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Abstract.  A systematic numerical comparative study of the performance of semicircular and rectangular 
submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, 
Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with 
breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order 
predictor-corrector method is employed for time discretization in our numerical model. The proposed 
computational scheme uses a staggered-grid system where the first-order spatial derivatives have been 
discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical 
results have been successfully compared with the existing analytical and experimental results. The 
performances of the rectangular and semicircular breakwaters have been examined in terms of the wave 
reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by 𝐾𝑅 , 𝐾𝑇 , 𝐾𝐷 .  The latter 
coefficient 𝐾𝐷   emerges due to the non-energy conserving 𝐾𝑅  and 𝐾𝑇  ,.  uur computational results and 
graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular 
breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach 
each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that 
of the semicircular breakwater and the difference between them increases as the height of the crest increases. 
However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular 
breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, 
for rectangular breakwaters the reflection coefficients 𝐾𝑅 are 5-15% higher while the diffusion coefficients 
𝐾𝐷 are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients 
𝐾𝑇  for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular 
breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a 
better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, 
the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead 
to dissipation type contribution. 
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1. Introduction 
 

The protection of beaches and ports from erosion due to sea waves is a growing challenge for 

coastal and marine engineers. uffshore and onshore constructions of submerged barriers and 

artificial reefs depend heavily on many parameters especially, the incoming wave height. In order to 

control sediment transportation and structural damages due to wave interactions, it is crucial that 

engineers look for a variety of ways to reduce incoming wave heights. Breakwaters are widely 

recognized as the most popular beach structures that provide appropriate tools to maintain calm 

beach areas reasonably well. 

The most common breakwaters are the structures whose crests emerge from the surface. In areas 

where visual limitation exists and breakwaters should not be visible, the submerged breakwaters are 

utilized with their crests located under the water. Although the submerged breakwaters are less 

capable compared to that of emerged ones and are also inconvenient for navigation purposes, they 

are widely used for economic benefits. These structures are suitable tools for protecting beach areas 

against small and relatively high waves. Waves may break through colliding with submerged 

breakwaters and/or their height gets reduced as a result of friction and permeability in the 

breakwaters. For a better understanding of the performance of the breakwaters of various shapes, 

physicists and engineers need to identify fundamental wave characteristics when passing over a 

breakwater. 

Theoretical studies modeling solitary wave passing over shore obstacles were initiated by 

Johnson (1972) and Tappert and Zabusky (1971) by analytical examination of the governing 

equations, Subsequently, several other investigations followed and experiments were conducted to 

validate proposed theories (Losada and Medina 1989, Mei 1985, Ghiasian et al. 2019, Bogucki et 

al. 2020). une of the major findings of those earlier studies is that a typical submerged bar has a 

meaningful effect on reflection and transmission (e.g., Newman 1965, Ketabdari et al. 2015) of the 

impinging waves. Indeed, Beji and Battjes (1993, 1994) and Grilli and Martin (1994) have analyzed 

submerged bar type of obstacles both numerically and experimentally that led to similar conclusions.  

To understand the phenomenon of wave passisdng and interaction with shore barriers more 

realistically, extensive field studies have been carried out on Florida plan beach by Dean et al. (1997). 

This field investigation included a supervisory community program on the beach executed using 

positioning measuring instruments of wave parameters installed around submerged breakwaters on 

the beach area. Practically significant results have been recorded that are relevant to operational 

mechanisms with shore obstacles. Specifically, the field results revealed that reduction of wave 

height has happened about 5% for the small waves and 15% for the high waves. 

The primary engineering concerns for water solitary waves propagating and interacting with 

breakwaters are wave reflection, transmission, and dissipation (RTD) coefficients. Allsop (1983) 

and Wang et al. (2019), among others, analyzed wave energy transmission over the submerged 

breakwaters. The studies conducted by Dick and Brebner (1968) on submerged breakwaters showed 

that these structures with crest height close to the sea surface are able to absorb 50% wave energy. 

The observations of these studies on the shore obstacles emphasized the knowledge of evaluating 

the corresponding RTD coefficients. A comprehensive study in this related topic has been conducted 

by Lin (2004) on the RTD coefficients involving rectangular obstacles. In the cited work, a numerical 

model was used to simulate the interaction between solitary waves and rectangular obstacles for 

different combinations of length (L) and height (D) of the breakwater. These coefficients were 

calculated and tabulated for engineering applications for various L/h and D/h (h = constant water 

depth). In particular, Lin showed that wave breaking and vortex shedding are the main reasons 
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behind energy dissipation that reduces wave transmission (see Lin 2004).      

Subsequently, Lin and Karunarathna (2007) provided an estimation of the RTD coefficients of 

solitary waves over porous obstacles. Laboratory studies for characterizing wave reflection 

coefficients in semicircular submerged breakwaters have been performed by Young and Testik (2011, 

2009). The results are of great interest to marine engineers for the primary design of breakwaters of 

various shapes. By developing a Reynolds Averaged Navier-Stokes model, Hsu et al. (2004) 

managed to simulate the dissipation of passing waves over submerged breakwaters and Raman et al. 

(1997) expressed wave transmission coefficients in terms of wave energy and the total power of the 

incident wave. Since the geometry of the breakwaters affects the wave kinematics, wave breaking 

style and also the RTD coefficients, considerable attention was focused on this area to explore further 

implications by several researchers (see, for instance, Lee and Mizutani 2008, Yuan and Tao 2003). 

The cited papers analyzed submerged breakwaters' geometries and their effects on flow parameters. 

Among various types of submerged breakwaters, the structure with semicircular, rectangular and 

trapezoidal shapes have been found more applicable as noted in by Cooker et al. (1990) and Tsai et 

al. (2005).     

The wave propagation with triangular structures has been discussed by Seabra-Santos et al. 

(1987), Wu and Hsiao (2013) by using numerical and experimental techniques to investigate the 

interaction between non-breaking solitary waves and rectangular submerged breakwaters. In their 

study, time histories of surface elevation and the spatial distributions of free surface displacement 

were obtained, and the results showed that at a constant water depth the turbulent intensity values 

increase with an increase of solitary wave height. Although the wide range of studies has been 

conducted on the effect of breakwater geometry on its performance, investigations on this topic are 

considered highly significant and as a result, there is a growing interest in the modern era (e.g., Xie 

and Liu 2013, Ji et al. 2016, Wu et al. 2017). 

