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Abstract.    This study presents the development of predictive models for uplift capacity of suction caisson 
in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial 
intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector 
machine (RVM) models are also developed to compare the ELM model with above models and available 
numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present 
models in identifying the ‘best’ model. Sensitivity analyses are made to identify important inputs 
contributing to the developed models. 
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1. Introduction 

 
Caissons are generally used as deep foundations of transmission towers and anchors for the 

offshore facilities for less construction time and their suitability for both static and dynamic loads. 
The total uplift capacity of caisson depends upon passive suction under caisson-sealed cap, self 
weight of the caisson, frictional resistance along the soil- caisson interface, submerged weight of 
the soil plug inside the caisson and uplift soil (reverse end bearing) bearing pressure (Albert et al. 
1987). Hence, suction caisson becomes more effective particularly in clayey soil. Various methods 
are in use to find the uplift capacity of suction caisson. Various studies using upper bound analysis 
(Clukey et al. 1995), finite element method (Whittle and Kavvadas 1994, El-Gharbawy and Olson 
2000, Zdravkovic et al. 2001, Cao et al. 2001, 2002a, b), laboratory model (Goodman et al. 1961, 
Larsen 1989, Steensen-Bach 1992, Datta and Kumar 1996, Singh et al. 1996, Rao et al. 1997a, 
1997b), centrifuge model (Clukey and Morrison 1993, Clukey et al. 1995) and prototype model 
tests (Hogervorst 1980, Tjelta et al. 1986, Dyvik et al. 1993, Cho et al. 2002) have been done to 
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understand the axial and lateral load capacity of suction caisson for static and cyclic load under 
different soil conditions. Though the finite element method (FEM) along with the laboratory and 
centrifuge tests are the most popular methods in predicting the uplift capacity of suction caisson, 
but soil properties are highly variable over short distances. Thus, developing a sufficiently accurate 
constitutive model for a detailed FEM analysis requires extensive site characterization effort. And 
also desired constitutive modeling of clayey soil is very difficult, even with considerable 
laboratory testing. Hence, although field tests are very expensive, various tests have been 
conducted to find out the feasibility of constructing suction caisson in various soil types (Cho et al. 
2002). However, several issues and uncertainties related to uplift capacity estimation and failure 
mechanisms are still unresolved, for which accurate empirical models are required for prediction 
of the uplift capacity of suction caission. 

Artificial intelligence techniques such as artificial neural networks (ANNs) and support vector 
machine (SVM) are considered as alternate statistical methods and found to be more efficient 
compared to statistical methods (Das and Basudhar 2006, Das et al. 2011). The ANN is found to 
be more efficient for prediction of ultimate load capacity of driving piles in cohesion-less soil 
(Goh 1996) and also for the prediction of lateral load capacity of pile (Das and Basudhar 
2006)compared to traditional methods. The performance of SVM model was found to be better 
than that of the ANN model for prediction of frictional resistance of the pile in clay (Samui 2008).  

Rahman et al. (2001) used artificial neural network (ANN) model to predict the uplift capacity 
of suction caisson in clay. The performance of ANN model was found to be better than that of the 
FEM model in terms of correlation coefficient (R). However, the only R value is not sufficient and 
its high value need not show good prediction (Das and Sivakugan 2010). It is very difficult to 
assess in terms of under or over prediction of the estimation only from R value. The most 
important problem associated with efficient implementation of ANN is generalization for some 
complex problems, and magnitude of weight is one of the reasons for poor generalization (Bartlett 
1998).The methods like Bayesian regularization neural network (BRNN) (Das and Basduahr 2008) 
has been used to consider the magnitude of weights as the part of the error function. Hence, in the 
present study BRNN model was developed to compare the results of the ANN model as per 
Rahman et al. (2001). The error function in ANN is a nonlinear function; hence the chance of local 
minima cannot be avoided using traditional optimization algorithms, as the algorithms are the 
initial point dependent. As the error function in SVM is a convex function, traditional optimization 
problems can be effectively used to avoid the local minima. Though, SVM has better 
generalization (Samui 2008) compared to ANN, error parameter ‘C’ and ‘e’ are to be found out by 
trial and error. Using the above database, Muduli et al. (2013) observed that prediction model 
using genetic programming (GP) is more efficient compared to ANN and SVM model. It may be 
mentioned here that unlike ANN, GP is a ‘grey box’ model (Giustolisi et al. 2007), but the model 
parameters are found out by nontraditional optimization method, genetic algorithm and it is very 
difficult to explain the development of model.  

