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Abstract. The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of
metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane
cross section is formulated. The system of partial differential equations of the plate motion is derived on the
basis of the Hamilton’s principle. The system of equations is analytically solved by the Bubnov-Galerkin
method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical
solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical
calculations are presented in figures.
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1. Introduction

Instability phenomenon of constructions is one of the most important problems contemporary

industry. Plates as elementary parts of a construction are particularly subject on this kind problems. The

present technology allows to improve mechanical properties, and the same resistances on buckling

through the change of the construction or the use of new materials. In this paper submit the rectangular

plate made of porous-cellular alloys. 

Porous materials belong to structures, in which mechanical properties are usually constant or variable

through thickness. The first general and universal review of mechanical and thermal properties these

materials were presented by Evans et al. (1999). Ashby et al. (2000) presented the novel mechanical, physical,

thermal and acoustical properties of metal foams, their performance, their manufacture and their utilization

in weight-dependent applications in various industries. Banhart (2001) were described experimental

investigations, manufacturing process and the application of the porous materials. More over, physical

constants of porous-cellular metals are analytically and experimentally estimated. Bart-Smith et al.

(2001) have been measured and simulated the bending performance of sandwich beam with porous

cores. Correlation between Young's and shear modulus and porosity in porous material presented by

Kovacik (1999, 2001). Choi and Lakes (1995) modeled and carried out experiments of Young's moduli

and mass density of conventional and re-entrant open cells foams. It the ability of absorption through
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porous materials energy was presented by Ramamurty and Paul(2004). 

The classical theory of rectangular plates according to Kirchhoff-Love's hypothesis for non-homogeneous

materials usually the linear dependence between in-plane displacements and deflection are assumed.

Advantages of this approach are simplicity and ability to the use of solutions that is derived for homogeneous

plates. The main disadvantage is neglecting shear forces and displacements, which restrict using this

approach to thin plates without rapid changes of mechanical properties. In order to overcome the

aforementioned difficulties a lot of higher order hypotheses, which include shearing is applied for

example by Wang et al. (2000), Yang et al. (2006), Bakker et al. (2007) . A thorough review of theories,

including zig-zag ones, used for modeling of multilayered plates and comprehensively bibliography

may be found in the works of Carrera (2000, 2001, 2003). A refined nonlinear zig-zag first-order shear

deformation theory of composite laminated plates using a modified version of Reissner’s mixed variational

formulation was presented by Fares and Elmarghany (2008).

Carrera et al. (2008) formulated the kinematic model for analysis of functionally graded material plate

subjected to transverse loadings. Reddy (2000) obtained the Navier’s solution of rectangular and

trough-thickness functionally graded plates using finite element models and incorporating third-order

shear deformation theory and von Karman-type geometric non-linearity. Results devoted to bending

and buckling (in a static sense) of porous beams may be found in works of Magnucki and Stasiewicz

(2004a, b). A discussion on porous rectangular plates carried out Magnucki et al. (2006), and porous

cylindrical panel Malinowski and Magnucki (2005) respectively. The results of numerical analysis of such

construction of a wagon roof of railway vehicles Mielniczuk et al. (2006), have been obtained.

A model of porous material with variable porosity through out the thickness of the plate applied in the

thin-walled construction are presented e.g., in the work of Mielniczuk and Malinowski (2005). In that

model, it is assumed that modulus of elasticity is varied across the thickness and depends on the

material porosity. The analytical studies of strength and stability of porous constructions allowed for

non-linear hypothesis of the deformation into account have been taken are presented in many papers. 

The dynamic stability of plates is a subject of many papers in recent years. The latest research in the

field of vibration of composite shell and plates presented Qatu (2004). Sahu and Datta (2007) presented

the review of works carried out the dynamic stability of plates and shells in years 1987-2005.

Szcze niak (2000) described of forced vibration of the plate with assumed a non-linear hypothesis.

This author assumed that forced vibration is dependent on load impulse, and the other loads. Nonlinear

dynamic buckling of stiffned plate under in-plane impact load was described in the paper of Zhang et

al. (2004). Eshmatov (2007) used the Kirchhoff-Love hypothesis and Reissner-Mindlin generalized

theory in geometrically nonlinear statements. This autor described the analyses of the nonlinear

vibrations and dynamic stability of viscoelastic orthotropic plates. Mathematical model of the dynamic

stability of the porous-cellular rectangular plate under pulsating compression load is presented in the

work of Debowski and Magnucki (2006). Experimental studies with axially impacted laminated

composite plates may by found in the work of Abramowich and Grunwald(1995). 

