governing equations and boundary conditions are derived by using the

principle of virtual displacement. The Galerkin method and the direct integration method of Newmark

(1959) are employed to find the dynamic response of the embedded SWCNT. A detailed parametric

study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic

medium constant and moving load velocity on the dynamic responses of SWCNT. For comparison

purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously

published study. Good agreement is observed. The results show that the above mentioned effects play

an important role on the dynamic behaviour of the SWCNT.

2. Nonlocal elasticity theory

According to Eringen (1983), the stress field at a point x in an elastic continuum not only depends on

the strain field at the same point but also on strains at all other points of the body. Therefore, the

nonlocal stress tensor σ at point x is defined by

(1a)

(1b)

where T ( ) is the classical, macroscopic stress tensor at point x,  is the nonlocal modulus

or attenuation function incorporating into constitutive equations the nonlocal effects at the reference

point x produced by local strain at the source , C(x) is the fourth-order elasticity tensor, ε (x) is the

strain tensor, τ is the material constant which is defined as  where e0 is as constant to adjust

the model to match the reliable results by experiments or other models, a and l are the internal and

external characteristics lengths (such as the lattice spacing and wavelength). The parameter e0 was

estimated that e0 = 0.39 by Eringen (1983) by comparing the results of lattice dynamics with nonlocal

theory. According to Sudak (2003), values of e0 need to be determined from experimental results, and

in the results of Sudak (2003), it was concluded that L / a and e0 should be the same order or one order
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less to have any significant nonlocal effect. Zhang et al. (2005) approximated that  by

matching the theoretical buckling strain obtained by the nonlocal elastic cylindrical shell model using

Donell theory to those from molecular mechanics simulations given by Sears and Batra (2004). By

using the strain gradient approach, the parameter e0 was proposed that  by Wang and Hu

(2005). The above-mentioned studies clearly indicate that reasonable choice of the value of the

parameter e0a is crucial to ensure the validity of the nonlocal models, and therefore more works are

required to determine the value of e0a more accurately for CNTs. A conservative estimate of the

nonlocal parameter  for an SWCNT is proposed by Wang (2005). Therefore, in this study,

the nonlocal parameter is taken as e0a = 0, 0.5, 1, 1.5, 2 nm to investigate nonlocal effects on the

dynamic responses. In addition, the volume integral in Eq. (1a) is over the region V occupied by the body.

However, it is difficult to solve the elasticity problems by using the integral constitutive relation in Eq.

(1). Therefore, a simplified constitutive relation in a differential form is given by Eringen (1983) as follows

 (2)

where  is the Laplacian operator. For a beam type structure, the nonlocal behavior can be neglected in

the thickness direction. Thus, for a homogeneous isotropic Timoshenko beam, the nonlocal constitutive

relations take the following form

(3a)

(3b)

where E is the elasticity modulus, G = 0.5E / (1 + v) is the shear modulus (where v is the Poisson’s

ratio), σxx is the axial normal stress, σxz is the shear stress, εxx is the axial strain and γxz is the shear strain.

When the nonlocal parameter is taken as e0a = 0, the constitutive relation of the local theory is obtained.

3. Nonlocal Timoshenko beam model

A simply-supported SWCNT having the length L, the diameter d and the thickness tb is shown in Fig. 1.

The SWCNT is subjected to a moving load P(t), which moves in the axial direction of the nanotube

with constant velocity, vP. The SWCNT is embedded in an elastic medium which is modeled as Winkler

foundation with spring constant kw. It should be noted that the following assumptions are made in this

study: (i) The nanotube is initially at rest, namely the initial conditions of the nanotube are zero. (ii) The

moving particle is modeled as a moving load and the inertial effects of the moving load are negligible.

(iii) The velocity of the moving load is constant and the moving load is in contact with the nanotube

during the excitation. 