As narrated in the preceding paragraphs while wave interactions with various shapes of barriers 

are investigated on numerous occasions a systematic study on the performance comparison is still 

lacking. Motivated by this, in the present paper we choose a numerical study to compare the 

performance of semicircular and rectangular submerged breakwaters. The analysis is carried out by 

investigating the interaction of solitary waves and breakwaters. The governing equations used for 

simulating solitary waves in the present study are the Nwogu's extended Boussinesq equations 

(Nwogu 1993). The nonlinear equations along with solid wall and spongy boundary conditions are 

solved by the finite difference method. The numerical scheme involves appropriate discretization of 

the time and space variables.  To show the accuracy of our finite difference numerical scheme, the 

propagation of a solitary wave is modeled and solved with a constant depth, the run-up of a solitary 

wave on a beach with different slopes, as well as the wave run up on a slope, and its reflection from 

a solid wall. Later, the capability of the model to simulate rectangular and semicircular breakwaters 

is studied using two different tests. The results of the considered tests are compared against previous 

analytical, numerical, and experimental findings. Finally, by applying various heights for solitary 

wave and submerged breakwater crests, the RTD coefficients are obtained for each of the submerged 

breakwaters and the performance of these submerged breakwaters is analyzed and compared. uur 

analysis provides a systematic numerical study leading to a better understanding of the comparative 

performance of the rectangular and semicircular breakwaters while interacting with solitary waves. 
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2. Governing equations 
 

Submerged breakwaters are commonly installed offshore and at intermediate water depths. 

Simulation of the interaction between waves and submerged breakwaters requires model equations 

which are able to mimic wave transfer from deep water to shallow water. Among equations that are 

useful for numerical simulation of this type, the Boussinesq equations are of great interest and have 

been employed successfully. The first generalization incorporating variable depth have been 

extracted by Peregrine (1967), known as standard Boussinesq equations. Since the equations 

proposed by Peregrine has the ability to model waves in shallow waters, efforts have been made by 

several researchers to develop the equations for deep waters (Beji and Nadaoka 1996, Madsen and 

Sorensen 1991, Madsen and Sørensen 1992). Another extension of these equations proposed by 

Nwogu (1993) became widely popular among engineers because of their relatively simple form and 

ability to simulate nonlinear and dispersion terms (Zhang and Qiao 2017, Lee and Jung 2018). In 

Nwogu’s extended Boussinesq equations, velocity is considered as a dependent variable at arbitrary 

depths. We choose the latter equations in our present study. Nwogu’s two-dimensional extended 

Boussinesq equations are continuity and momentum equations presented as follows (Nwogu 1993). 

𝜂𝑡 +  𝛻. [(ℎ + 𝜂)𝑈] +  𝛻. {(
𝑍𝛼

2

2
−

ℎ2

6
) ℎ𝛻(𝛻. 𝑈) + (𝑍𝛼 +  

ℎ

2
) ℎ𝛻[𝛻. (ℎ𝑈)]} = 0         (1) 

𝑈𝑡 + 𝑔𝛻𝜂 + (𝑈 .  𝛻)𝑈 + 𝑍𝛼{
𝑍𝛼

2
𝛻(𝛻. 𝑈𝑡) + 𝛻[𝛻. (ℎ𝑈𝑡)]} = 0                          (2) 

where η stands for surface elevation, ℎ is water depth, 𝑈 =  (𝑢, 𝑣) is the horizontal velocity at 

an arbitrary depth 𝑍𝛼 = 0.531 ℎ  , 𝛻 = (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
)  stands for gradient, the time differentiation is 

denoted by a subscript and g is the gravity acceleration. Eqs. (1) and (2) can be rewritten for the one-

dimensional case in the form (Lin and Man 2005) 

𝜕𝜂

𝜕𝑡
+

𝜕

𝜕𝑥
[(ℎ + 𝜂)𝑢] +

𝜕

𝜕𝑥
[(

(
𝑍𝛼
ℎ 

)
2

2
−

1

6
) ℎ3 (

𝜕2𝑢

𝜕𝑥2) + (
𝑍𝛼

ℎ 
+

1

2
  )ℎ2 (

𝜕2(ℎ𝑢)

𝜕𝑥2 )] = 0         (3) 

𝜕𝑢

𝜕𝑡
+ 𝑔

𝜕𝜂

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
+

(
𝑍𝛼
ℎ 

)2

2
ℎ2 𝜕

𝜕𝑡
(

𝜕2𝑢

𝜕𝑥2) + 𝑍𝛼
𝜕

𝜕𝑡
(

𝜕2(ℎ𝑢)

𝜕𝑥2 ) = 0               (4) 

In the following section, we describe our numerical scheme using finite difference for 

discretizing space and time variables in the governing equations (3) and (4) and provide boundary 

conditions. 
 

 

3. Numerical model 
 

Following the approach adopted by Lin and Man (2007) and Wei and Kirby (1995), for the first-

order spatial derivatives we use the fourth-order accuracy of the central difference scheme while for 

time integration, the fourth-order Adams predictor-corrector scheme is implemented. This choice 

causes numerical dissipation and dispersion that are of a desired high order and offers a better mass 

conversion in long-term simulations. 
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3.1 Discretization of the governing equations       
 

In order to solve the governing equations numerically using Adams predictor-corrector scheme, 

the simplified forms of (3) and (4) are written to be 

𝜂𝑡 =  𝐸(𝜂, 𝑢)                               (5) 

𝑢𝑡 + ℎ[𝑏1ℎ (
𝜕2𝑢𝑡

𝜕𝑥2 ) + 𝑏2 (
𝜕2(ℎ𝑢𝑡)

𝜕𝑥2 )] =  𝐹(𝜂, 𝑢)                  (6) 

Now the left-hand side of (6) can be expressed as follows: 

[𝑈(𝑢)]𝑡 = [ 𝑢 + ℎ[ 𝑏1ℎ 𝑢𝑥𝑥 + 𝑏2(ℎ𝑢)𝑥𝑥]]𝑡                  (7) 