In this paper the dynamic stability of a metal foam rectangular plate is presented.

2. Mathematical model of the rectangular plate

The subject of the paper is an isotropic metal foam rectangular plate with four simply supported

edges. The dimensions of the plate are length a, width b and thickness t . The plate is oriented in the

coordinate system x,y,z, but the plane xy it’s middle plane of the plate. The plate is subjected to uniform

s·
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compressive forces Nx(τ ), Ny(τ ) which is directly proportional to the time τ (Fig. 1). 

A porous plate is a generalized sandwich plate. Its outside surfaces (top and bottom) are smooth,

without pores, whereas inside the plate is porous. The coefficient of the plate porosity e0 varies in the

normal direction to middle surface of the plate and assuming the minimal value in the middle surface of

the plate. The mechanical properties of the plate vary across its thickness t and depend on porosity of

plate (Fig. 2). The minimal value of Young's modulus E0 occurs in the middle surface of the plate and

maximal values E1 occur at its top and bottom surfaces. 

Moduli of elasticity of the metal foam plate are defined as described by Magnucki and Stasiewicz

(2004a, b) and have following form 

(1)

where:

– dimensionless coefficient of the porosity 0 ≤ e0 1

E0, G0, E1, G1 – moduli of elasticity for ζ = 0 and ζ = ± 1/2, respectively

–  relationship between the moduli of elasticity for j = 0,1

– dimensionless coordinate 

v – Poisson’s ratio

E z( ) E1 1 e0 πζ( )cos–[ ],  G z( ) G1 1 e0 πζ( )cos–[ ]= =

e0 1
E0

E1

-----– 1
G0

GI

------–= =

Gj

Ej

2 1 v+( )
--------------------=

ζ
z

t
--=

Fig. 1 Metal foam rectangular plate

Fig. 2 Structure scheme of a plate
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The material is of continuous mechanical properties. Relations between Young’s modulus and mass

density of foam metalic materials were presented by Choi and Lakes (1995). If we take into

consideration these results, mass density is expressed as below

(2)

where:

ρ0, ρ1– mass densities of the metal for ζ = 0 and ζ = 1/2, respectively

– dimensionless parameter of the mass density

The nonlinear hypothesis of deformation of a plane cross section of the plate is assumed (Fig.3). A

flat plane of a cross-section is perpendicular to the mid-plane of a plate before deformation and changes

after deformation to a surface, which is only perpendicular to the outer planes of the plate (z = ±t / 2).
A displacement field of any cross-section of a plate was defined by the following form 

(3)

(4)

(5)

ρ ζ( ) ρ1 1 em πζ( )cos–[ ]=

em 1 1 e0––=

u x y z τ, , ,( ) u0 x y τ, ,( ) +=

t ζ
∂w
∂x
-------

1

π
---– ψ1 x y τ, ,( ) πζ( ) ψ2 x y τ, ,( ) 2πζ( ) πζ( )2

cossin+sin[ ]
⎩ ⎭
⎨ ⎬
⎧ ⎫

–

v x y z τ, , ,( ) v0 x y τ, ,( ) +=

t ζ
∂w
∂y
-------

1

π
---– φ1 x y τ, ,( ) πζ( ) φ2 x y τ, ,( ) 2πζ( ) πζ( )2

cossin+sin[ ]
⎩ ⎭
⎨ ⎬
⎧ ⎫

–

w x y z τ, , ,( ) w x y 0 τ, , ,( ) w x y τ, ,( )= =

Fig. 3 Scheme of deformation of a plane cross section of a plate



Dynamic stability of a metal foam rectangular plate 155

Here exist three autonomous functions, where: τ – time, w(x,y,τ) – lateral displacement (deflection of

the plate), ψi(x,y,τ) and φi(x,y,τ) – dimensionless functions of displacement, u0(x,y,τ), v0(x,y,τ) displacements

in the plane of the plate in the x, y direction respectively.

