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Abstract.    Ship hull optimization is categorized as a bound, multi variable, multi objective problem with 
nonlinear constraints. In such analysis, where the objective function representing the performance of the ship 
generally requires computationally involved hydrodynamic interaction evaluation methods, the objective 
functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered 
as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is 
optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate 
the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for 
objective function and constraint definition are discussed here. 
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1. Introduction 
 

Prediction of design variables that results in a desired performance enhancement is of interest 
in all engineering fields. The benefits of design optimization are significant and hence can be 
found in many disciplines including aerospace, mechanical, material science and in marine. For 
example, a small improvement in the fuel efficiency of a ship may result in savings on the order of 
millions of dollars per year. The fuel efficiency is also important for reduction in greenhouse gas 
emission, which is a major component in the evaluation of International Maritime Organization 
(IMO)’s Energy Efficiency Design Index (EEDI). 

A number of alternatives are being evaluated to increase the energy efficiency of the ship with 
careful consideration of safety of the vessel in sea. A staggering 9% savings has been recorded by 
the largest ocean cargo line Maersk in the first quarter of 2010 by reducing the ship speed (White 
2010). This encouraged new ship developers to reduce the installed power on the ships to increase 
the fuel efficiency. It is, however, essential to ensure enough propulsive power is available to 
maneuver through adverse environmental conditions. Therefore, the optimization of hull form with 
speed consideration should not only reduce the steady resistance of the hull, but also ensure 
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seakeeping performance and maneuverability in the rough sea conditions. Other alternatives 
include refinement of the complete hull form for new ships or just replacing the bulbous bow with 
a more suitable one for the modified operational condition of existing hull forms. Finding the 
optimum route based on metocean data or enhancing the capability of autopilots to utilize real time 
local sea condition to select best ways to maneuver the ship are some of the other methods that are 
also being evaluated. 

The hull form optimization in the context of naval architecture poses three main challenges: 
Parametric representation of the ship hull relevant in design perspective, accurate estimation of 
hydrodynamic interaction forces and resulting motion of the ship, and finally, the optimization 
routine that relies on definition of desired performance objectives and searches for the global 
minima associated with the combination of design variables. To solve the ship hull optimization 
problem described above, it requires understanding of three major research disciplines: Computer 
Aided Design, Computational Hydrodynamics and Global Optimization. A brief discussion on 
each of these topics and final selection of a suitable method applied for the ship hull optimization 
will be presented here. 

 
 

2. Parametric hull suitable for optimization 
 

A number of factors influences how the ship hull needs to be parameterized. The most general 
case that one can imagine may be a semi-solid shape free to distort in any direction conforming to 
a definitive shape that is ideal for all performance objectives and constraints. Defining all the 
constraints related to manufacturing capability, operating conditions, and aesthetics and comfort 
sought by human in a useful mathematical form is yet to be achieved. Therefore, most researchers 
adapt to a rather practical approach to define ship hull in terms of well-established naval architects 
definition and perturb the design variables ensuring most fundamental requirements of the ship 
will be satisfied naturally. Smith et al. (1990) shows one such example where the hull form is 
defined using Lewis forms that rely on principal particulars such as length, breadth, draft, 
prismatic coefficient, center of floatation etc. A similar approach is found in Kükner and Sariöz, 
(1995). Harries and Valdenazzi (2001) represented the hull form of a Ro-Ro ferry completely in 
terms of parametric curves and use it in optimization. This method is later followed by 
Maisonneuve et al. (2003), Birk and Clauss (2008), Kim (2009) to name a few. Perhaps, the 
closest to our imagined semi-solid hull form, is experimented by Heimann (2005), where the ship 
hull is represented directly in terms of panels and the panels were moved based on optimized 
source strengths values. The variation in panel position allowed here, however, was very small to 
keep a practical hull shape. Another approach that comes instinctively to any naval architect is to 
represent the ship hull in terms of offset points. Sariöz (2009) shows application of one such 
method in optimization where the offset points were used as optimization variables. Even though, 
this approach is ideal to apply on an existing hull form, having such large number of optimization 
variable is still not suitable for optimization purposes. Hence, only a limited portion of the hull 
form was optimized with limited freedom for the offset points to avoid impractical shapes.  