The quantities E and F on the right-hand side of (6) are the dependent functions of the variables u 

and  𝜂  stated in the following equations: 

𝐸(𝜂, 𝑢, 𝑣) = −[(ℎ + 𝜂)𝑢]𝑥 − { 𝛼1ℎ3(𝑢𝑥𝑥) + 𝛼2ℎ2[(ℎ𝑢)𝑥𝑥 }𝑥          (8) 

𝐹(𝜂, 𝑢) = −𝑔𝜂𝑥 −
1

2
(𝑢2)𝑥                       (9) 

where 𝛼1, 𝛼2, 𝑏1, and  𝑏2 are defined as  

𝛼1 =  
(

𝑍𝛼
ℎ 

)
2

2
−

1

6
  ;   𝛼2 = (

𝑍𝛼

ℎ 
) +

1

2
  ;   𝑏1 =

(
𝑍𝛼
ℎ 

)
2

2
  ;   𝑏2 = (

𝑍𝛼

ℎ 
)      (10)   

Various terms in the continuity and momentum equations are discretized in the spatial domain based 

on a staggered grid system. Accordingly, water surface elevation (𝜂) and water depth (ℎ) are placed 

at the cell center and the velocity vector component (𝑢) is located on the interfaces of the cell, as 

shown in Fig. 1. Scalar values of 𝜂  and ℎ  on the interfaces of the cell are obtained by linear 

interpolation. Cells are sized equally (∆𝑥) and are referred to by subscript indices 𝑖 =  1,2, … , 𝑚 

increasing in the 𝑥 direction. Time integration is applied to the equations through the predictor-

corrector method introduced by Wei and Kirby (1995). In the predictor step, values of 𝑢 and 𝜂 are 

obtained with respect to the prior time steps using the explicit third-order Adams-Bashforth method. 

The time step is expressed as ∆t and superscript 𝑛 in Eqs. (11) and (12) refers to the present time. 

Eqs. (5) and (6) are rewritten as follows: 

𝜂𝑖,𝑗
𝑛+1 = 𝜂𝑖,𝑗

𝑛 +
𝛥𝑡

12
[23𝐸𝑖,𝑗

𝑛 − 16𝐸𝑖,𝑗
𝑛−1 + 5𝐸𝑖,𝑗

𝑛−2]                (11)   

𝑈𝑖+1/2,𝑗
𝑛+1 = 𝑈𝑖+1/2,𝑗

𝑛 +
𝛥𝑡

12
[23𝐹

𝑖+
1

2
,𝑗

𝑛 − 16𝐹
𝑖+

1

2
,𝑗

𝑛−1 + 5𝐹
𝑖+

1

2
,𝑗

𝑛−2 ]             (12) 

𝜂𝑖,𝑗
𝑛+1 is obtained directly but the velocity in the future time step 𝑈𝑖+1/2,𝑗

𝑛+1  is calculated by solving 

a matrix system. Calculated values of 𝑢 and  𝜂 are utilized in the corrector step and in doing so, 

the correct values of these parameters are obtained. In the corrector step, equations 5 and 6 are used 

through the fourth-order Adams-Moulton method. 

𝜂𝑖,𝑗
𝑛+1 = 𝜂𝑖,𝑗

𝑛 +
𝛥𝑡

24
[9𝐸𝑖,𝑗

𝑛+1 + 19𝐸𝑖,𝑗
𝑛 − 5𝐸𝑖,𝑗

𝑛−1 + 𝐸𝑖,𝑗
𝑛−2]          (13) 
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𝑈
𝑖+

1

2
,𝑗

𝑛+1 = 𝑈
𝑖+

1

2
,𝑗

𝑛 +
𝛥𝑡

24
[9𝐹

𝑖+
1

2
,𝑗

𝑛+1 + 19𝐹
𝑖+

1

2
,𝑗

𝑛 − 5𝐹
𝑖+

1

2
,𝑗

𝑛−1 + 𝐹
𝑖+

1

2
,𝑗

𝑛−2 ]            (14) 

The predictor-corrector process continues until the error between two sequential results reaches an 

acceptable limit. The error is obtained for any variable by the equation 

𝛥𝑓 =
∑𝑖,𝑗∣𝑓𝑖,𝑗

𝑛+1−𝑓𝑖,𝑗
(𝑛+1)𝑝

∣

∑𝑖,𝑗∣𝑓𝑖,𝑗
𝑛+1∣

                       (15) 

where 𝑓 can be 𝜂 or 𝑢 and  ( )𝑝 denotes the previously found values of the variables. Here, 

the predictor-corrector procedure is stopped when ∆𝑓 < 0.0001 . To ensure the stability of the 

numerical scheme, the Courant number (Cr) is considered as a criterion. Lin and Man (2007) used 

the stability analysis due to von Neumann for Nwogu's Boussinesq equations. In their analysis, 

predictor and corrector steps have been analyzed separately and it has been shown that the method 

is stable when Cr is less than or equal 1 for the predictor step and 0.5 for the corrector step. Cr value 

is calculated as follows 

𝐶𝑟 = √𝑔ℎ(
𝛥𝑡

𝛥𝑥
)                          (16) 

We use relation (16) satisfying time and spatial variations in the construction of the mesh size.  

 
3.2 Boundary conditions     
 

For any numerical model, implementing proper boundary conditions is essential in order to 

obtain accurate results. In our study, two types of boundary conditions are considered: the fully 

reflective boundary (solid wall) and the absorbing boundary (sponge layer). These boundary 

conditions are discussed in the following sub-sections. 
 
