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Abstract. Actual buckling curves are always characterised by the erosion of ideal buckling curves
case of compact sections this erosion is due to the imperfections, while for thin-walled membe
supplementary erosion is induced by the phenomenon of coupled instabilities. The ECBL appro
Erosion of Critical Bifurcation Load - represents a practical and convenient tool to characterise
instability behaviour of thin-walled members. The present state-of-art paper describes the theor
background of this method and the applications to cold-formed steel sections in compression
bending. Special attention is paid to the evaluation methods of erosion coefficient and to their valida
The ECBL approach can be also used to the plastic-elastic interactive buckling of thin-walled mem
and the paper provides significant results on this line.

Key words: thin-walled steel sections; local buckling; overall buckling; critical load; coupled instabi
ties; imperfections; erosion; coupling range; buckling curves; local plastic mechanism.

1. Introduction

The instability behaviour of bar members is generally characterised by stable post-critical modes.
However the interaction of two stable symmetric post-critical modes may generate an un
coupled asymmetric mode, rendering the member highly sensitive to imperfections. In such a case
a significant erosion of critical load occurs. Examining the cases of coupled instability, we find
two very different types exist (Gioncu 1994):

(a) naturally coupled instabilities; which result in garland curves. Two forms of instability a
possible in the intersection points of these curves. The post-critical curves can be sta
uncoupled modes, but by coupling, they become unstable. The phenomenon of bucklin
terns change in plates and shells, due to this mode interaction, is well known, but, in
way, it may by found also in the case of thin-walled members (Fig. 1).

(b) coupling due to design; when the geometric dimensions of structure are chosen such as tw
more buckling modes are simultaneously possible (Fig. 2). For this case, the optimisation ba
the simultaneous mode design principle plays a very important role and the attitude of the d
in regard with this principle is decisive. This type of coupling is the most interesting in practice

Another classification of coupled instabilities refers to the linearity or non-linearity of coupling:
(a) linear coupling; this occurs when two modes are coupling from the origin, independentl

the presence of imperfections. An example is the interaction between flexural and tor
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(b) non-linear coupling; this exist for some geometrical proportions of structures only, and

presence of the geometrical imperfections is necessary for coupling; this coupling doesn’
for ideal structure. For instance, this is the case of the interaction between flexural buckling
and torsional-flexural buckling of some mono-symmetrical cross-section (Fig. 2).

The general meaning of coupled instability phenomenon is related, in fact, to non-linear cou
Due to the imperfections, an interaction erosion of critical bifurcation load occurs. This eros
maximum in the coupling point vicinity. For bar members, an interactive slenderness rang
which sensitivity to imperfections is increased, may be identified. Classes of interaction 
separated by specific levels of erosion intensity, may be defined.

Given a compression member, we are assuming two simultaneous buckling modes may occur. If
Nu is the critical ultimate load, and Ncr the ideal critical one, the following relation may be written:

Nu = (1−ψ)Ncr (1)

The erosion factor ψ was introduced as a measure of erosion of critical load. Gioncu (1994) ha

Fig. 1 Natural coupled instability: example for lipped channel section analysed with a spline finite
buckling program (Lau and Hancock 1990)

Fig. 2 Coupled instability by design: example for T section with test evidences (Gioncu 1992)
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classified the interaction types by means of this erosion factor, as follows:
class I: weak interaction (W), ψ ≤ 0.1;
class II: moderate interaction (M), 0.1<ψ ≤ 0.3;
class III: strong interaction (S), 0.3<ψ ≤0.5;
class IV: very strong interaction (VS), ψ > 0.2.
Obviously, an appropriate framing of each coupled instability into the relevant class is 

important because the methods of analysis used for design have to be different from one c
another. In case of week or moderate interaction, structural reliability will be provided by si
using of design code safety coefficients, while in case of strong or very strong interaction, s
methods are needed.

2. Interaction types in bar members (Dubina 1996)

As shown in Fig. 3 the buckling modes can be characterised by their wavelengths. If th
modes that couple have comparable wavelengths, then their unstable post-critical path shows
or moderate interaction; this is the case of interaction between flexural and flexural-tor
buckling in case of mono-symmetrical compression members.

If strong differences exist between the two modes, as in the case when overall and local 
couple, a moderate to strong interaction occurs; this is the case of laced built-up columns
different behaviour is resulting when multiple local buckling modes occur simultaneously unde
same critical load. For a long bar, multiple load buckling modes with m-1, m, m+1 half-wavelength
may interact in the first form of the interaction (Fig. 3) and lead to an unstable post-critical
behaviour. It is very important to know that such interaction provides a localisation of the buckling
patterns, because the localised mode has a more pronounced unstable slop than that period
The second interaction is due to the interaction of the stable post-critical general buckling w
unstable post-critical localised buckling and yields to a very unstable post-critical behaviour.
interaction produces a great erosion of the critical load due to geometrical imperfection
characterises the behaviour of thin-walled members.