Strains state of the plate describing the geometric relationships for the plate are defined as follows

(6)

(7)

(8)

(9)

(10)

The physical relationships, according to Hooke’s law, are

 (11)

3. System of partial differential equations of metal foam plate

The equation of the motion of a rectangular plate can be obtained by the Hamilton’s principle

(12)

where:

Uε is the elastic strain energy

(13)
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TK is the kinetic energy

(14)

The work W of the external loads is defined with allowance for boundary conditions and will be

presented in the following part of the work.

Basing on the Hamilton’s principle Eq. (12), and after the integrating on the interval −1/2 ≤ ζ ≤ 1/2

and the integrating by parts over the mid-plane of the plate a system of seven partial differential

equations and system of boundary conditions were obtained
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δφ1)

(19)

δψ2)

(20)

δφ2)

(21)

where: 

The system of partial differential equations was transformed to the system of four fundamental

differential equations. For that purpose stresses and internal forces into plate were calculated. The finite

deflection hypothesis of thin plate was assumed. 

Components of internal normal and shear components are

(22)
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(24)

Normal and shear loads can be expressed with the stress function F(x,y), and unknown function ψ1,

ψ2, Φ1, Φ2 have the form

(25)

(26)

Eqs. (18), (19), (20), (21) with the help of the displacement functions Φ1, Φ2 to the two differential

equation were transformed. When we use equation of strains continuity the system of four

fundamentals equations of dynamic stability was obtained 
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Boundary conditions for the simply supported plate are

(31)

4. Solution of dynamic stability problem of metal foam plate

The basic system of differential equations Eqs. (27), (28), (29), (30) was approximately solved with

the use of the Bubnov-Galerkin method. The form of unknown functions were assumed as bellow

(32)
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where: m,n - natural numbers, f1(τ)– displacement dependent on the time.

The exact solution can be constructed when the plate has a rectangular geometry with the simply

supported edge conditions. The Eqs. (32), (33), (34) satisfy boundary conditions.

Solving Eqs. (28), (29) following relationships were obtained
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where:

Substitution of the Eqs. (32), (33), (34), (35), (36) into Eq. (27) and using the Bubnov-Galerkin

method differential equation of motion can be expressed as

(37)

where  is the dimensionless displacement, N0 is the total load, k0 is parameter of the load

(0 ≤ k0 ≤ 1)defining uniform compressive forces:  and . 

The above equation gives the dimensionless dynamic lateral displacements versus the time.

Dimensionless displacement  is numerically solved.

A critical load of the static problem can be written as

(38)

Finally, the equation of dynamic equilibrium of the plate has a form: 

(39)

The dynamic stability problem is analysed for a family of rectangular plates with simply supported

edges and following dimensions: t = 0.002 m, a = 0.16 m, b = 0.32 m. Material constants of the plate:

Young’s modulus, E1 = 7.06 . 104 MPa, Poisson ratio v = 0.33, mass density ρ1 = 2800 kg/m3 and the

coefficient of the porosity e0 = 0.9.

Numerical calculations an approach with the Runge-Kutta method were carried out. A linear relations

between total load N0 and load rate c[MPa/s] is assumed

(40)

Dimensionless parameter of the time is introduced as quotient of current values of load and upper

critical load of the static problem 
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(41)

where τCR – “critical” time when the load equals value for static buckling problem.

The condition of allowable stress is performed as σeq,max ≤ σall, = 240 MPa, where σeq,max is the

maximal equivalent stress and σall  is allowable stress. Biaxial loading is described by loading state:,

Ny = (1 − k0)N0, Nx = k0N0. In general the numerical results are obtained using selected values of load

velocity “c” and values of load parameter k0. The results of numerical calculations in the form of family

curves are presented in Fig. 4 (k0 = 0.33) and Fig. 5 (k0 = 0.75). It was noticed that dynamic resistance

increase with the increase of the velocity of load. Simultaneously, we can indicate that is clearly change

of shape of buckling. Dashed lines mark curves correspond to the static shape of buckling and

continuous lines are the dynamic shape of buckling. If the numbers of half-waves increase then

maximum deflection decreases with the increase of load velocity. In this paper the Volmir criterion for

dynamic loads is assumed. According to this criterion the critical load defined the time, in which the

deflection of a plate equals the value of the thickness of a plate ( ).