3.2.1 Fully reflective boundary (solid wall) 
Waves are completely reflected when colliding with solid walls and almost no energy is absorbed 

by the wall. If 𝑛 represents the unit normal vector then the velocity and surface elevation relation 

for this boundary is as follows 

𝑢. 𝑛 = 0    𝑜𝑟  𝑢. 𝑛𝑥 = 0 →     𝑢 = 0               (17) 

𝛻𝜂. 𝑛 = 0    𝑜𝑟  𝛻𝜂. 𝑛𝑥 = 0 →     𝛻𝜂 = 0              (18) 

Fig. 1 displays the schematic of a solid wall for the right side of the domain. The present 

numerical model requires three ghost cells after the wall, because of the high order estimation of the 

spatial derivatives. Ghost cells values are described as 

η
i+2

= η
i+1

    ,    η
i+3

= η
I
     ,       η

i+4
= η

i−1
            (19) 

ui+5/2 = ui+1/2    ,    ui+7/2 = ui−1/2                   (20) 

and the velocity on the boundary is defined as 𝑢𝑖+3/2 = 0. 
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Fig. 1 Staggered-grid system on the solid wall where waves are fully reflected. Points of ghost cells are 

used to help discretize spatial derivatives at the endpoints of the computational domain 

 

 

 

3.2.2 Absorbing boundary (sponge layer) 
Wave absorption in external boundaries is highly important to avoid any reflection. The energy 

of waves entering such a non-reflecting boundary has to be absorbed by the end of the channel in 

order to properly simulate the free field wave propagation. A full sponge layer absorbs all the energy 

and prevents the waves from reflecting the domain. In the sponge layer boundary condition, to 

absorb the energy of the wave, the water surface elevation, and wave horizontal velocity are 

multiplied by a coefficient function C after each time step, where C is defined as (Tonelli and Petti 

2009) 

𝐶 (𝑥) =  {
0.5 + 0.5 𝑐𝑜𝑠 (𝜋

𝑊𝑠−𝐷𝑠(𝑥)

𝑊𝑠
)           𝐷𝑠 ≤ 𝑊𝑠    

1                                                    𝐷𝑠 > 𝑊𝑠   
     (21) 

Here Ws  is the width of the sponge layer taken to be 4 m in our tests and 𝐷𝑠  is the distance 

between the point and the beginning of the sponge layer. For better performance of a sponge layer, 

the layer width should be at least as long as the wavelength. 

In the next section, we demonstrate the implementation of our numerical model described above for 

solving (3) and (4) for a variety of test cases using the solid wall and spongy boundary conditions. 

We first validate our scheme with flat planar and sloping (variable and running) obstacles in the 

presence of a solitary wave and then discuss wave interactions with semicircular and rectangular 

breakwaters. 

 

3.2.2 Incident wave boundary 
Since the discovery of the existence of solitary waves by Russell (1884), many researchers started 

finding properties of the solitary waves via theoretical studies and documented very valuable results. 

Because of the simple nature of the solitary wave equations, as compared to other wave equations, 

solitary wave theory is frequently employed in various investigations of near beach waves. 
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4. Validation tests  

 
In order to assess the capability of the model in simulating waves, various tests have been taken 

into consideration. The objectives of these tests are to validate our numerical model and to assess 

the nonlinear and dispersion terms in the governing equations. To achieve this goal we consider five 

tests as described in the following sub-sections. In all tests, the ratio of the wave height to water 

depth H/h is less than 0.77, which is smaller than the critical breaking index value (McCowan 1894 

and Miche 1944). 

Two types of solitary waves for extended Boussinesq model equations that are of interest in the 

present context are as follows. The first one used for water surface elevation in the work of Tonelli 

and Petti (2009) is 

𝜂(𝑥, 𝑡) = 𝐻. 𝑠𝑒𝑐ℎ2[√
3𝐻

4ℎ3
(𝑥 − 𝑐𝑡)]                   (22) 

where 𝐻 is the solitary wave height and 𝐶 = √𝑔(𝐻 + ℎ) is the wave velocity. By using low order 

approximation, the horizontal depth-averaged velocity in this case is  

𝑢 =
√𝑔ℎ

ℎ
𝜂                             (23) 

Another the solitary-wave solution for Nwogu’s model equations proposed by Wei and Kirby (1995) 

for the surface elevation 𝜂 and horizontal velocity u of solitary wave are 

𝜂(𝑥, 𝑡) = 𝐴1. 𝑠𝑒𝑐ℎ2[𝐵(𝑥 − 𝑐𝑡)] + 𝐴2. 𝑠𝑒𝑐ℎ4[𝐵(𝑥 − 𝑐𝑡)]             (24) 

𝑢 = 𝐴. 𝑠𝑒𝑐ℎ2[𝐵(𝑥 − 𝑐𝑡)]                           (25) 

where A, A1, A2, and B are defined in appendix I of Wei and Kirby (1995) study. It should be 

mentioned that we used both the solitary wave types and found that they produce numerically 

identical results as shown later in Figures 7 and 11. Therefore, we used the simplified solitary wave 

solution (22) and (24) in our computations and simulations. 

 
4.1 Test 1: Solitary wave propagation over flat bottom 
 

Propagation of a solitary wave in a long distance is a standard test utilized by numerous authors 

(e.g., Shiah and Mingham 2009, Wei and Kirby 1995). This test analyzes the conservative and 

stability properties of the numerical scheme. By modeling the solitary wave propagation over a 

constant depth, Tonelli and Petti (2009) tested their hybrid finite volume-finite difference scheme 

for solving the 2DH improved Boussinesq equations and Li et al. (1999) also validated their finite 

element method (FEM) that is used for solving their improved Boussinesq equations. 

In the current study, solitary wave propagation at a constant depth ℎ =  0.5 𝑚 is simulated in 

a channel of length 𝐿𝑐 =  300 𝑚. Grid size is ∆𝑥 = 0.1𝑚 and the time step is set to be ∆𝑡 =
0.01 𝑠. The considered solitary wave with height 𝐻 =  0.05 𝑚 propagates for 100 𝑠 from the 

location 𝑥 =  50 𝑚. We implemented our numerical scheme and ran the simulation for a long 

time for comparison with an analytical solution. The results are discussed in subsection 6.1.  
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Fig. 2 Diagram illustrating numerical channel with variable slopes. The wave generated at the left part of 

the channel runs up the slope and returns after colliding with the solid wall located at the right 

 
 

 

Fig. 3 Schematic of the numerical channel of 1:50 slope. The wave generated at the left part of the channel 

runs up the slope and returns after colliding with the solid wall located at the right end 

 
 
4.2 Test 2: Solitary wave propagation over variable slopes 
 

Solitary wave run-up over shore slopes is used as a good test to analyze the nonlinear effects of 

the model (e.g., Ghadimi and Lamouki 2017, Wei et al. 1995). Since wave height increases with 

decreasing water depth, the effects of nonlinear terms near beaches become more significant. For 

this reason, a channel with length Lc = 106.5h as shown in Fig. 2, is modeled. In this simulation, the 

channel is divided into 1065 segments and the time step is set to be ∆𝑡 = 0.01 𝑠. The channel 

depth (ℎ =  0.218 𝑚) is constant up to 𝑥/ℎ =  68.99 and after that, the beach extends in three 

stages with three slopes 1:53 (length 20 h), 1:150 (length 13.44 h) and 1:13 (length 4.13 h). 