In the recent past a modified learning algorithm called extreme learning machine (ELM) has 
been proposed by Huang et al. (2006) for single hidden layer feed forward neural network (SLFN). 
This learning algorithm for SLFN is very fast and hence named as extreme learning machine 
(ELM). In ELM the hidden nodes are randomly selected and output weights are computed 
analytically to avoid the problem of local optima. The ELM and its variants have been used for 
different large complex applications (Wang and Huang 2005, Huang et al. 2006a, Huang et al. 
2006b, Huang and Chen 2008, Huang et al. 2010, Huang et al. 2012) with success and are found 
to be efficient compared to ANN and SVM (Huang et al. 2006). It has been shown that this new 
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algorithm can produce good generalization performance and can learn faster than conventional 
learning algorithms of feed forward neural net works (Huang et al. 2006).However, its use in 
geotechnical engineering is limited (Das and Muduli 2011). Like any other numerical methods, it 
needs critical evaluation while applying to a new problem. Thus, the efficacy of the model is to be 
compared with other artificial intelligence models like ANN, SVM, relevance vector machine 
(RVM) and genetic programming (GP) models in terms of different statistical performance criteria.  

In the present study prediction of uplift capacity of suction caisson in clay under undrained 
condition has been developed by using ELM, ANN, SVM and RVM models. Different statistical 
criteria like correlation coefficient (R), Nash-Sutcliff coefficient of efficiency (E), root mean 
square error (RMSE), the average absolute error (AAE), maximum absolute error (MAE) and 
normalized mean biased error (NMBE) are used to compare the developed ELM, ANN, SVM and 
RVM models with the FEM and GP models as available in the literature (Rahman et al. 2001, 
Muduli et al. 2013). A ranking system (Abu-Farsakh and Titi 2004) using rank index (RI) has also 
been followed to compare the performance of different models on the basis of four criteria. : (i) the 
best fit calculations (R and E) for predicted uplift capacity (Qp) and measured capacity (Qm), (ii) 
arithmetic calculations (mean, µ and standard deviation, σ) of the ratio, Qp/Qm (R2) (iii) 50% and 
90% cumulative probability (P50 and P90) of the ratio, Qp/Qm. (R3) and (iv) probability of uplift 
capacity within ± 20% accuracy level in percentage using histogram and lognormal probability 
distribution of Qp/Qm (R4). 

 
 

2. Methodology 
 

In geotechnical engineering, the ANN has been extensively used with a few applications of 
SVM and RVM and hence these techniques are not discussed in detail. The application of ELM in 
geotechnical engineering is new and hence is elaborated as follows. 

 
2.1 Extreme learning machine (ELM) 
 
Huang et al. (2006) proved that the input weights and hidden layer biases of SLFN can be 

randomly assigned if the activation functions in the hidden layer are infinitely differentiable which 
is true as sigmoid activation function is generally used in ANN. The SLFN can simply be 
considered as linear system and the output weights (linking the hidden layer to output layer) can be 
analytically determined through the inverse operation of the hidden layer output matrices. 
Mathematically above concept can be described for the standard SLFN with L hidden nodes as 
follows 

 iji

L

i
ij bxwfo  

 1

               (1) 

       iji

L

i
ij bxwft 

1

            

j= 1, …, N          (2) 

By approximating these N samples with zero error means that minimum norm least-squares 
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solution of general linear system can be applied and presented as  

  0
1





L

j
jtjo                         (3) 

where . is a norm in Euclidean space. 

where, f(x )= activation function, wi=[wi1 , wi2, . . ., win]
T = weight vector connecting the ith hidden 

node and the input nodes, βi =[ βi1, βi2, . . ., βim]T = weight vector connecting the ith hidden node and 
the output nodes, bi=the bias of the ith hidden node, xj   = normalized input variable at jth input 
node in the range [0,1], , j=1,…,N,  N=number of arbitrary distinct training sample (xi, ti), xi= [xi1, 
xi2,…,xin]