If the localised mode occurs prior to the overall one, the member post-buckling behaviour m
modified by material yielding, and leads to a local plastic mechanism. In this case the interac

Fig. 3 Localised buckling pattern generated by multiple local buckling modes interaction
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produced between the overall mode, which corresponds to an elastic non-linear behaviour
member, and a local plastic collapse mechanism, associated with stub column behaviour. 
and Khoo (1981) have described the theoretical background of this type of behaviour, and
given a method, which closely predicts the local plastic strength of thin-walled short members

If the plastic mechanism is properly identified, the resistance of the short member, eith
compression or bending, can be more appropriately evaluated, than using the “effective width” ap
The reason is that, even the local buckling firstly appears in case of short members, it a
changes into local plastic mechanism when the member fails.

For stub columns the “effective width” approach operates with the plastic strength of the effect
cross-section, while effective width of component walls is evaluated in terms of the elastic c
stress; this represents an important inconsistency of this theoretical model. The “local plastic
mechanism” operates with the “real” plastic strength, assuming the thin-walled cold-formed stub colu
fails by forming plastic hinge and/or plastic zone, as effect of the localisation of buckling pattern.
Consequently, the local-global interactive buckling could be regarded as one of plastic-elastic type,
and not as an elastic-elastic one.

The columns of intermediate slenderness with open thin-walled section may also buckle
distortional mode. If the local buckling mode keeps straight the wall junctions, the distort
mode, as shown in Fig. 4, involves rotations of the flange-lip about the flange-web junctions
buckling mode has been referred as a local-torsional mode in some reports (Lau and Hancoc
Al-Bermani 1994). However the distorsion of cross-section may involves in some cases the
flange junctions too.

Local buckling can occur either simultaneously with distortional buckling, or at higher or lower 
The question is, if the distortional mode cannot be regarded as a local mode and, consequently
interaction with other local modes, no localised buckling pattern occurs? The tests by Kwo
Hancock on lipped channel section (Hancock 1994) have demonstrated that no unstable pos
path results in the local with distortional buckling interaction. Thus, the distortional buckling stre
can be assessed independently of whether local buckling is occurring simultaneously.

In the case of thin-walled beams, when the elastic local buckling load of compression fla
close to the lateral-torsional buckling one, the actual strength may be reduced by imperf
effect. Some small reductions were reported in (Menken 1991) for thin flange beams in un
bending, so even through local buckling will significantly reduce the resistance to flexural-tors
buckling, generally no strong interaction erosion occurs.

The situation is similar to the case of interaction between distortional and lateral-tors
buckling, even through the distortion of cross-section may involve an important reductio

Fig. 4 Local and distortional buckling modes in a thin-walled lipped channel section: a) local
b) local-torsional; c) distortional000000000000000000000000000000000000000
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Table 1 summarises the main coupled instability cases, which may appear within the bar membe

3. ECBL approach-a way to adapt the Ayrton-Perry formula for interactive buckling
of bar members

3.1. Ayrton-Perry formula for global buckling of compression member

Considering a pinned supported bar in compression, the Ayrton-Perry formula can be expre
terms of axial force as follows:

(2)

with:

, the dimensionless axial compression force,

, the reduced member slenderness,

and Npl=Afy, the plastic strength of full cross-section.
In order to generate the European buckling curves (Eurocode 3 1996), the following relatio

proposed for the generalised imperfection factor η (Rondal and Maquoi 1979):

(3)

which has to be replaced in Eq. (2). It gives:

(4)

1 N–( ) 1 λ2
N–( ) ηN=

N
N

Npl

-------=

λ Npl

Ncr

-------=

η α λ 0.2–( )=

1 N–( ) 1 λ2
N–( ) α λ 0.2–( )N=

Table 1 Coupled instabilities in bar members

No. Bar member type Instability modes Class of interaction
1. Mono-symmetrical columns F+FT=FFT W to M

ψ = 0.3
2. Built-up columns F+L=FL M

0.1<ψ = 0.3
3. Thin-walled columns F+L=FL

FT+L=FTL
F+FT+L=FFTL

S to VS
ψ = 0.3

F+D=FD
FT+D=FTD
F+FT+D=FFTD

M to S
0.3=ψ = 0.5

4. Thin-walled beams LT+L=LTL
LT+D=LTD

M
ψ = 0.3

Legend: F=flexural buckling; FT=flexural-torsional buckling; L=local buckling; D=distortional buckling;
W=week interaction; M=moderate interaction; S=strong interaction; VS=very strong interaction
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Solving this equation in terms of N it can be obtained

(5)

in which only (-) is significant. The imperfection coefficient a was statistically calibrated via some
representative series of experimental test results in order to define the five European bu
curves:

If the component walls of the member cross-section are prone to local buckling, according
Winter and Von Karman’s theories, the yield stress, fy yield stress is assumed to be distributed 
the effective area of the cross-section only, i.e., Aeff:

(6)

where

(7)

where Q is the reducing factor of gross area which should be calculated on the basis of eff
width principle.