Dimensionless wave height of the solitary wave at the starting point is (
𝐻

ℎ
) = 0.2602. Two gauges 

are placed in the channel to measure the water surface elevation height. Gauges 1 and 2 are located 

at  𝑥/ℎ = 89  and 𝑥/ℎ = 102.43 , respectively. uur numerical findings are compared with the 

available experimental results (see subsection 6.2). 
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Fig. 4 Computational domain of the solitary wave propagation over a rectangular submerged breakwater. 

The wave generated at the left part of the channel propagates over the channel length and passes the 

breakwater. Two gauges are located at the left (𝑥 = −8.2 𝑚) and the right side (𝑥 =  0.44 𝑚) of the 

coordinate center (left face of the cross-section of the breakwater) to extract time history of the solitary 

wave surface elevation 

 

 

4.3 Test 3: Wave reflection after the running up the slope  
 

In the present case, after running up a beach slope, a solitary wave collides with a solid wall and 

gets reflected. The test is suitable for analyzing the nonlinear terms of the model and the reflection 

boundary condition. The test also allows the model for analyzing propagation velocity in the 

presence of reflection which is a highly influencing parameter on the velocity. A representation of 

the domain is depicted in Fig. 3 and is similar to those used by Walkley (1999) and Dodd (1997). 

Domain length is Lc = 75h m and the solitary wave center at the starting moment is 𝑥/ℎ = 35.71 . 

At first, the wave propagates over a constant depth (ℎ =  0.7 𝑚) and then reaches a slope at point 

𝑥/ℎ = 78.57. At the end of the 1:50 slope, the wave collides with a solid wall, reflects, and returns 

to the domain. The time step and grid lengths are 𝛥𝑡 = 0.01 𝑠 and 𝛥𝑥 = 0.1 𝑚, respectively. The 

solitary wave of height 𝐻 =  0.07 𝑚 propagates for a total time of 30 s along the channel. To 

extract the time history of wave surface elevation, the gauge is placed at point 𝑥/ℎ = 103.92. A 

comparison of our results with the experimental data is provided in subsection 6.3. 

 

4.4 Test 4: Solitary wave propagation over a rectangular submerged breakwater 
 

To reduce the energy and height of the incoming waves towards the shore, a marine structure is 

usually installed near the shoreline. Due to these practical applications, the solitary wave 

propagation over marine structures has been the subject of many numerical and experimental studies 

(Cheng and Hsu 2013, and Liu et al. 2011). The results of such investigations play a significant role 

in several marine engineering tasks. The Solitary wave is frequently applied for modeling the 

nonlinear long waves including tsunami waves (Murashige and Wu 2010). Furthermore, the analysis 

is commonly used to calculate the RTD coefficients of submerged breakwaters (Lynett et al. 2000).  

Lin (1998) analyzed the interaction between the solitary wave with the rectangular obstacles 

numerically and computed the RTD coefficients by assuming variations in the submerged 

breakwater height and width.  
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Fig. 5 Computational domain of the solitary wave propagation over a semicircular submerged breakwater. 

The wave generated at the left part of the channel propagates over the channel length and passes the 

breakwater. Two gauges are located at the left (Gauge 1, 𝑥 = − 2.45 𝑚) and the right side (Gauge 2, 𝑥 =
0.45 𝑚) of the coordinate center (center of the semicircle) to extract the time history of the solitary wave 

surface elevation 

 

 

Using this test, the capability of the model to simulate the interaction between solitary waves and 

rectangular submerged breakwaters is analyzed. The schematic of its domain is illustrated in Figure 

4. The breakwater starts at 𝑥 = 0. A sponge layer is applied at the end of the channel to absorb the 

wave and to prevent its reflection. The submerged breakwater length is 𝐿 =  0.4 𝑚 and its height 

is 𝐷 = 0.08 𝑚. The solitary wave with height 𝐻 =  0.0288 𝑚 propagates over the channel 

with depth h = 0.16 m and the time step is ∆𝑡 = 0.005 𝑠 and grid length is ∆𝑡 = 0.05 𝑚. The 

gauges have been located at two sides of the submerged breakwater in order to show the changes in 

wave height as a result of passing over the breakwater. Gauge number 1 is situated at x = -8.2 m and 

gauge number 2 at x = 0.44 m. uur computed results are compared with the experimental findings 

(see subsection 6.4). 

 

4.5. Test 5: Propagation of solitary wave over the semicircular submerged breakwater   
 

The first investigation on semicircular submerged breakwaters appears to have been conducted 

in Miyazaki port in 1993 as reported by Cheng & Zheng (2003). The application of the breakwaters 

of this configuration has been growing because of good stability and low cost. Young and Testik 

(2011, 2009) later studied the interaction between waves and semicircular submerged breakwaters 

experimentally.  

To display the capability of our numerical model to simulate semicircular submerged breakwaters, 

the following test has been considered. As shown in Fig. 5, the center of the circular section with 

radius 𝑅 = 0.6 𝑚 is located at 𝑥 = 0. The Solitary wave with height 𝐻 = 0.311 𝑚 propagates 

over a channel of depth ℎ = 1 𝑚 . Gauges at 𝑥 =  − 2.45 𝑚  (gauge 1) and 𝑥 =  0.45 𝑚 

(gauge 2) have been considered at two ends of the submerged breakwater to measure the water 

surface elevation. The time step and grid length in this test are ∆𝑡 = 0.005 𝑠 and ∆𝑥 = 0.05 𝑚,  

respectively. In subsection 6.5 the numerical results are compared with the available experimental 

data. 
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Table 1 Dimensions of the considered semicircular and rectangular submerged breakwaters. 𝑅 is the radius 

of the semicircular breakwater. 𝐷  and  𝐿  are the height and length of the rectangular breakwater, 

respectively 

 

 

5. New comparison set up for semicircular and rectangular submerged breakwaters 
 

As mentioned in the introduction and in the preceding section, the studies for wave interactions 

with obstacles of semicircular and rectangular shapes have been performed in a variety of contexts. 