T Є Rn and ti=[ti1, ti2,…,tim]T Є Rm,  
As the output nodes are chosen linear and the above N equations can be presented compactly as  
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where, H is called hidden layer output matrix of the neural network , β is the output weight matrix 
and T is the output matrix. For a given training set,(xi, ti), activation function, f(x),and hidden node 
number, L, ELM algorithm can be summarized as  

1. Input weight (wi) and bias (bi) for i=1,…, N is randomly assigned. 
2. Hidden layer output matrix H is calculated as given by Eq. (5). 
3. Then, the output weight (β) is calculated as presented in Eq. (7). 

THβ 1        (7) 

where H-1 is the Moore-Penrose generalized inverse of matrix H (Rao and Mitra 1971). The 
resolution of a general linear system ,yAx   where A may be a singular and may not even be 
square, can be made simple by use of Moore-Penrose generalized inverse. A matrix B of order n x 
m is the Moore-Penrose generalized inverse of matrix A of order m x n, if 

AABA  ; BBAB  ;   ABAB T  ;   BABA T   
4. Once β is calculated the output can be predicted using Eq. (1). 
The detailed methodology is presented in Huang et al. (2006). In the present study ELM model 

is developed using Matlab (Math Work Inc 2005). The four input variables used for the ELM 
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model in this study are L/d (L is the embedded length of the caisson and d is the diameter of 
caisson), undrained shear strength of soil at the depth of the caisson tip (Su), D/L (D is the depth of 
the load application point from the soil surface), inclined angle () and load rate parameter (Tk). 
The output of the ELM model is Qp. So, in this study,  ku T , D/L, , SL/d,x   and t [Qp] 

 
2.2 Support vector machine (SVM) 
 
Support Vector Machine (SVM) has originated from the concept of statistical learning theory 

pioneered by Boser et al. (1992). More details can be found in literature on SVM (Boser et al. 
1992, Vapnik 1998). This study uses the SVM as a regression technique by introducing a 

ε-insensitive loss function. Considering a set of training data )}ly,l(x),....,1y,1{(x , nRx ,

ry . Where x is the input, y is the output, Rn  is the N-dimensional vector space and r is the 
one-dimensional vector space. The SVM has also been used different geotechnical engineering 
applications (Samui et al. 2008, Das et al. 2011).  

In the present study the four input variables used for the SVM model in this study are L/d, Su, 
D/L,  and Tk. The output of the SVM model is Qp. So, in this study,  ku T , D/L, , SL/d,x   

and y [Qp] 
Following the methodology as described in Das et al. (2011) the final equation of SVM can be 

written as  
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where i, 
*
iα   are the Lagrangian Multipliers, nsv is the number of support vectors and K (xi.xj) is 

kernel function. This study uses radial basis function (     
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xxxx

xxK , where    

is width of radial basis function) as a kernel function. 
 
2.3 Relevance vector machine (RVM)  
 
The RVM, introduced by Tipping (2001), is a sparse linear model. Let 

  N1,...,i,it,ixD   be a dataset of observed values. Where xi=input, ti=output, nRix   

and rit  . In this study, as discussed above  ku T ,D/L, , SL/d,x   and t = [Qp].  

  2
n σ,xyN  is the normal distribution with mean y(xn)  and  variance  y(x)  can be 

expressed as a linearly weighted sum of M nonlinear fixed basis function, 

  M1,...,j|xΦ j  : 

   
M

i i
i 1

y x; w w Φ x w


  Φ                        (9) 
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The likelihood of the complete data set can be written as given below following Berger (1985) 
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, where  ni x,xK  is a kernel function. 

This article adopts radial basis function as kernel function.  
The details abut RVM implementation has been described in Tipping (2001). 
 
2.4 Artificial neural network (ANN)  
 
In the present study the ANN model has been trained using Bayesian regularization method as 

described in Das and Basudhar (2008) and termed as BRNN.  
 
 

3. Database used 
 
In the present study the databases as per Rahman et al. (2001) is used which contains 

information about L/d , Su, D/L ,  Tk and measured uplift capacity of caisson (Qm). Out of the 
mentioned 62 data, 51 data are selected for training and remaining 11 data are used for testing the 
developed ELM and other models. The data was normalized in the range 0 to 1 to avoid the 
dimensional effect of input parameters.  