The reduced cross-section plastic strength, in this case, will be:

(8)

and, as consequence, Eq. (2) becomes:

(9)

Eq. (9) represents the Ayrton-Perry formula for Overall-Local Interactive Buckling.

3.2. Erosion of the overall-local coupled buckling load

On the basis of Erosion of Critical Bifurcation Load (ECBL) theory (Dubina 1990, 1993, 199
new approach was proposed to evaluate the ultimate strength in overall-local interactive bukling.
Assuming the two theoretical simple instability modes that couple in a thin-walled compre
member, are the Euler bar instability mode,  and the local instability mode, 
(Fig. 5), then the maximum erosion of critical load, due both, to the imperfections and cou
effect occurs in the coupling point . The interactive buckling load, , p
through this point and the corresponding value of ultimate buckling load is , wheψ
is the erosion factor.

It must be underlined that NL =Q not represents rigorously the theoretical local buckling cur
but it can be assumed (in a simplified way) as a level of the cross-section local buckling mode, an

Curve a0 a b C d

α 0.13 0.21 0.34 0.49 0.76

N1.2
1 α λ 0.2–( ) λ2

+ +

2λ2
----------------------------------------------- 1

2λ2
-------- 1 η λ 0.2–( ) λ2

+ +[ ]
2

4λ2
–±=

Aeff QA=

Q
Aeff

A
--------=

Npl fyAeff fyQ( )A= =

Q N–( ) 1 λ2
N–( ) α λ 0.2–( )N=

Nα 1 λ( )⁄= NL Q=

λC 1 Q⁄= N λ Q ψ, ,( )
NE 1 ψ–( )NL=
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on the basis of this assumption, it is possibly to evaluate the ultimate strength of the stub colu

3.3. An interpretation of ψ erosion factor in terms of α imperfection coefficient and Q
reducing factor of the cross-section area

The solution (5) of the Ayrton-Perry Eq. (4), in the particular point λ=1 has to be taken equa
with (1-ψ), because it corresponds to the maximum erosion of the Euler curve when no
buckling occurs (Fig. 6) e.g.,

(10)

that gives:
(11)

or

(12)

N λ 1 α,=( ) 1
2
--- 2 0.8α 2 0.8α+( )2 4––+[ ] 1 ψ–= =

α ψ2

0.8 1 ψ–( )
-------------------------=

ψ 0.4 5α α2+ α–( )=

Fig. 5 The interactive buckling model based on the ECBL theory

Fig. 6 The erosion of bar buckling curve
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Fig. 7 shows the change of ψ erosion factor depending on α coefficient of imperfection in
European buckling curves.

When local buckling occurs prior to bar buckling, then the solution of Eq. (9), in the cou
point, E (see Fig. 5) is:

(13)

which leads to

(14)

This represents the new formula of α imperfection coefficient, which should be introduced 
European buckling curves in order to adapt these curves to overall-local buckling. Figs. 8 (a and b
show the change of a depending on ψ and Q.

N
1 α λ 0.2–( ) Qλ2

+ +

2λ2
--------------------------------------------------- 1

2λ2
-------- 1 α λ 0.2–( ) Qλ2

+ +[ ]
2

4Qλ2
– 1 ψ–( )Q=–=

α ψ2

1 ψ–
------------- Q

1 0.2 Q–
-------------------------⋅=

Fig. 7 Relation between ψ erosion factor and α coefficient of imperfection

Fig. 8 Relation between α, Q and ψ
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When one speaks about the erosion of theoretical buckling curve in the coupling point disti
should be made between the erosion, expressed by ψ, which refers to the effect of both
imperfections and coupling, and the reduced ultimate strength of member, due to local bu
which is introduced by Q factor. An extended discussion of this problem was recently given
Dubina, Ungureanu and Szabo (2000).

3.4. Extension of ECBL interactive approach to thin-walled beams

The previous approach can be very easy extended to the case of interactive local/lateral-to
buckling of thin-walled beams (Dubina and Ungureanu 1997).