However, a systematic comparison of data suggesting a specific choice has not been provided so far. 

In this section, we provide a set up for implementing our numerical scheme to compare performances 

of semicircular and rectangular submerged breakwaters that are determined and compared via the 

RTD coefficients. 

 

5.1.1 Numerical model implementation   
The behavior of breakwaters of various shapes interacting with waves is a key factor to determine 

a suitable choice. The RTD coefficients for submerged breakwaters provide knowledge on such 

behavior when interacting with waves. By studying these coefficients, a better choice of the 

geometry for submerged breakwaters could be determined. The costs of building submerged 

breakwaters with the least amount of material to get the highest performance is another necessary 

factor. Previous numerical studies focused on individual types of the submerged breakwater and 

determined RTD coefficients (see, Lin 2004, Young and Testik 2009, 2011, for instance). In this 

study, we analyze and compare the performance of the rectangular and semicircular submerged 

breakwaters, when interacting with solitary waves. 

For comparison of the rectangular and semicircular obstacles interacting with waves, a channel with 

length 𝐿𝑐 = 310 𝑚  and depth ℎ = 1 𝑚  is considered. The rectangular and semicircular 

submerged breakwaters are located at the final 45 meters on the right side of the channel. The solitary 

wave is set to move from the left side of the channel at 𝑥 = 10 𝑚. For a better comparison, various 

height from 𝐻 = 0.1 𝑚  to  0.5 𝑚 have been considered for the solitary wave. In the present 

study, for each radius of the semicircular breakwater, a rectangular submerged breakwater with a 

crest height (𝑑 ) equal to the circular radius (𝑅 ) is considered which varies between 0.1 𝑚  to 

0.5 𝑚.  

The length (L) of the rectangular section is taken in such a way that its area equals the area of the 

related semicircular section (That is, D ∗ L =
πR2

2
 ). The related dimensions of each breakwater are 

given in Table 1. We return to analyze the performance of submerged breakwaters with the equal 

area and crest height while varying their crest width and length later. 

 
 
 

Dimensions of submerged breakwaters ( m ) 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 R Semicircular 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 D 
Rectangular 

0.079 0.118 0.157 0.196 0.236 0.275 0.314 0.353 0.393 L 
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5.1.2 Determination of the RTD coefficients 
Wave energy is absorbed by various means when colliding with marine structures and natural 

obstacles. After the collision, part of the wave energy gets reflected, a portion of it passes through 

the structure and the remaining part is damped due to reflection and the friction at the bottom. In 

order to display the effects of marine structures on waves, coefficients of reflection ( 𝐾𝑅 ), 

transmission (𝐾𝑇) and dissipation (𝐾𝐷) are used and are calculated via the relations given below. 

If the reflection and transmission coefficients themselves are energy conserved then the diffusion 

coefficient does not arise. Note that the reflection coefficient (𝐾𝑅) is the ratio of the reflected wave 

height (𝐻𝑟) to the incident wave height (𝐻𝑖) and the transmission coefficient (𝐾𝑇) is the ratio of the 

transmitted wave height (𝐻𝑡 ) over the breakwater to incident wave height (Lin 2004, Lin and 

Karunarathna 2007). The relationships among these coefficients are 

𝐾𝑅 = (
𝐻𝑟

𝐻𝑖
)                                (26) 

𝐾𝑇 = (
𝐻𝑡

𝐻𝑖
)                               (27) 

uur numerical results indicate that the wave interactions with breakwater structures generate non-

energy conserved 𝐾𝑅  and 𝐾𝑇 . This, in turn, yields a dissipative type of contribution 𝐾𝐷 

(Dissipation coefficient) which is defined as 

𝐾𝐷 = √1 − (𝐾𝑅)2 − (𝐾𝑇)2                          (28) 

ubserve that with these relations the three RTD coefficients satisfy (the energy conservation) 

𝐾𝑅
2 + 𝐾𝑇

2 + 𝐾𝐷
2 = 1                          (29)  

In all our numerical models, the 𝐻𝑡 is measured 2 m from the right edge of the breakwater while 

𝐻𝑟, and 𝐻𝑖 are measured 2 m and 5 m from the left edge of the breakwaters, respectively (see Figs. 

4 and 5). 

 

 

6. Computational results  
 
In this section, the computational results of the proposed numerical model are presented and 

compared against existing analytical, experimental and numerical data. First, the results for various 

tests involving topographical obstacles discussed in the previous section are illustrated and validated. 

The numerical comparative study of the performances of the semicircular and rectangular 

breakwaters while interacting with solitary waves is then documented.  

 
6.1 Solitary wave propagation over flat bottom 
 

The computed results for the wave propagation with a flat bottom topography based on our 

numerical scheme are compared with the analytical solution andnumerical modeling (Wei and Kirby 

1995) and displayed in Fig. 6. Fig. 6 shows the wave travelling for t = 100 s. While the wave height 

remains constant for a long distance and for a longer simulation time, there is a slight decrease of 

about 1.66 percent is noticed in the wave height. There is also a small phase change relative to the  
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Fig. 6 Comparison of the numerical and analytical solitary wave profiles after propagating for 100 seconds. 

The starting point of the wave movement is at 𝑥 = 50 𝑚 and the height of the wave is 𝐻 = 0.05 𝑚 

 

 

 

Fig. 7 Time history of the numerical and experimental solitary wave surface elevations for 𝐻/ℎ = 0.2602. 

Two gauges are located at  𝑥/ℎ = 89 (Gauge 1, first peak) and 𝑥/ℎ = 102.43 (Gauge 2, second peak) 

to obtain the time history 

 

 

analytical wave. Thus, the long-distance comparison reveals small changes in the wave height in 

comparison to the analytical results, however, Is shows a good match with numerical modelling (Wei 

and Kirby 1995). 