5. FEM analysis of dynamic stability of the rectangular plate

A numerical analysis of an isotropic plate made of a porous material was carried out by Magnucki et

al. (2006). Bending and elastic buckling obtained analytically and numerically (FEM) were presented

by them.

For better assessment of the previous numerical results, additional FEM studies of the effect of ratio

load k0 on the dynamic response of metal foam rectangular plate has been carried out with ANSYS 5.7.

A discrete model of the plate was built from finite elements SHELL181 and it is a four-nodes element

with six degrees of freedom at each node: translations in the x, y, and z directions, and rotations about

τ̃
τ

τCR

--------
N0 τ( )
N0 CR,

-------------= =

f1
˜ 1=

Fig. 4 The deflection of a plate versus parameter  with dominant load Ny (k0= 0.33)τ̃
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the x, y, and z-axes (Elements reference, ANSYS 5.4, Ansys Inc., 1994). This element was associated

with isotropic, linear elastic material properties. Large Displacement Transient option with large

deflections was selected. Basing on Eqs. (1) and (2) mechanical and physical properties of SHELL181

element can calculate after integrating on the interval 1/2  ≤ ≤ 1/2

(42)

(43)

A full model of rectangular plate consisting a metal foam could also be generate using standard

layered shell element (SHEL99). The element has six degrees of freedom at each node. Preliminary

research of dynamic stability of a plate showed that in this case the material properties varying through

thickness of the cross-section of FEM model should be discretized with number of layers (NL)of

constant properties grater then NL = 27. Young modulus (E) in the mid-plane of each layer were

calculated from Eq. (1). Maximum difference of displacement values calculated using SHELL181 and

SHELL99 elements is not greater then 2% (for NL = 27). If NL > 27 then difference of displacement

values decreases but time of solution violently increases.

Three cases of load were selected: k0 = 0.25, k0 = 0.50 and k0 = 0.75. The geometrical characteristics

of the plate were as follows: t = 0.002 m, a = 0.16 m, b = 0.32 m. For the FEM simulation, following

mechanical and physical constants are chosen: E1 = 7.06 . 104 MPa, v = 0.33, ρ1 = 2800 kg/m3, e0 = 0.9,

and the load rate c = 20 GPa/s.

The transient dynamic analysis using the full method was selected and the automatic time increment

(load-step) of the integration was based on the response of the structure (Structural Analysis Guide,

ANSYS 5.4, Ansys Inc., 1994). Let consider the case when k0 = 0.25. Fig. 6 shows the analytical-

E E1c24 E1 1
2e0
π
--------–⎝ ⎠

⎛ ⎞= =

ρ ρ1c11 ρ1 1
2em

π
---------–⎝ ⎠

⎛ ⎞= =

Fig. 5 The deflection of a plate versus parameter  with dominant load Nx (k0= 0.75)τ̃
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numerical (A-N) and FEM results of the dynamic problem. The curves show the deflection time-history

for a dynamical stability of a metal foam plate. The displacement perpendicular to the surface of a plate

rapidly increase and achieves the maximum value. Elastic deformation of the plate after τ = 6.8 ms is

shown in Fig. 7. There is practically no difference between the curves for analytical-numerical (A-N)

and FEM solutions. Maximum dynamic displacement of the plate is after τ = 5.1 ms. In the case of the

numerical solution (Eq. 39) the time is τ = 5.4 ms. The difference of time of the dynamic response for

both methods equals 5.5%. 

The result of dynamic displacement for the plate for k0 = 0.50 is shown in Fig. 8. The dynamic

response of the plate is presented in Fig. 9. In this case, the difference of time for A-N (τ = 5.8 ms) and

FEM (τ = 5.6 ms) is equal 3.5%. Fig. 10 shows an example of dynamic displacement of a plate for

k0 = 0.75. The dynamic response of the plate after τ = 5.1 ms is presented in Fig. 11. The difference of

the time for A-N and FEM solution does not exceeds 7%. In all presented cases, the dynamic

Fig. 6 Dynamic displacement versus time (k0= 0.25)

Fig. 7 Dynamic response of a plate after time τ = 6.8 ms (k0 = 0.25)
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displacements of plates rapidly increase, when the dynamic load exceeds value of critical load of static

buckling problem (N0,CR).