Related to Fig. 9 it can be written for 

(15)
where

(16)

represents the (-) solution of the Ayrton-Perry formula adapted for interactive local-lateral tor
buckling. The generalised imperfection coefficient, in this case, is

(17)

If  is introduced in Eq. (15), after some mathematical processing, this gives

(18)

The new ECBL interactive approach for lateral-torsional buckling of thin-walled beams is si
to that of EC 3 -Part 1.3, but instead of φLT given in EC 3 -Part 1.3 the following modified formul

λLT 1 QLT=

MLT 1 ψLT–( )QLT=

MLT
1 αLT λLT 0.4–( ) QLTλLT

2
+ +

2λLT
2

-------------------------------------------------------------------- 1

2λLT
2

----------- 1 αLT λLT 0.4–( ) QLTλLT
2

+ +[ ]
2

4QLTλLT
2

––=

ηLT αLT λLT 0.4–( )=

λLT 1 QLT( )⁄=

αLT

ψLT
2

1 ψLT–
-----------------

QLT

1 0.4 QLT–
------------------------------⋅=

Fig. 9 The ECBL interactive model for thin-walled beams
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(19)

with αLT calculated from Eq. (18) in terms of the erosion factor ψLT.

4. Calibration of ψψψψ erosion factor

As evident from previous chapter, in the light of ECBL theory, the key element in the attem
plotting interactive buckling curves is represented by the erosion coefficient ψ; on this basis the new
α imperfection factor, to be used in the European buckling curves, can be evaluated using E
and Eq. (18), respectively.

Thus, the necessity of a method to determine the value of coefficient ψ results. In fact, two
different methods are possible to this purpose i.e.: experimental and numerical method, respe

a) Experimental method
The experimental calibration method requires a relevant set of experimental values locate

close neighbourhood of the coupling point, called “coupling range”
Most often available experimental results scatter, as a result of unavoidable mechanical and geo

imperfections. Consequently, the concerned specimens do not meet the main requirement o
theory to have a reduced member slenderness identical to the one corresponding to the coupli
( , see Fig. 5). Even in case of own specimens, dimensioned with such a length
theoretically located in the coupling point, the imperfections produce an unavoidable scatter o
experimental results and require the work with a coupling range as well.

The selection of the relevant set of specimen should be performed by choosing among existing
results experimental samples reasonably close to the instabilities coupling point (in terms of
reduced slenderness). This is leading to the idea of using a “coupling range”, defined in terms of
reduced slenderness as a vicinity of the coupling point, instead of working strictly in this poi
correct definition of coupling range limits is therefore of paramount importance for the selection o
a relevant set of specimens. Extensive parametric studies (Georgescu 1998) have indicated as a
an unsymmetrical coupling range defined around  with left limit  and the righ
limit . All specimens with a reduced slenderness comprised between these two 
should be considered as reasonably close to the coupling point (in terms of reduced slend
and selected within relevant experimental set.

b) Numerical method
Based on an advanced non-linear inelastic FEM analysis and taking into account fo

imperfections and cold-forming effect, the numerical model has to simulate relevant experimental
values into the coupling range.

However, the numerical method, requires also some experimental results in order to calibr
FEM model.

On the following both experimental and numeric methods will be presented.

4.1. Experimental calibration procedure

Both traditional “mean value” approach or the Eurocode 3 Annex Z one can be used in
experimental method. The first approach was largely shown in several previous publicatio

φLT 0.5 1 αLT λLT 0.4–( ) λLT
2

+ +[ ]=

λC 1 Q⁄=

λc λ1 0.85 λc⋅=
λ2 1.075 λc⋅=
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author (Dubina et al. 1995) and is quite similar to that used in case of numerical calibration, which
will be presented into the next chapter. On the following, the EUROCODE Annex Z appr
developed by Georgescu (1998) in his PhD Thesis, will be described.

4.1.1. Eurocode 3 Annex Z based calibration procedure
The calibration procedure, is briefly summarised below in a “step-by-step” manner (Geor

and Dubina 1999):
STEP 1: Definition of a design model according to EC.3 Annex Z
The following design model is introduced for the theoretical strength function (rt):

(20)

with variable N defined in relation (13) while A represents the area of gross cross section and fy the
yield stress.

By means of Annex Z procedure, the theoretic strength function rt should be further calculated usin
the experimental values of the variables (supposed all available) and compared to the experim
determined value of the strength re.

STEP 2: Checking the conditions for the application of Annex Z procedure
Previous to the application of Annex Z standard procedure, some conditions must be fulfilled i.e.:
• The strength function used to define the design model has to be a product of indep

variables;
• Complete sets of measurements are available on all model variables;
• All variables are yielding a log-normal statistic distribution (otherwise Annex Z formulas are

valid).
STEP 3: Application of EC.3 Annex Z standard procedure
By observing relations (13) and (14) it results that strength function value rt may be easily controlled

by modifying erosion factor ψ value. From mathematical point of view 0 <ψ ≤ 1. Practically,
erosion factor change is limited to a more narrow range (0.2≤ ψ ≤ 0.6) where a series of “k” values
for ψ may be defined. Annex Z standard procedure is then applied “k” times per subset, each time
with an increased ψ value extracted from the pre-defined series.