Among all these methods, representing the ship hull using parametric curves controlled by 
limited number of well understood hull parameters was found to be most appropriate. Hence, for 
this study, an automatic ship hull generation script has been developed following the work of 
Petersen et al. (2009), which uses twenty five hull parameters (see Table 1) to generate section 
curves and then the ship hull surface in a common CAD format as shown in Fig. 1. 
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Reynolds Average Navier Stokes Equation (RANSE) solvers. Also, the viscous effects are 
primarily dominant in the aft region of the vessel (Grigoropoulos and Chalkias 2010), and can be 
analyzed using experimental or numerical codes with viscous flow analysis capabilities after initial 
selection of suitable hull form through potential flow methods. In terms of performance criteria, 
the steady resistance in calm water is generally considered. It is however possible to incorporate 
criteria for superior seakeeping qualities, as will be demonstrated in this study, from the 
preliminary design optimization stage. 

The hydrodynamic loads on a ship travelling with steady forward speed is solved using a 
frequency domain 3D Green function based panel method code named MDLHydroD. The 
theoretical background, numerical implementation and validation details can be found in Guha 
(2012), Guha and Falzarano (2013) and Guha and Falzarano (2015a). Second order forces and 
moments also have significant effect on ship propulsion, most importantly the longitudinal 
component known as the added resistance. A near-field pressure integration approach is applied to 
obtain the added resistance, which requires discretization of underwater hull surface only, which is 
ideal for hull optimization. Guha and Falzarano (2015b)and Somayajula et al. (2014) provides the 
complete details on analysis method and validations of added resistance. An interface to 
automatically prepare the panelization of the hull form and other environmental input parameters 
is developed. The automated panelization method was able to successfully calculate a smooth 
RAO curve around the resonance frequency for the vertical motions, which is essential for 
defining the seakeeping criteria used in this study. 

 
 
4. Ship hull optimization procedure 

 
4.1 The optimization problem 
 
Any design optimization problem may be mathematically formulated as minimization of an 

objective function  ,f x p , with free variable vector  1 2, , ,
T

Nx x x x  representing 

parameters allowed to vary during optimization and fixed variable vector  1 2, , ,
T

Mp p p p , 

which are not altered but may be required to calculate the objective function. Afterwards, in most 
practical problems, the optimization procedure has to solve the constrained minimization 
problem(Clauss and Birk 1996) 

 

 

   

   

1 2Find the vector , , ,

which satisfies the equation

, min , ,

and the constraints

, 0 1,2, ,

T

N

j

x x x

f f

g j l



   

 





x

x p x p

x p
                  

(1) 

The ship hull optimization problem may be categorized as bounded, multi variable, multi 
objective problem with nonlinear constraints. The objective function used in such optimization 
studies generally cannot be represented explicitly in terms of the variables  ,x p , but are 
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represented as a combination of selected response variables obtained by performing numerical 
simulations. As a result, the minimization problem solver has to search for the global minima 
surrounded by many local minimums. As most nonlinear programming algorithms are capable of 
solving a unimodal problem, in other words, a function with only one minima, it requires 
application of unconventional methods, sometimes with no theoretical certainty of achieving the 
global minima. A number of such optimization solvers are evaluated to determine the most 
appropriate solver for hull optimization problem. 

 
4.2 Selection of optimization solver and objective function 
 
Considering the complexity of the hull optimization problem, an analytical function known as 

the Shubert Function with multiple local minima and multiple global minima (see Fig. 2) is chosen 
to determine which optimization solver is best suited to solve the problem. An initial selection of 
optimization solvers are made from a number of available solver in the MATLAB® Global 
Optimization Toolbox (GOT), which are 

 Sequential Quadratic Programming (SQP) 
 Pattern Search (PS) 
 Interior-Point (IP) 
 Simulated Annealing (SA) 
 Particle Swarm Optimization (PSO) 
 Genetic Algorithm (GA) 
The test results are shown in Fig. 3 where the minima and maxima of the objective function is 

shown as filled contour plots and the design variable values used in each iteration is shown as red 
circles. Except the Genetic Algorithm, all other requires an initial guess which is shown as a star 
marker in the figure. The first three optimization solvers (SQP, PS and IP) are found to be very 
sensitive to the initial guess and prone to get stuck in a local minima. The configuration options 
are also limited, which results in not being able to find the global minima unless a very good initial 
guess is made. The other three (SA, PSO and GA) were considerably more robust and were able to 
determine the global minima in most of the trials. Caution must be taken in setting up the 
configuration properties of these solvers as well, which otherwise may result in determining a 
local minima.  