The influence of coefficient of porosity on the dynamic stability of a plate has been also analysed.

The analysis was carried out for porous rectangular plates with the following parameters: a = 0.16 m,

b = 0.36, 0.40 m, t = 0.002 m, e0 = 0.9, 0.99, k0 = 0.25, E1 = 7.06 . 104 MPa, v = 0.33, ρ1 = 2800 kg/m3,

c = 20 GPa / s.

The comparison of results between A-N and FEM solutions are presented in Figs. 12-13. Dashed

curved lines mark curves correspond to the A-N solutions and continuous curved lines are the FEM

solutions. The parameter of the porosity is presented by suitable symbols on the curves. Figs. 12-13

present the deflection time-history for a dynamical stability of a plate carried out to two selected

examples. The first example (Fig. 12) represents the dynamic response of a rectangular plate with the

Fig. 8 Dynamic displacement versus time (k0 = 0.50)

Fig. 9 Dynamic response of a plate after time τ = 6.8 ms (k0 = 0.50)
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length b = 0.40 m. When e0 = 0.9, 0.99 the “critical” value of the time (Volmir criterion) is 5.44 ms,

5.07 ms (A-N), respectively. Results of FEM analysis are 5.25ms, 4.70 ms, respectively and are lesser

approximately to 7% then in the case of A-N analysis.

Fig. 13 compares the results obtained for b = 0.36 m. In this case and A-N analysis, time in which the

displacement of a plate equals value arising from Volmir criterion are 5.47 ms (e0 = 0.9) and 5.04 ms

(e0 = 0.99).

The results obtained show that considering the porosity characteristic of metal foam material loads to

a increase in start time of dynamical response.

Fig. 11 Dynamic response of a plate after time τ = 5.1 ms (k0= 0.75)

Fig. 10 Dynamic displacement versus time (k0 = 0.75)
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6. Conclusions

The paper presents the problem of the dynamic stability of metal foam rectangular plates. The non-

linear hypothesis of deformation of plane cross section of the plate was positively numerically verified

by FEM. The transverse shear effect was took into account. The dynamic resistance of the plate

increases with a decrease of rate load. The general solution to the seven differential equations of

dynamic stability enables one equation of dynamic equilibrium of the plate. Computed results show

that dynamic behaviour of a metal foam plate is depend on the coefficient of porosity e0, load rate c and

parameter of load k0. Discrete model of a metal foam plate has been consist from 27 layers. For bigger

values of e0 bigger numbers of layers through out thickness of a plate should be take into account. In

this case, difference between A-N and FEM results become smaller.

The present study is an introduction to a series of papers devoted to dynamic stability of metal foam

rectangular plates.

Fig. 12 Dynamic displacement versus time for various values of coefficient of the porosity (b = 0.40 m)

Fig. 13 Dependence of the deflection on time for various values of coefficient of the porosity (b = 0.36m)



Dynamic stability of a metal foam rectangular plate 167

References

Abramovich, H. and Grunwald, A. (1995), “Stability of axially impacted composite plates”, Compos. Struct., 32,
151-158. 

Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal foams:
a design guide, Butterworth-Heinemann, Boston. 

Bakker, M.C.M., Rosmanit, M., Hofmeyer, H. (2007), “Elastic post-buckling analysis of compressed plates using
a two-strip model”, Thin Wall. Struct., 45, 502-516. 

Banhart, J. (2001), “Manufacture, characterization and application of cellular metals and metal foams”, Prog.
Mater. Sci., 46, 559-632.

Bart-Smith, H., Hutchinson, J.W. and Evans, A.G. (2001), “Measurement and analysis of the structural performance
of cellular metal sandwich construction”, Int. J. Mech. Sci., 43, 1945-1963. 

Carrera, E. (2000), “An assessment of mixed and classical theories on global and local response of multilayered
orthotropic plates”, Compos. Struct., 50, 183-198.

Carrera, E. (2001), “Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in
the modeling of multilayred plates and shells”, Appl. Mech. Rev., 54, 301-329. 

Carrera, E. (2003), “Historical review of Zig-Zag theories for multilayred plates and shells”, Appl. Mech. Rev.,
56, 287-308. 