Given rti the values of the design model per specimen i and rei the values of the strength function
determined by experiment, the correction terms are defined for each specimen: bi=r ei/rti. Their
average value called “mean value correction” b is also determined. The corrected strength functi
results, using basic variables average value Xm:

(21)

Strength characteristic value rk and strength design value rd are further determined to Annex Z
followed by safety factor calculation, as terminal point of the procedure: γM=r k/rd.

If the required conditions of Annex Z were initially met, the first complete application of 
procedure will lead to suitable values of correlation coefficient ρ > 0.9, variation coefficient Vr < 0.15
and safety factor γM < 1.25, from Annex Z point of view.

As in many cases the experimental values are yielding a considerable scatter, one or e
upper indicators may not comply with the recommended range, which clearly blocks any furth
of the procedure.

In this situation the following method is proposed, which has given excellent practical results
a) Ranging of “bi” values in increasing or decreasing order (each of the values correspondi

r t N A× fy×=

rm Xm( ) b rt Xm( )× b Nm Am× fy m⋅×( )×= =
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an experimental specimen)
b) Successive elimination of “bi” values (and corresponding specimens) from the experimental

starting from one limit of the range, observing the subsequent improvement of concerned sta
indicators in Annex Z procedure. The optimum limit of the series (inferior or superior) from whe
to start the elimination will be detected by attempts.

c) Thus a number of eliminations are performed, until acceptable values for the mentione
indicators are reached. As for the eliminated specimens, two situations are possible:

c.1) Only a small number of specimens have been eliminated from the experimental se
suitable values for the indicators were reached. In this case the eliminated specime
correlation, variation or safety factor reasons) will be further disregarded and considered
out-liers.

c.2) A large or very large number (even majority) of specimens has been eliminated un
remaining sub-set has reached acceptable values for the upper statistical indicators. In this case t
elimination procedure will be repeated in the same way as described, on the large set of eliminated
values. A second sub-set of specimen, which fulfils Annex Z, conditions for the indicators
result, together with some eliminated values. If the new eliminated values are still in large nu
the procedure will be repeated on them as described. In the end, only a very small num
specimens are actually lost by elimination, but in exchange, the procedure is unblocked an
continue separately on the detected sub-sets.

The method proposed (and largely experimented in practical calibrations) by the author (Geo
1998) has the advantage of eliminating only an insignificant number of specimens in case 
correlation, variation or safety factor values, but of detecting a multi-modal structure contain
number of sub-sets on which it is possible to carry on separately the calibration procedure.

STEP 4: Detection of the erosion factor calibrated value ψj for each subset j
If the values of ρ, Vr, and γM obtained from all “k” application of Annex Z standard procedure over th

concerned sub-set are examined, only slight changes of upper factors are observed, produced by t
imposed change of ψ erosion factor values. This shows a low sensitivity of upper three parameters
to the change of the erosion factor ψ.

Thus, no optimisation criterion for ψ may be directly related to ρ, Vr, or γM parameters. However,
a very strong sensitivity to ψ change has been observed in case of the correction terms bi.

A safety range may be defined by introducing the following obvious requirement for e
specimen i:

 and (22)

If the number Ns of the correction terms included in the safety range (i.e., 1.0≤ bi ≤ γM) is determined
for each application “k” of Annex Z standard procedure on concerned subset, a maximum valu
this number Ns

max will always be found inside ψ variation range. By representing Ns change
depending on ψ, a convex curve of the type in Fig. 10 results:

The ψj value corresponding to Ns
max should be adopted as calibrated value of the erosion factoψj

for the statistic mode j, corresponding to optimum model behaviour from safety point of view. Th
the central idea of Annex Z, which establishes the accuracy of a model by evaluating model
level, is applied.

STEP 5: Obtention of the calibrated value (ψc) for the erosion factor
As, up to now, the standard procedure of Annex Z was separately applied on each subset o

rei

r ti

----- 1≥
rei

r ti

----- γM≤
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experimental values, at the end a number of calibrated values ψj will result, corresponding each to on
detected sub-set. The authors are proposing to determine the calibrate value ψc using the “envelope”
principle, so:

(23)

Thus the results of the calibration procedure will always remain on the safe side.

4.1.2. Validation of calibration procedure
The experimental calibration procedure previously presented has been validated using the d

with experimental tests on hot-rolled profiles carried out during the European campaign of the
1960 (Sfintesco 1970).

The aim of this testing procedure was to check if the values of α obtained with the formula (11) are
comparable with those initially obtained for the European buckling curves (Rondal and Maquoi 
Some of the results obtained by applying proposed procedure are presented in Table 2 and Table 

As evident from upper table, the values obtained by calibration are matching at a satisf
degree the existing framing of profiles cross-sections on the five European buckling curves, 
allows for procedure validation.