 

6.2 Solitary wave propagation over variable slopes 
 

In Fig. 7, the time history of the numerical results for wave propagation over variable slop has 

been compared against the experimental results obtained by U.S. Army Engineering Waterways 

Experiment Station (Grilli 1997). As portrayed in this figure, water surface elevation at gauge 1 has 

a good overlap on the experimental results. At gauge 2, there is a slight time lag between 

experimental and numerical results. Also, numerical wave height at gauge 1, unlike gauge 2, is less 

than the experimental wave height which is due to the increased effects of the nonlinear terms. As 

the wave approaches the breaking zone, numerical model wave height increases, as expected. It is 

observed from our results that there is a reasonable 4.94 percent error in the obtained wave height.  
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Fig. 8 Time history of the numerical and experimental solitary wave surface elevations at 𝑥/ℎ = 103.92. 

The first peak (located at the left part of the diagram) and the second peak (located at the right part of the 

diagram) show the time history of the wave before and after colliding with the solid wall, respectively 

 

 

Fig. 9 Time history of the numerical and experimental solitary wave surface elevations at 𝑥 = 0.44 𝑚. 

The height of the solitary wave is 𝐻 = 0.0288 𝑚 

 

Relative low differences between numerical and experimental results reveal that the model is capable 

of simulating wave run-up at the beach with variable slopes together with nonlinear effects. 

 

6.3 Wave reflection after running up the slope 
 

The numerical results for this case are compared with the experimental data provided by Dodd 

(1997) as shown in Figure 8. The first peak is related to the incoming wave and the second peak is 

associated with the reflected wave. As displayed in Fig. 8, for the incoming wave elevation simulated 

with high precision, the reflected wave has a slight increase of 7.09 percent in height relative to the 

experimental results. However, the results are still in good agreement with the experimental data, 

and the presence of nonlinear terms with a fully reflective boundary condition is well simulated. 
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6.4 Solitary wave propagation over a rectangular submerged breakwater 
 

To validate our numerical model for the solitary wave interaction with a rectangular submerged 

breakwater, we compared our results with the experimental data by Chang et al. (2001) and 

numerical modeling by Wei and Kirby, (1995), and the graphical illustration is provided in Fig.  9. 

After the wave passes over the submerged breakwater, a slight deformation of the wave profile arises 

due to the effects of reflection and dispersion as shown in Fig. 9. We remark that the dispersion 

effects with turbulence can also be precisely modeled in an analogous fashion. The wave height 

obtained by the model has a deviation of 4.09 percent from the experimental results. Also, there 

exists a wave train after the observation of the main wave which is a result of the wave hitting with 

the barrier. This shows that there is a consistency between the results of the numerical model and 

experimental data is acceptable and therefore it is safe to say that our numerical model is suitable in 

simulating the interaction between solitary waves and rectangular submerged barriers. 

 
6.5 Interaction of solitary wave with the semicircular submerged breakwater    
 

Computed wave heights using the proposed numerical model are compared with the experimental 

results (Cooker et al., 1990) and numerical results (Jabbari et al. 2013) in Fig. 10. As observed in 

this figure, the water elevation is well simulated compared with the experimental results using the 

numerical model due to Jabbari et al. (2013) and our present computational scheme. As displayed 

in Fig. 10, at gauge 1 (x= -2.45 m), a slight difference is observed. The difference increases by 

passing over the breakwater and the increase is about 1.84 percent. This could be partially due to the 

dispersion effects and the increasing effects of the nonlinear terms. Further, since the equations are 

solved by the use of finite difference technique, the approximation related to bottom slope tends to 

be infinite at the start and the end of the semicircular submerged breakwater resulting in additional 

changes in the wave profile. 

 

 

Fig. 10 Time history of the water surface elevations at 𝑥 = − 2.45 𝑚  (Gauge 1) and 𝑥 = 0.45 𝑚 

(Gauge 2). The height of the solitary wave is 𝐻 = 0.311 𝑚 
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Fig. 11 Distribution of RTD coefficients for the semicircular sections. The range of wave heights and 

breakwater heights is 0.1 – 0.5 m. Diagrams a, b, and c illustrate the reflection coefficient, transmission 

coefficient, and dissipation coefficient, respectively 

 

 

6.6 RTD coefficients for semicircular and rectangular barriers 
 

The numerical values of the reflected and transmitted wave heights have been obtained at a 

distance 15 𝑚  from the submerged breakwater center. The RTD coefficients related to various 

semicircular and rectangular breakwaters are illustrated in Figs. 11 and 12. As mentioned earlier, the  
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Fig. 12 Distribution of RTD coefficients for the rectangular sections. The range of wave heights and 

breakwater heights is 0.1 – 0.5 m. Diagrams a, b, and c illustrate the reflection coefficient, transmission 

coefficient, and dissipation coefficient, respectively 

 

 

reflection and transmission coefficients do not yield conservation of energy due to strong 

interactions between the wave and the semicircular and rectangular barriers. The difference produces 

dissipative type of effect and makes the energy conserved according to (Eq. (29)). 
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It is observed that, as the submerged breakwater crest height increases, the reflection coefficient 

gradually increases for both semicircular and rectangular configurations and the corresponding 

variation between them ranges from 0.00 to 0.16 (Figs. 11(a) and 12(a)). In contrast, as the height 

of obstacles rises, the transmission coefficient decreases. Its variation ranges from 0.92 to 1.00 as 

seen in Figs. 11(b) and 12(b), respectively. As expected, changes in the reflection and transmission 

coefficients have different trends. The reason is that as the height of breakwater increases, a bigger 

part of the wave is reflected by the breakwater and therefore, a smaller part of the wave passes over 

it. A lower 𝐾𝑇 indicates that the wave is better damped by a higher breakwater. Figs. 11(c) and 12(c) 

confirm these statements as well. The dissipation coefficient variation ranges from 0.10 to 0.35. 

These illustrations can easily be adapted for the engineering design of the rectangular and 

semicircular breakwaters. Furthermore, with the help of these curves, the RTD coefficients related 

to obstacles with different height and lengths in the desired ranges can be easily and reliably 

determined. 