 
 

4. Results and discussion 
  
The best ELM model for the prediction of uplift capacity of suction caisson is obtained by 

varying the number of hidden layer neurons. Fig. 1 shows the plot of RMSE value versus hidden 
nodes and the best model was observed with a 20 hidden nodes SLFN (architecture of 5-20-1) 
after several trials with different number of hidden nodes. As it is important that the efficiency of 
models should be compared in terms of testing data than that with training data (Das and Basudhar 
2008), in this study the comparison of the methods are done for the testing data only. Fig. 2 shows 
the performance of predicted and observed values of uplift capacity of suction caisson for ELM 
and other models for testing data. There is less scatter in the data for the ELM model compared to 
the other models. Table 1 shows the statistical performance in terms of R, E, AAE, MAE, RMSE 
and NMBE for the developed ANN, SVM , RVM and ELM models along with the results of FEM 
and ANN models of Rahman et al. (2001) and GP model of Muduli et al. (2013) for testing data 
set. It can be seen that though the R value as per FEM and ANN model of Rahman et al. (2001) 
are comparable, FEM model is found to better than ANN models based on other statistical criteria. 
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Hence, in the present study separate ANN (BRNN) model was developed to improve the 
performance of ANN based model. Based on the statistical parameters considered in the present 
study, the ELM model is found to be comparable with GP model of Muduli et al. (2013) and better 
than all other (ANN, SVM and RVM) models, which indicate the robustness of the model. 

While describing prediction of pile load capacity based on cone penetration test (CPT) Briaud 
and Tucker (1988) have emphasized that other statistical criteria should be used along with the 
correlation coefficient (R). Abu-Farsakh and Titi (2004) and Das and Basudhar (2006) have used 
the mean () and standard deviation () of the ratio of predicted pile capacity (Qp) to the measured 
pile capacity (Qm) as important parameters in evaluating different models. The mean ( and 
standard deviation () of Qp/Qm  are important indicators of the accuracy and precision of the 
prediction method. Under ideal condition an accurate and precise method gives the mean value as 
1.0 and the standard deviation to be 0. The  value greater than 1.0 indicates over prediction and 
under prediction otherwise. The best model is represented by  value close to 1.0 and  close to 0. 
In present study for testing data the  (1.069) and  (0.241) of Qp/Qm  for the ELM model are 
comparable with the GP [ (1.026) and  (0.191) and SVM [ (0.956) and  (0.248)] models but  
better than those of ANN and other models as presented in Table 2.The other criterion like 
cumulative probability of the ratio, Qp/Qm , has also been considered for the evaluation of different 
models following Abu-Farsakh and Titi (2004) and Das and Basudhar (2006). If the computed 
value of 50% cumulative probability (P50) is less than unity, under prediction is implied; values 
greater than unity indicates over prediction. The ‘best’ model is corresponding to the P50 value 
close to unity. The 90% cumulative probability (P90) reflects the variation in the ratio, Qp /Qm, for 
the total observations. The model with P90 close to 1.0 is a better model (Das and Basudhar 2006). 

Fig. 3 shows the cumulative probability plots of Qp /Qm for different methods for the testing 
dataset. It can be seen that ELM model is found to be the best model (P50=1.001) followed by 
ANN (0.960),GP (0.95) and FEM (1.050) as the values are close to unit. The corresponding SVM 
and RVM values are found to be 0.890 and 0.920 respectively showing under prediction. However 
based on the P90 value, ELM (1.220), GP (1.38) and SVM (1.380) models are found to be better 
than RVM (1.600), ANN (2.100) and FEM (2.100) models. The lognormal distributions of the Qp 
/Qm for different models of the testing data are shown in Fig. 4. Based on the plots it can be seen 
that ELM model is comparable with the GP model, but better than FEM, ANN, SVM and RVM 
models according to the criterion i.e., probability of uplift capacity within ± 20% accuracy level is 
concerned as the shaded area under the lognormal distribution plot of Qp/Qm for ELM is more than 
that of the other models except the GP model. The probability of uplift capacity within ± 20% 
accuracy level for all the models are also obtained from the histograms of Qp/Qm and presented in 
Table 2. As per the statistical criteria (R, E) (R1), arithmetic calculation of Qp/Qm (, )  (R2), 
cumulative probability of Qp/Qm (P50, P90) (R3) and prediction of pile load capacity within 20% 
accuracy level(R4), a ranking system is developed by using RI for different models according to  
Abu-Farsakh and Titi (2004) and presented in Table 2. The overall performance of the various 
models under present study are evaluated using RI .The RI is the sum of the ranks of different 
models according to the above four criteria respectively (RI=R1+R2+R3+R4). Lower the value of 
RI indicates the better performance of the particular method. Based on the RI values the ELM 
(RI= 7) model is found to be at par with that of the GP model (RI=7) followed by, FEM (RI=16) 
and ANN (RI=16), SVM (RI=19) and RVM (RI=19) model. 
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4.1 Development of model equation 
 