Based on the Timoshenko beam theory, the displacement field at any point in the beam along x, y and

z axes can be given as

e0 0.82≈

e0 0.288≈

0 e0a 2nm≤ ≤

1 τ
2
l
2∇2

–( )σ T τ,
eaa

l
-------= =
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2
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------------– Eεxx=
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2
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(4a)

(4b)

, (4c)

where φ is the rotation of the cross-sections, w0 is the transverse displacements of any point on the

neutral axis and t denotes time. The nonzero strains of the Timoshenko beam theory are

(5a)

(5b)

where κx is the curvature of the beam. The transverse shear force Q and the resulting the bending

moment M can be obtained as

(6)

where A is the area of the cross-section. The principle of virtual displacement for the Timoshenko beam

is given by

(7)

where ρ is the mass density of the beam, I is the second moment of area of the beam, q is the distributed

load. Integrating Eq. (7) by parts and setting the coefficients of δw0 and δφ to zero lead to the two

variationally consistent governing equations of the nanotube

ux x z t, ,( ) zφ x t,( )=

uy x z t, ,( ) 0=

uz x z t, ,( ) w0 x t,( )=

εxx zκx κx,
∂φ x t,( )
∂x

------------------= =

γxz
∂w0 x t,( )

∂x
--------------------- φ x t,( )+=

Q σxz A M,d
A
∫ zσxx Ad

A
∫= =

ρA
∂w0

∂t
---------

∂ w0δ

∂t
------------ ρI

∂φ
∂t
------

∂ φδ

∂t
--------- Q γxz M κx kw0 w0 q w0δ+δ–δ–δ–+⎝ ⎠

⎛ ⎞ xd td

0

L

∫
0

t

∫ 0=

Fig. 1 A simply supported embedded SWCNT traversed by a moving load.
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(8a)

(8b)

Furthermore, the following boundary conditions at the edges of the beam (at x = 0 and x = L) are

obtained by application of the virtual displacement principle

either w0 = 0 or Q = 0

either φ = 0 or M = 0 (9)

By using Eqs. (3), (5) and (6), the force-strain and the moment-strain relations of the nonlocal

Timoshenko beam theory can be obtained as follows

(10a)

(10b)

where ks is the shear correction factor that accounts for non-uniform shear stress distribution through

the thickness of the beam. In order to obtain the governing equations in terms of the displacements (w0,

φ), first, eliminating the shear force Q between Eqs. (8a) and (8b) leads to the following equation

(11)

The explicit expression of the nonlocal bending moment can be obtained by substituting for the

second derivative of M from Eq. (11) into Eq. (10a) as follows

(12)

By substituting for the second derivative of Q from Eq. (8a) into Eq. (10b), the following relation for

the nonlocal shear force is obtained

(13)
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Finally, the following governing equations in terms of the displacements can be obtained by substituting

for M and Q from Eqs. (12) and (13), respectively, into Eqs. (8a) and (8b) as

(14a)

(14b)

It should be noted that when the nonlocal parameter e0a is taken as zero in Eqs. (14a) and (14b), the

local governing equations of Timoshenko beam theory are obtained. On the other hand, substituting

 into Eqs. (14a) and (14b) yields the governing equation of the nonlocal Euler-Bernoulli

beam theory. In order to investigate the dynamic behavior of the SWCNT, the responses of the SWCNT

w0(x, t) and  are assumed to be in the following form of series

(15a)

(15b)

where Am(t) and Bm(t) are the unknown time-dependent generalized coordinates, and Xm(x) and Ym(x) are

the space-dependent coordinates which can be expressed for boundary conditions in Eq. (9) as follows

(16a)

(16b)

Substituting Eqs. (15a) and (15b) into Eqs. (14a) and (14b), multiplying both sides of the first and the

second resulting equations with Xn(x) and Yn(x) respectively, and integrating them over the domain (0, L)

yields the following coupled equations of motion in terms of the generalized displacements

(17a)
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(17b)

where prime and overdot denote the derivatives with respect to x and t, respectively. It is also to note

that in Eqs. (17a) and (17b),  After some arrangements, Eqs.