Carrera, E., Brischetto, S. and Robaldo, A. (2008), “Variable kinematic model for the analysis of functionally
graded material plate”, AIAA Journal., 46(1), 194-203. 

Choi, J.B. and Lakes, R.S. (1995), “Analysis of elastic modulus of conventional foams and of re-entrant foam
materials with a negative Poisson’s ratio”, Int. J. Mech. Sci., 37(1), 51-59.

Debowski, D. and Magnucki, K. (2006), “Dynamic stability of a porous rectangular plate”, PAMM, 6(SPI), 215-
216. 

Elements Reference, ANSYS 5.4, Ansys Inc., 1994.
Eshmatov, B.K. (2007), “Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular
plates”, J. Sound. Vib., 300, 709-726. 

Evans, A.G., Hutchinson, J.W. and Ashby M.F. (1999), “Multifunctionality of cellular metal system”, Prog.
Mater. Sci., 43, 171-221.

Fares, M.E. and Elmarghany, M.K. (2008), “A refined zig-zag nonlinear first order shear deformation theory of
composite laminated plates”, Compos. Struct., 82, 71-83. 

Kovacik, J. (1999), “Correlation between Young’s modulus and porosity in porous materials”, J. Mater. Sci. Lett.,
18, 1007-1010.

Kovacik, J. (2001), “Correlation between shear modulus and porosity in porous materials”, J. Mater. Sci. Lett.,
20, 1953-1955.

Magnucki, K. and Stasiewicz, P. (2004a), “Elastic bending of an isotropic porous beam”, Int. J. Appl. Mech.
Eng., 9(2), 351-360.

Magnucki, K. and Stasiewicz, P. (2004b), “Elastic buckling of a porous beam”, J. Theor. Appl. Mech., 42(4),
859-868. 

Malinowski, M. and Magnucki,K. (2005), “Deflection of an isotropic porous cylindrical panel”, Proceeding of
the 8th SSTA conference, Eds.Pietraszkiewicz,W. and Szymczak,C. Taylor & Francis ; London, New York,
Philadelphia, Singapore., 143-147.

Magnucki, K., Malinowski, M., Kasprzak, J. (2006), “Bending and buckling of rectangular porous plate”, Steel.
Compos. Struct., 6(4), 319-333. 

Mielniczuk, J. and Malinowski, M. (2005), “Models of porous materials for design of construction shell
elements”, Pojazdy Szynowe, 3, 15-21, (in Polish). 

Mielniczuk, J., Malinowski, M., Kuligowski, P. (2006), “Porous shell elements for wagon roof of railway
vehicles”, Pojazdy Szynowe, 2,1-5, (in Polish). 

Qatu, M.S. (2004), Vibration of laminated shells and plates, Elsevier, Amsterdam. 
Ramamurty, U. and Paul, A. (2004), “Variability in mechanical properties of metal foam”, Acta Mater., 52, 869-
876. 

Reddy, J.N. (2000), “Analysis of functionally graded plates”, Int. J. Numer. Meth. Eng., 47, 663-684. 



168 D. Debowski,  K. Magnucki and M. Malinowski

Sahu, S.K. and Datta, P.K. (2007), “Research advances in the dynamic stability behavior of plates and shells:
1987-2005 - Part 1: Conservative systems”, Applied Mechanics Reviews, 60, 65-75. 

Structural Analysis Guide, ANSYS 5.4, Ansys Inc., 1994.
Szcze niak,W. (2000), Selected problems of dynamic of plates, Oficyna Wydawnicza Politechniki Warszawskiej,
Warszawa (in Polish). 

Wang, C.M., Reddy, J.N., Lee, K.H. (2000), Shear deformable beams and plates, S. Elsevier Sciences.,
Amsterdam, Lausanne, New York, Oxford, Singapore, Tokyo.

Yang, J., Liew, K.M., and Kitipornchai, S. (2006), “Imperfection sensitivity of the post-buckling behavior of
higher-order deformable graded plates”, Int. J. Solids. Struct., 43, 5247-5266.

Zhang, T., Liu, T. and Luo, J. (2004), “Nonlinear dynamic buckling of stiffened plates under in-plane impact
load”, J. Zhejiang University Science, 5(5), 609-617. 

CC

s·