According to the Eq. (1) the ELM model equation can be written using the weights and biases 

of the trained model as provided in Table 3. The developed model equation can be used to predict 
the uplift capacity of caisson by the Geotechnical engineers with the help of a spreadsheet without 
going into the complexities of model development using ELM. Similarly the SVM and RVM 
models equations can be written based on the parameters obtained from Figs. 5 and 6 as per Eqs. 
(8) and (10), respectively. 

 

 
Fig. 1 The generalisation performance of ELM on a wide range of number of hidden nodes 

 

 
Fig. 2 Comparisons of predicted and measured uplift capacity of suction caisson by different models for 

testing data 
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Fig. 3 Cumulative probability plots of Qp/Qm for different models for testing data 

 
 

 
Fig. 4 Log normal distribution of Qp/Qm for different models for testing data 
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Table 1 Comparison of statistical performances of different models 

Models 
Statistical  Performances 

R E AAE MAE RMSE NMBE 

ELM 0.998 0.995 5.674 14.017 6.777 2.377 

GP 

(Muduli et al. 2013) 
0.997 0.988 8.065 27.055 11.155 -2.979 

FEM 

(Rahman et al. 2001) 
0.995 0.986 8.490 27.100 11.876 3.690 

ANN 

(Rahman et al. 2001) 
0.986 0.969 11.009 40.700 17.767 -4.430 

ANN (BRNN) 0.991 0.975 12.204 32.820 16.031 -6.970 

SVM 0.989 0.955 15.640 42.020 21.310 -11.060 

RVM 0.992 0.964 14.960 35.980 19.040 -13.698 

 
 
Table 2 Evaluation of performance of different prediction models considered in this study 

Models 

Best fit Calculations 
Arithmetic 

calculations of Qp/Qm 
Cumulative probability 

± 20% Accuracy 

(%) 

Overall 

rank 

R E R1 Mean σ R2
Qp/Qm 

 at P50 

Qp/Qm 

 at P90 
R3

Log- 

normal 

Histo-

gram 
R4 RI 

Final 

rank 

ELM 0.998 0.995 1 1.069 0.241 3 1.001 1.220 1 64 72 2 7 1 

GP 

(Muduli et 

al. 2013) 

0.997 0.988 2 1.026 0.191 1 0.950 1.380 3 72 82 1 7 1 

ANN 0.991 0.975 4 1.065 0.454 4 0.960 2.100 2 48 46 6 16 2 

FEM 

(Rahman et 

al.2001) 

0.995 0.986 3 1.175 0.391 6 1.050 2.100 4 45 72 3 16 2 

SVM 0.989 0.955 6 0.956 0.248 2 0.890 1.380 6 53 46 5 19 3 

RVM 0.992 0.964 5 0.893 0.335 5 0.920 1.60 5 38 72 4 19 3 
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Table 3 Weights and biases of the developed ELM model 

Hidden 
Neuron 

 

Weights 
Biases 

(Hidden 
nodes) 