4.1.3. Results for thin-walled cold-formed compression members
However, the main purpose of the using ECBL approach was to calibrate the imperf

coefficient in case of thin-walled cold-formed profiles, in order to obtain specific buckling cur

ψc max ψ j{ }=

Fig. 10 Change of Ns number depending on ψ factor

Table 2  Calibrated values of erosion factor (ψ) in case of hot-rolled profiles

Profile 
type

Statistic 
mode

Number of 
specimens

Correlation
coef. (ρ)

Variation 
coef. (Vr)

Safety
factor (γM)

Erosion coef. 
(ψ)

IAP-150 1 20 0.817 0.114 1.1834 0.350
2 24 0.892 0.109 1.1698 0.165
3 14 0.864 0.108 1.1720 0.334

IPE-160 1 31 0.886 0.124 1.2028 0.330
IPE-200 1 17 0.931 0.115 1.2322 0.280
DIE-200 1 17 0.916 0.115 1.2314 0.410
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required by their particular stability behaviour.
The proposed calibration procedure has been applied on two sets of experimental values

out by Batista at the University of Liege/Belgium on “C” and “U” cross-section profiles (Batista
1986), as well as on a set of experimental values on rectangular hollow section extracted
CIDECT database (1992). The obtained results are shown in Table 4 and Table 5.

All calibration results were checked by calculating the percent deviation of the reduced experi
values ( ) in respect with the corresponding ordinate of the resulting buck
curve (see Eq. 24):

(24)

The computed results may be put in form of histograms, which the position of the experim

points in respect with the relevant buckling curve like shown in Fig. 11.

By examining the upper histogram, a strong scatter of the experimental values is visible, but 
the fact that the calibration result is situated on the safe side, which evidently confirms it.

4.2. Numerical calibration procedure

4.2.1. Calibration of advanced analysis FEM model (Dubina et al. 1997)
Very accurate tests performed at University of Sydney on compressed cold-formed “C” sections

Nexp Nexp|A fy⋅=

%∆ Nexp Ncurve–

Ncurve

----------------------------- 100⋅=

Table 4  Calibrated values of the erosion factor (ψ) in case of TWCF profiles

Profile 
type

Statistic 
mode

Number of 
specimens

Correlation
coef. (ρ)

Variation 
coef. (Vr)

Safety
factor (γM)

Erosion coef. 
(ψ)

C 1 14 0.965 0.122 1.2577 0.440
2 12 0.979 0.111 1.2276 0.170

U 1 8 0.882 0.109 1.2568 0.270
 � 300×200×4.98 1 24 0.928 0.099 1.1617 0.370

Table 3 Subsequent (α) values & comparison with the EC3 framing

Profile type Calibrated (ψ)
value

Calibrated 
(α) value

Resulting
buckling curve

EUROCODE 3 framing on 
curve: (Min. inertia axis)

IAP-150 0.350 0.236 b b
IPE-160 0.330 0.203 a b
IPE-200 0.280 0.136 a b
DIE-200 0.410 0.373 c c

Table 5  Subsequent (α) values & comparison with the EC3 framing

Profile 
type

Calibrated (ψ) 
value

Calibrated (α) 
value

Resulting
buckling curve

EC 3-Part 1.3 framing on 
curve: (Min. inertia axis)

C 0.440 0.217−0.429 c b
U 0.270 0.089−0.125 a c

 � 300×200×4.98 0.370 0.233 b b
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(Young and Rasmunssen 1995) were used as basis of the calibration of numerical mode
nominal cross-section dimensions for the series specimen are: thickness of 1.5 mm, web widt
mm, flange width of 36 mm and lip width of 12 mm. The lipped channels were brake-pressed
zinc-coated structural steel sheets Grade G 450 of (nominal yield stress of 450 MPa). Table 6
the measured dimensions of the specimens.

Material properties, determined from coupon tests, are: 0.2% tensile proof stresses (σ0.2) of 500 MPa,
tensile strength (σu) of 540 MPa and Young’s modulus E= 195 GPA. In Table 6, t* represents the
metal thickness and it was used in FEM model, together with measured cross-section dimensio
determined material properties.

The dimension of the pin-ended bearing (95 mm at each end) should be added to the pin
specimen length for the pin-ended columns. The pinned end bearings allow for rotation abo
minor y-axis, only.

4.2.1.1. Introduction of geometrical imperfections and material non-linearities
From the point of view of non-linear analysis, initial imperfections are used in order to lead th

load-displacement response of model to certain instability shape. In case of compressed members
some kind of disturbance is essential because loading itself has no distorting effect on the 
When initial imperfection is used to invoke geometric non-linearity, the shape of imperfection
be determined with eigen buckling analysis. The eigen buckling modes should describe the p
displacement field for the member.