(17a) and (17b) can be written in a matrix form as 

(18)

where  and . For the moving

load, the load q(x, t) can thus be written as follows

(19)

where  is the Dirac delta function, P0 is the magnitude of the moving load, xP ( ) is

the coordinate of the moving load. By using the following general property of Dirac delta function

(20)

where  represents nth derivative of Dirac delta function, the generalized load vector F(t) can be

expressed as

(21a)

(21b)

The dynamic responses of the SWCNT are computed by solving Eq. (18) in the time domain with the

aid of the average acceleration method of Newmark (Newmark 1959). In addition, SWCNT is at rest

before the arrival of the moving load, namely initial displacements and velocities of the SWCNT are

zero. For free vibration analysis, the time-dependent generalized displacement coordinates can be

expressed as follows

(22a)

(22b)
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where i =  and ω stands for circular frequency. Substituting Eqs. (22a) and (22b) into Eq. (18) and

setting the generalized load vector to zero yield the following simultaneous sets of linear algebraic

equations (frequency equation) in the matrix form

(23)

The natural frequencies, ωm, and corresponding mode shapes, are obtained by setting the determinant of

the characteristic equation from (23) equal to zero.

4. Numerical results

In the numerical results, vibration of the simply supported embedded SWCNT due to the moving

load is investigated. The following parameters are used in computing the numerical results: E = 1TPa,

ρ = 2300 kg/m3, v = 0.2, d = 1 nm, tb = 0.34 nm. The length of the nanotube is taken as variable for the

various values of the aspect ratio L / d. The shear correction factor (ks) for hollow circle cross-section is

taken as follows (Cowper 1966)

(24)

where k is the ratio of inner diameter to the outer diameter of the nanotube. The dynamic transverse

displacements of the SWCNT are normalized by the static deflection D = P0L
3 / 48EI, of a beam under

a point load P0 at the mid-span. The effect of the velocity of the moving load is represented by the

dimensionless velocity parameter α, as follows

(25)

where vcr is the critical velocity defined as (Fryba 1972)

(26)

where ω1 is the fundamental frequency of the SWCNT. The dimensionless time t* is defined by

(27)

Therefore, when  the moving load is at the left edge of the beam, i.e., xP = 0, and when t* = 1 the

load is at the right edge of the beam, i.e., xP = L. 

Fig. 2 shows the convergence studies for the number of time steps in Newmark integration method,

1–
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and the effect of the number of the modes on the maximum non-dimensional dynamic deflections of the

SWCNT for various values of the nonlocal parameter. From these analysis conducted, the first mode is

certainly the most significant, and the response contribution of higher modes can be neglected. On the

other hand, the dynamic deflections are saturated when twelve natural modes are taken. Further, it is

seen from Fig. 2(b) that when the number of time step is taken to be more than 100, the numerical

accuracy of the responses improved only slightly. It should be noted that procedures that lead to

bounded solutions if the time step is shorter than some stability limit are called conditionally stable

procedures. Procedures that lead to bounded solutions regardless of the time step are called

unconditionally stable procedures (Chopra 2001). The average acceleration method is stable if ∆t / Ti <

 (where Ti is the natural period of vibration of system) (Chopra 2001). This implies that the average

acceleration method is unconditionally stable. Consequently, in the subsequent numerical calculations,

setting the number of the modes to 12 and the number of time steps to 500 is very satisfactory for the

desired numerical precision. 

To validate the present formulation and the computer program developed by the author, a comparison

study for free vibration analysis is made between the present results and the previously published

results of Aydogdu (2009) by inserting the material and section properties used in this reference in the

present formulation. The three different aspect ratios L / h = 10, 20 and 50 are selected, where h is the

height of nanobeam, and the small scale effect is reflected by the nonlocal parameter µ = (e0a)2 by

Aydogdu (2009). The frequencies are normalized by . Table 1 shows that the present

results agree well with the results of Aydogdu (2009). It is seen that the frequencies decrease with

increasing the nonlocal parameter, and the effect of the nonlocal parameter decreases with the increase

of the aspect ratio L / h. The reduction may be explained as follows: The small scale effects make the

SWCNT more flexible as the nonlocal model may be viewed as atoms linked by elastic springs (Wang

and Hu 2005), while the local continuum model assumes the spring constant to take an infinite value

(Tounsi et al. 2008). Therefore, the nonlocal beam models should be used to obtain accurate predictions

of vibrational characteristics of nanotubes.