 
 

Fig. 2 Shubert function
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Fig. 3 Comparison of optimization solvers 
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The literature reviewed during this study suggest that there is no standard rule set for determining 
the seakeeping or propulsive performance of a ship which would ensure optimum performance in 
all conditions. Kükner and Sariöz (1995) combines the rms heave, rms pitch and probability of 
slamming events together to define their objective function and uses nonlinear direct search 
techniques for the optimization. Harries and Valdenazzi (2001) optimizes a Ro-Ro ferry in terms of 
calm water resistance (calculated using WARP), added resistance and an undefined Motion 
Sickness Index (MSI) calculated from seakeeping response obtained using a strip theory based 
code SOAP. A similar attempt is made by Biliotti et al. (2011) to optimize a patrol vessel 
considering its two main operational condition, normal patrol at 20knot and maximum speed of 
35knots, based on empirical expression containing variance of wave profile along the water line, 
wave resistance, displacement and an undefined seakeeping operability index. Campana et al. 
(2006) uses minimization of wave resistance as objective while set a fixed upper limit as an 
inequality constraint for the heave and pitch responses. Tahara et al. (2011) uses a multi objective 
optimization where the wave resistance and a combination of acceleration and velocity at the 
bridge deck is minimized. Recently, Bagheri et al. (2014) shows optimization of classical Series 60 
and Wigley hull based on acceleration at the bow of the vessel in regular head waves, while Kostas 
et al. (2015) uses a T-spline based geometry for resistance optimization. 

Similar treatment of the objective function is found for offshore platforms as well. Peltzer et al. 
(1995) uses a Particle Swarm Optimization method to optimize a novel platform design based on 
weighted average of motions at different locations. Birk and Clauss (2008) minimizes the 
significant amplitude of cyclic tendon force obtained in random sea created using 
Pierson-Moskowitz spectrum.  

A number of RANSE based optimization has also been performed by many researchers. 
However, due to the significantly large simulation time taken by each hull, it is prudent to fist 
reduce the number of test cases to a minimum and then perform the fully nonlinear viscous 
analysis of the hull forms to finalize the model. In the RANSE based optimization of Eefsen et al. 
(2004), the objective function is defined as a combination of total resistance at two speeds and an 
empirical relation between vertical motion response in head sea at three different speed. 

 
4.3 Multi Objective Genetic Algorithm (MOGA) 

 
As shown in the previous section, it is essential to use an algorithm capable of determining the 

global solution for hull optimization problems. In this study, the genetic algorithm is employed in 
the optimization framework. Genetic algorithms, which attempts to mimic the evolutionary 
principles observed in the nature, are based on the theory known as “Survival of the fittest.”In 
other words, an initial population is allowed to evolve, keeping only a few elite member in each 
generation and cross breeding them for desired properties with some level of mutation, which 
results in an overall increase of fitness in the population after few generations. In design 
optimization perspective, the initial population (or the first generation) is generated using 
stochastic uniform sampling within the allowable range for each free variable. The fitness of each 
individual design (hull form) is measured based on user defined objective functions. From this 
population, some elite members with the highest fitness value are chosen for next iteration, some 
of their variables are interchanged to generate new designs (cross breed) and new variable values 
introduced by means of mutation. The population count is generally kept constant per generation 
by adding random new members, which allows the algorithm to efficiently explore the whole 
design space.  
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The practical problems such as the ship hull optimization often requires minimization of 
multiple objective functions. This problem is called multi-objective optimization problem which 
can be mathematically described as 

 
 

1 2 3minimize ( , ) ( ( , ), ( , ), ( , ) ( , ))

subjected to constraints , 0( 1,2, , )
N

j

f f f f f

g j l



 





x p x p x p x p x p

x p
             

(2) 

Commonly, the solution of a multi-objective optimization is presented as a Pareto front. The 
Pareto front or Pareto optimal is defined  in Coello et al. (2007) as: A solution x  is said to 

be Pareto Optimal if and only if there is no *x   for which *x
v f  dominates xu f .That 

is, x  is called a Pareto Optimal if there is no other point *x  in the feasible domain   that 
reduces at least one objective function without increasing the other.  