Input parameters Output 

No. L/d Su(kPa) log Tk 　 D/L Qp (kPa) bi 
1 -0.568 -0.694 -0.476 0.967 -0.974 18.974 0.626 
2 -0.843 -0.189 0.139 0.793 0.211 6.686 0.025 
3 0.866 -0.375 -0.281 0.731 0.153 -9.221 0.062 
4 0.206 0.388 -0.946 0.602 0.615 -48.882 0.130 
5 -0.245 0.781 0.001 0.110 0.310 -33.822 0.451 
6 0.330 -0.019 0.654 -0.162 0.756 62.278 0.672 
7 0.584 0.612 -0.482 -0.746 0.805 -26.427 0.856 
8 -0.333 -0.347 -0.908 0.309 -0.696 12.688 0.498 
9 0.385 0.100 -0.507 0.728 -0.615 -14.383 0.049 

10 -0.592 -0.222 0.321 -0.451 0.582 -31.634 0.314 
11 0.917 0.794 -0.341 0.680 -0.879 7.679 0.642 
12 0.424 0.352 0.319 -0.858 -0.220 37.711 0.786 
13 -0.666 0.657 -0.974 -0.242 -0.400 33.908 0.289 
14 -0.114 -0.780 0.436 -0.464 0.468 -103.001 0.498 
15 0.266 -0.442 -0.218 -0.694 -0.792 -67.935 0.818 
16 0.860 0.535 -0.933 0.262 0.585 12.145 0.595 
17 0.059 -0.568 -0.188 -0.367 0.565 133.007 0.536 
18 0.253 -0.932 0.433 0.918 0.065 -5.229 0.331 
19 0.362 -0.127 0.843 -0.003 -0.493 34.817 0.412 

20 0.846 0.874 0.968 0.477 -0.858 -24.673 0.794 

 
 
Table 4 Sensitivity analysis of inputs for different models 

 

Parameters 

SVM RVM ANN ELM 
GP (Muduli et 

al. 2013)
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Garson’s 

algorithm

Connection 

weight approach
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L/d 5.020 2 6.250 2 17.380 4 -0.900 3 18.610 5 -9.320 3 -3.527 4

Su 5.940 1 6.900 1 22.580 2 2.460 1 19.370 4 -10.650 2 109.195 1

T k 4.780 3 4.980 3 13.550 5 -0.190 5 19.750 3 -7.080 4 -6.426 2

θ 0.920 5 2.450 4 18.310 3 0.810 4 20.630 2 -1.710 5 0.001 5

D/L 1.340 4 0.940 5 28.180 1 1.720 2 21.640 1 11.310 1 4.383 3
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4.2 Sensitivity analysis  
 
 The sensitivity analysis is an important aspect of a developed model to find out important 

input parameters. In the present study sensitivity analysis was made as per Liong et al. (2000) for 
SVM and RVM models whereas Garson’s algorithm and Connection weight approach were used 
for ANN and ELM models (Das and Basudhar 2006). As per Liong et al. (2000) the sensitivity (Si) 
of each parameter in which one input parameter is varied at a time keeping the others constant and 
is expressed as  

100
inputin  %Change

outputin  %Change1
 









N

iNiS                 (11) 

where N= number of training data. Table 4 presents the above analysis for the present study and as 
per the “best” model (ELM), D/L is the most important parameter similar to the observation made 
in ANN analysis (Garson algorithm). The other important inputs are Su, L/d, Tk and θ, is the least 
important input parameter. 

 
 

5. Conclusions 
 
The following conclusions can be drawn from the above studies: 

(1)  The proposed ELM model is found to be effective and efficient than GP, FEM, ANN SVM 
and RVM models in predicting the uplift capacity of suction caisson in clay as per the statistical 
performance of the different models. 

(2)  Using a ranking method based on different statistical criteria (the best fit calculations for 
predicted uplift capacity (Qp) and measured capacity (Qm), the mean and standard deviation of 
the ratio, Qp/Qm, the cumulative probability of Qp/Qm. and probability of uplift capacity within  
20% accuracy level based on histogram and lognormal distribution of Qp/Qm), the developed 
ELM model is found to be more efficient compared to SVM, RVM, FEM and ANN models, 
whereas it is at par with that of GP model (Muduli et al. 2013).  

(3)  A model equation is presented based on the ELM analysis and it can be helpful for the 
professionals to find out the uplift capacity of suction caisson in clay using a spreadsheet. 

(4)  Based on sensitivity analysis, D/L (D is the depth of the load application point from the soil 
surface and L is the embedded length of the caisson) has the most significant effect on 
predicted value of uplift capacity. 
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