Fig. 3 shows the effects of the aspect ratio L / d and beam models on the non-dimensional dynamic

deflections. It is observed from this figure that the difference between the deflections of Timoshenko

∞

λ ωL
2
ρA/EI=

Fig. 2 The effects of the number of mode and of the time step on the non-dimensional dynamic deflections
for various values of e0a and L / d = 10, α = 0.25, k

w
= 0.
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and Euler-Bernoulli beam models is significant when the aspect ratio of the SWCNT is less than L / d

= 10. The discrepancy between the deflections of the two beam models is due to the effect of the shear

deformation. This means that the shear deformation and the rotary inertia effects gain importance as the

aspect ratio is decreased. This means that shear deformable beam models should be used in the analysis

of short nanotubes (i.e., L / d ≤ 10). In addition, the dynamic deflections are saturated after the value of

L / d = 25, and all the beam models considered here give almost the same results when the SWCNT has

the aspect ratio which is larger than L / d = 25. Also, as seen from Fig. 3, the difference between the

dynamic deflections of the two nonlocal beam models is greater than that of the two local beam models.

Table 1 Comparison of the non-dimensional fundamental frequencies  for the simply
supported nanobeam

L / h
Non-dimensional fundamental frequency

Present study Aydogdu (2009)

10

0 9.7074 9.7443
1 9.2612 9.2931

2 8.8713 8.8994

3 8.5268 8.5517
4 8.2196 8.2419

20

0 9.8281 9.8381
1 9.7090 9.7187
2 9.5942 9.6036
3 9.4834 9.4924
4 9.3763 9.3850

50

0 9.8629 9.8645
1 9.8435 9.8451

2 9.8242 9.8258

3 9.8050 9.8066
4 9.7859 9.7875

λ ωL
2
ρA/EI=

µ e0a( )2
=

Fig. 3 The effects of aspect ratio of length to diameter L / d and beam models on the non-dimensional dynamic
deflections for α = 0.1, k

w
= 0, e0a = 1nm.
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This situation, which is very explicit for L / d = 5, implies that the nonlocality effect plays an important

role on the dynamic behavior of the short nanotubes. Note that the results of the local Euler-Bernoulli

beam model are independent of the aspect ratio.

The effect of the nonlocal parameter on the dynamic deflections of the SWCNT is shown in Fig. 4 for

various values of the aspect ratio. This figure shows that the effect of the nonlocal parameter is

dependent on the aspect ratio, as mentioned in many studies in the literature. The effect of the nonlocal

parameter is almost is insignificant for nanotubes with large aspect ratios (i.e., L / d = 50 or 100 as seen

from Fig. 4). With an increase in the nonlocal parameter, the non-dimensional dynamic deflections are

also increased. This is because increasing the nonlocal parameter decreases the stiffness of the SWCNT.

Fig. 5 studies the effect of the moving load velocity on the dynamic behavior of the SWCNT by

Fig. 4 The effect of the nonlocal parameter e0a on the non-dimensional dynamic deflections for various values
of L / d and α = 0.1, k

w
= 0.