Two kind of geometric imperfections were taken into account in FEM model: overall geom
imperfection (with maximum size, fo, at the mid-length), and local web imperfection of wo

amplitude. The geometric imperfections used into the FEM model were taken as follows:
−for L36280 - and L36P815+ specimens, the local imperfection is affine with the first l

buckling mode, and the overall imperfection is taken as a single wave-length sine shapfo
amplitude;

Fig. 11 Percent deviations of the experimental values in respect with the buckling curve

Table 6 Measured specimen dimensions for series L36 (Young and Rasmunssen 1995)

Specimen
Lips

Bl (mm)
Flanges
Bf (mm)

Web
Bw (mm)

Thickness Radius
ri (mm)

Length
L (mm)t (mm) t* (mm)

L36P0280− 12.6 37.1 97.2 1.53 1.48 0.85 1279.9
L36P0815+ 12.7 37.0 97.4 1.51 1.48 0.85 1814.6
L36P1315− 12.4 36.9 97.1 1.52 1.47 0.85 1316.4
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For
the
−for L36P1315 - specimen, the overall imperfection is affine with the first buckling mode, (flex
buckling) while the local imperfection is affine with the second buckling mode (local buckling).

The size of imperfections was equal either with the measured or equivalent overall and
initial deflections. The measured amplitude of local imperfections is the maximum out-of-p
deflection, measured at the middle of the web width, while the overall one is the initial deflect
mid-length of the member.

Equivalent overall amplitude was taken (l/1000) of column length, according to EUROCOD
Part 1 provisions; the local equivalent imperfection was 0.006 of web width (Schafer and Pekoz
1996). The measured eccentricity (eo) of the applied load, was also introduced in FEM model.

The membrane and the flexural measured residual stresses had values from 15 MPa to 40 M
pointed out for the authors of the tests, the residual stresses, compared with the nominal yield
which is 450 MPa are negligible, and, consequently they were not introduced in the FEM model

The material behaviour was introduced using the ideally elastic-plastic bilinear model (Prandtl)
and a non-linear one, based on the Ramberg-Osgood formula calibrated for the considered 
(σ0.2=500 MPa, σu=540 MPa, εu=12%).

4.2.1.2. FEM procedure
The numerical analysis was carried out with ANSYS 5.3 using SHELL 43 elements. This i

node element, allowing for elastic-plastic large strains and deflection analysis. Boundary con
and loading are set to match those employed in the physical tests.

4.2.1.3. Numerical results
Numerical results obtained with ANSYS large-deformation elastic-plastic analysis are presented i

Table 7.
4.2.2. Calibration of ψ erosion factor
In this paragraph the calibration of ψ erosion factor via numerical procedure is presented. 

this purpose, the mean value statistical procedure was used. This procedure includes 
following steps:

Table 7 Ultimate loads in kN

Specimen Tests
ANSYS with bilinear material model ANSYS with R-O model

Measured imperfections Equivalent imperfections Measured imperfections

L36P0280− 83.5 − 85.87 81.41
L36P0815+ 67.9 70.50 72.08 69.80
L36P1315− 41.1 41.42 38.56 40.75

Fig. 12 Evaluation of ψ erosion factor by means of numerical results
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1. Evaluation of ultimate load of member in the coupling point which is defined by the intera

slenderness, , and also at the limit points of the coupling range, considered 
symmetrical, (Fig. 12).

Two different ultimate loads corresponding to ±fo amplitude of overall geometrical imperfection
will be calculate in each point. The local imperfections, wo, is the same in all cases.

2. Compute the individual value of erosion, , for the i specimen, and the mean

value of the erosion factor, , for all n members.

3. Compute the design value of the erosion factor:

(25)

where s is the standard deviation which is introduced in order to take into account the rando
of numerical results.

4.2.3. Numerical results
The numerical approach was used to obtain the erosion value corresponding to the L36 sp

series (Young and Rasmunssen 1995). The length corresponding to  was 1304 mm (includ
pin-ended bearings).

With fo=±0.46 mm and wo= 0.25 mm, ANSYS large-deformations elastic-plastic (bilinear material
model) analysis has given an erosion of ψ = 0.373, and, after the a imperfection factor result
equal to 0.213.

Fig. 13 shows the comparison between the experimental values with the Eurocode 3-P
buckling curve and the buckling curve obtained with the numerically calibrated value of ψ (both
numerical and code curves were divided by γM1=1.1 safety coefficient). The agreement betwe
experimental values and the numerical buckling curve is satisfactory.