In this study, as the constraints are derived based on simulation results, the capability of solving 
the optimization problem with nonlinear constraint is necessary.  At the moment, the 
optimization problems with multiple objectives and nonlinear inequality constraints can only be 
solved using the Multi-Objective Genetic Algorithm (MOGA) among available methods in the 
GOT in MATLAB®. Therefore, this method is applied in the developed optimization framework. 

 
4.4 Automated optimization framework 

 
Apart from having the three major components required for optimization (i.e., CAD modeler, 

Hydrodynamic solver and Optimization solver), it is necessary to develop a framework that allows 
transfer of information from one to the other. The schematic of the framework used in this study is 
shown in Fig. 4. The optimization starts with initial design variable values set by the Genetic 
Algorithm (lower bound of the design variables range) which calls the automatic hull form 
generation and panelization scripts. This is followed by hydrostatic and hydrodynamic calculations 

where the vessel speed is set based on selected Froude number  /Fn U gL and the radius of 

gyrations are calculated using standard approximations for ship hull (Faltinsen 1993). 

 
0.40

0.25
xx

yy zz

k B

k k L

 
  

                            

(3) 

The objective function and constraints, also known as the measure of merit, are derived using 
both geometric and hydrodynamic analysis results. Here, the measure of merit is defined using two 
criteria: the vertical acceleration at the bow of the vessel in head sea condition at 0.25Fn  and 
the wetted surface area. The vertical bow acceleration represents the comfort and safety of the 
vessel at sea while the wetted surface area is connected with the skin friction on the vessel. As 
reduction in the both parameters is desired, it is found from the multi objective optimization study 
that after certain point a reduction in one can only be achieved by compromising the other. The set 
of such results for the design variables are represented as a Pareto frontier. As there is not a single 
solution, the optimization loop continues to develop such Pareto frontier until a convergence 
criteria, such as number of generations or improvement in objective function, is met. This way the 
Pareto front allows the designer to understand the relative advantage of selecting one design value 
to other and make an informed decision.  
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6. Conclusions 
 

Hull form optimization was identified as one of the major areas in ship transportation system 
where significant improvement can be achieved in terms of fuel economy, CO2 emission and 
safety at the sea. In this study three separate technical areas: computer-aided design, computational 
hydrodynamics and optimization, were investigated and corresponding modeling and analysis 
tools have been developed and integrated in an optimization framework. The key findings from the 
study can be summarized as: 

1. A practical geometry modeling method is the first step of any optimization procedure. Here, a 
B-Spline curve based ship model parameterized using common naval design terms is developed 
using Rhinoscript. In this approach, it is relatively easy to know the bounds of each variable which 
would produce a mutually non-intersecting surface and the fairness of the hull is automatically 
ensured.  

2. In order to investigate a large number of hull forms, it is essential to have a robust, accurate 
and time efficient numerical tool for the hydrodynamic analysis. An in-house tool MDL-HydroD 
has been developed with consideration of factors beneficial in optimization process. Specifically, 
only the underwater hull surface needs to be discretized (i.e., no free surface required), and 3D 
frequency domain analysis is very time efficient and more accurate than strip theory methods.  

3. A number of optimization algorithms were investigated and the non-gradient based 
algorithms were found to be best suited for the ship hull optimization purposes. The MATLAB® 
Global Optimization Toolbox is utilized in this study to complete the optimization framework, 
which allows selection of a number of optimization algorithms. The Multi Objective Genetic 
Algorithm (MOGA) is employed to optimize a ship hull for the seakeeping performance 
enhancement where a large number of hull forms were analyzed and a Pareto front representing 
best achievable performance for two competing objectives is obtained. 

4. Significant improvement in the heave, pitch and acceleration at the bow of the ship is 
achieved compared to the initial hull form. The optimized hull form is then compared with an 
equivalent commercial ship hull, where a close agreement between the performances of the two 
hull forms were found.  

In conclusion, the optimization framework provides a way of quick hull form assessment for 
multiple performance criteria. For a more formal optimization procedure, the seakeeping 
performance evaluation criteria needs to consider multiple wave headings, speed, irregular seaway 
and number of slamming events. Apart from this, the minimization of wave resistance also needs 
to be considered. These modifications and validations are currently in progress. 
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