Fig. 5 The effect of the velocity parameter α on the non-dimensional dynamic deflections for various values
of e0a and k

w
= 0, a) L / d = 10, b) L / d = 50.
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presenting the maximum normalized dynamic deflection as a function of the velocity parameter, which

ranges from 0.01 ≤ α ≤ 2 with an increment ∆α = 0.01, for various values of e0a and L / d = 10, 50. Table 2

presents the values of the maximum non-dimensional dynamic deflections and the corresponding velocity

parameter values. It is observed from these figures that the normalized dynamic deflection is greatly

influenced by the moving load velocity. As seen from Fig. 5 and Table 1, the peak values of the displacements

are obtained at different velocity parameters depending on the nonlocal parameter, and in general,

increase in the nonlocal parameter leads to a decrease in the velocity parameter which corresponds to

peak values. It is interesting to note that for L / d = 10 in Fig. 5(a), behavior of the deflection curves are

almost the same until α = 0.4 for all the values of e0a considered in the study, but after this value of the

velocity parameter, increasing in the nonlocal parameter causes a fluctuation in the displacement

curves. As an expected result, the maximum dynamic deflections and the corresponding velocity parameters

are insensitive to the change in the nonlocal parameter for the SWCNT with L / d = 50. Also, it should

be mentioned that the dynamic deflections tend to zero for very large values of the moving load velocity.

Figs. 6,7 and Table 3 show the effect of the elastic medium constant on the dynamic deflections of the

Table 2 Peak values of the maximum non-dimensional dynamic deflections and the corresponding velocity
parameters for Fig. 5

L / h e0a (nm) Max.(w0(x,t) / D) α

10

0 1.78011 0.60
0.5 1.82106 0.61
1 1.95674 0.57

1.5 2.17472 0.55
2 2.69108 0.92

50

0 1.74067 0.63
0.5 1.74268 0.62
1 1.74833 0.62

1.5 1.75837 0.62
2 1.77152 0.61

Fig. 6 The effect of the velocity parameter α on the non-dimensional dynamic deflections for various values
of k

w
 and L / d = 10, e0a = 1 nm.
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SWCNT with L / d = 10. It is clearly shown that the normalized dynamic deflections are decreased as

the elastic medium constant kw is increased. This is because the nanotube becomes stiffer with an

increase in the value of the elastic medium constant. The effect of the spring constant on the dynamic

deflections can be neglected for relatively small value of the spring constant (i.e., kw = 107 N/m2).

Furthermore, as seen from Table 3, as the elastic medium constant is increased, the velocity parameter

which corresponds to peak value of the displacement is increased. 

Fig. 8 depicts the time history of the midspan deflections of the SWCNT with L / d = 10, 20 for

various values of the elastic medium constant, and e0a = 1 nm at the constant moving load velocity

(α = 0.1). It is found that for a fixed value of kw, the effect of the elastic medium constant on the

dynamic deflections is increased as the aspect ratio of the nanotube is increased. Also, from this figure,

the SWCNT oscillates freely after time t* = 1 at which the moving load leaves the nanotube. 

5. Conclusions

In this study, the effects of the nonlocal parameter, aspect ratio, elastic medium constant and the

moving load velocity on the dynamic behavior of the nanotube are investigated based on the nonlocal

Timoshenko beam theory. Numerical results show that the nonlocal parameter and the shear

Fig. 7 The effect of the elastic medium constant k
w
 on the non-dimensional dynamic deflections for various

values of e0a and α = 0.1, L / d = 1.0.

Table 3 Peak values of the maximum non-dimensional dynamic deflections and
           the corresponding velocity parameters for Fig. 6.

k
w 

(N/m2) Max.(w0(x, t) / D) α

0 1.95674 0.57

107 1.90864 0.56

108 1.57232 0.62

109 0.80990 0.91
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deformation greatly affect the dynamic behavior of the nanotube with lower aspect ratios (i.e., L / d

≤ 10), and cannot be neglected in the analysis of short nanotubes. As the nonlocal parameter is

increased, dynamic deflections are increased which means that local beam models underestimate the

dynamic responses. Increasing in elastic medium constant causes a decrease in the dynamic deflections

and this decreasing in the dynamic responses with elastic medium constant is influenced by the aspect

ratio of the nanotube. The nonlocal beam models should be used to obtain accurate predictions of vibrational

characteristics of nanotubes.
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