5. Elastic-plastic interactive buckling formula via ECBL approach

As shown in Chapter 2 of this paper, due to the localisation of buckling patterns, the loc
post-buckling of stub column leads always to a local plastic mechanism mode of failure. This 

λC 1 Q⁄=
λC 0.1 λC⋅±

ψ i Qi

Ni num,

Ni pl,
--------------–=

ψm
1
n
--- ψ i

i 1=

n

∑=

ψd ψm 1.64s+=

λC

Fig. 13 Theoretical/experimental comparative results
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confirmed both by tests and numerical simulations (Fig. 14).
Starting from this real behaviour of thin-walled stub columns, and based on the Murray t

(Murray and Khoo 1981), Dubina and Ungureanu (2000) used the ECBL approach in ord
express the plastic-elastic interactive buckling of thin-walled compression members.

In this case the erosion can be associated to the plastic-elastic interaction between the rigid plastic
mode (plastic strength) of stub column and the overall elastic buckling mode of the bar, give
Euler formula.

The main problems of this approach is to evaluate properly the plastic strength of thin-walle
column, via the local plastic mechanism theory, and after the erosion of critical load into
“plastic-elastic coupling range”.

Fig. 15 shows the ECBL approach adapted to plastic-elastic interactive buckling.
where:

NU = ultimate compression strength;
Npl = A×fy full plastic strength of thin-walled cold-formed members;
Npl,m = the local plastic buckling (mechanism) strength;
A = the gross area of cross section;
λ = relative slenderness in overall buckling;
λC = relative slenderness in the coupling point.

Following exactly the same way as for the elastic local-overall interactive buckling, the α imperfection
factor for the plastic-elastic interactive buckling results:

Fig. 14 Plastic mechanisms of plain and lipped channel stub columns: tests and FEM simulation
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where QPL is the reduction factor of plastic strength of this member,

(27)

In order to evaluate the ψ erosion factor, the “mean value” experimental approach was used.
The same experimental data carried out at the University of Liege (Batista 1986) were u

compare the ECBL plastic-elastic approach with the elastic-elastic one, and with Eurocode3
1.3 and advanced FEM results.

The experimental procedure with the “mean value” statistical approach, considering the coupling
to be  was used in order to provide the numerical results for this comparison

The experimental “mean value” approach includes the following steps:
1. Compute the individual erosion for the i column specimen

(28)
where

(29)

with Ni,exp, the experimental failure load and Ni,pl=Ai×fy the full plastic resistance of the i specimen.
2. Compute the mean value of ψ erosion factor for all n specimens, with the same cross-secti

shape, included into the coupling range:

(30)

3. Compute the design value of the erosion factor:

(31)

α ψ2

1 ψ–
-------------

Qpl

1 0.2 Qpl–
----------------------------⋅=

Qpl Npl L,
Npl m,

A fy⋅
------------= =

λ  ε 1 Qpl 0.20±⁄=±

ψ i Npl L, Ni  exp,–=

Ni  exp,
Ni  exp,

Ni pl  ,
--------------=

ψm
1
n
--- Npl L, Ni exp,–( )

i 1=

n

∑=

ψd ψm 1.64s+=

Fig. 15 The interactive buckling model based on the ECBL theory
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in which s is the standard deviation related to ψi and ψm values.
Figs. 16 and 17 show the comparative results for plain and for lipped channels, respe

According to Eurocode 3 Part. 1.3, the safety factor γM1=1.1 was used for all numerical results.

6. Conclusions

Coupled instabilities represent a characteristic of thin-walled steel members in compre
Actual buckling curves of design codes, in Europe for instance, are based on experimenta
carried out on hot-rolled sections. On the purpose of practical use these curves have been ad
order to cover the stability design problems of thin-walled cold-formed steel sections.

Fig. 16 Numerical/Experimental comparison for plain channel sections subject to compression test
Batista (1986)

Fig. 17 Numerical/Experimental comparison for lipped channel sections subject to compression tes
Batista (1986)
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However, compared to hot-rolled ones, these sections have different properties which refer 
geometry, cold-formed effect, residual stresses, influence of geometrical imperfections and
important, to the phenomenon of coupled instability.

All these reasons lead to the necessity of specialised buckling curves for thin-walled cold-f
steel sections. At present, it would be difficult to organise and support an experimental cam
similar to that realised in 60’s in Europe to establish buckling curves for hot-rolled sections. The
the variety of shapes of thin-walled cold-formed steel sections make a such campaign impossibl

The ECBL approach seems to be a practical and convenient tool to continuously ada
existing buckling curves for thin-walled cold-formed steel sections.

On this purpose, a limited number of tests are necessary, only. Using of numerical simulat
also possibly.

Both members in compression and bending can be analysed. Local plastic-overall stic
interactive buckling can be also represented.

Very important too, the theoretical background of ECBL approach, based on the erosion the
coupled bifurcation, is much more rigorous and understandable than the semi-empirical m
used for the buckling curves in existing design codes.
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