 
6.7 Comparison of the performances of the semicircular and rectangular submerged 

breakwaters  
  
The best method for comparing the performances of semicircular and rectangular submerged 

breakwaters is through their RTD coefficients. To this end, the reflection coefficients of the two 

submerged breakwaters are compared in Fig. 13(a). As observed in this figure, each curve is related 

to a submerged breakwater of constant crest height and shows 𝐾𝑅 in different wave heights. The 

results indicate that with increasing the height of breakwaters, the difference in the  𝐾𝑅  coefficient 

between the two structures increases as evident from Fig. 13(a). 

A comparison of the transmission coefficients for semicircular and rectangular breakwaters is 

illustrated in Fig. 13(b). As pointed out earlier, bigger reflected waves result in smaller transmitted 

waves leading to lower transmission coefficients. Hence, breakwaters with height 0.5 m that have 

the highest reflected coefficient have the lowest transmission coefficient. 

Next, the dissipation coefficients related to the submerged breakwaters are depicted in Fig. 13(c). 

It can be seen from this figure that increased wave height results in higher dissipation coefficients. 

The results of three RTD coefficients show that the dissipation coefficients has a direct and inverse 

relation with the reflected and transmission coefficients, respectively. 

 

 

7. Discussion of the numerical results 
 

Analysis of the RTD coefficients of the breakwaters can furnish a better understanding of the 

performances of the structures used. For this reason, RTD coefficients of semicircular and 

rectangular breakwaters are discussed and analyzed in this section. 

 

7.1. KR coefficient 
 

In the case of semicircular and rectangular submerged breakwaters of low heights, a lower 

reflection coefficient is achieved and both sections perform similarly. This similarity can be 

observed in Figure 13a in the case of submerged breakwaters of the height of 0.1 𝑚 . In this 

breakwater height range, wave height does not affect the reflection coefficient as seen in this figure. 
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Fig. 13 (a) Comparison of the reflection coefficients of the semicircular and rectangular sections for 

different 𝐻/ℎ and 𝑅/ℎ or 𝐷/ℎ. (b) Comparison of the transmission coefficients of the semicircular and 

rectangular sections for different 𝐻/ℎ and 𝑅/ℎ or 𝐷/ℎ. (c) Comparison of the dissipation coefficients 

of the semicircular and rectangular sections for different H/h and R/h or D/h 
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As the height of the submerged breakwater rises, higher reflection coefficients are obtained. Increase 

in breakwater height not only affects the 𝐾𝑅 coefficients of both geometries but also the difference 

between them. In these cases, rectangular submerged breakwaters perform better than semicircular 

breakwaters and achieve higher reflection coefficients. As wave height increases, the difference in 

𝐾𝑅  coefficient between the two types of submerged breakwater decreases which are easily observed 

in breakwater with a height of 0.5 𝑚 (Fig. 14(a)). In this crest height range, for high (𝐻/ℎ > 0.4) 

and small (𝐻/ℎ < 0.15 ) waves, the reflection coefficients of the semicircular and rectangular 

sections approach each other. The similarity in the performance of the two sections may be 

interpreted as follows. Since the height of the submerged breakwaters is lower, consequently the 

effect of geometry becomes smaller. By increasing the wave height, 𝐾𝑅  becomes more and more 

sensitive to the geometrical shape of the breakwater. However, as the ratio 𝐻/ℎ increases further 

(for example 𝐻/ℎ = 0.45 to 𝑅/ℎ or 𝐷/ℎ = 0.5), it is observed that 𝐾𝑅  coefficients in the two 

types of submerged breakwaters approach each other again which indicates that geometry in the case 

of a high wave does not significantly affect the reflection performance of the breakwater. 

For a better interpretation of the performance of the two breakwaters, the reflection coefficients 

of the circular breakwaters are subtracted from that of the rectangular breakwaters and the 

normalized coefficients are shown in Figure 14a. This graph creates an opportunity to compare the 

reflection performance of the two breakwaters at a glance. It is found that the rectangular submerged 

breakwater with ratios 𝐷/ℎ > = 0.45  and 0.15 < 𝐻/ℎ < 0.45  has performed 5-15% better 

relative to semicircular submerged breakwater. In the ranges other than the one mentioned here, 

submerged breakwater shape has a less significant influence on the reflected wave height.   

 
7.2 KT coefficients 
 

For lower values of breakwater height (e.g. 𝑅  or 𝐷 = 0.1 𝑚 ), due to weak effects of the 

submerged breakwater on waves, higher values of 𝐾𝑇 are obtained using our numerical scheme as 

shown in Fig. 13(b). This, in turn, implies that the waves pass over the breakwaters with no 

distinctive effect due to the height of the barrier. The performance of both geometry shapes is similar 

to each other in this specific range. However, it is observed that, as the crest height of submerged 

breakwater increases, the breakwater shape affects the transmission coefficient significantly. In 

higher submerged breakwaters situations (𝑅/ℎ or 𝐷/ℎ > 0.2 ), as wave height rises, the difference 

between transmission coefficients of rectangular and semicircular breakwaters increases and 

rectangular submerged breakwater achieves lower 𝐾𝑇  values relative to the semicircular submerged 

breakwater. The most decrease in the amount of 𝐾𝑇  happens for the rectangular breakwater with a 

crest height of 𝐷 = 0.5 𝑚 and wave height of 𝐻 = 0.5 𝑚. In this case, the performance is about 

2.47 percent better (due to lower 𝐾𝑇)  compared to the semicircular breakwater of the same 

characteristics (Fig. 14(b)). une reason behind this fact is that the rectangular section has a relatively 

longer crest.    

 
7.3 KD coefficients 
 

In the interaction of waves and submerged breakwaters with low crest height, the dissipation 

coefficient is low, but increasing the submerged breakwater crest height causes the dissipation 

coefficient to rise. Fig. 14© clearly shows the effects of the geometry of the submerged breakwater 

on the dissipation. It is observed that rectangular submerged breakwater results in a better dissipation 

for higher waves, it has about 3-23% better dissipation performance than the semicircular submerged  
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Fig. 14 (a) Comparison of the reflection performance of the semicircular and rectangular sections, 

100(𝐾𝑅𝑅 −  𝐾𝑅𝑆)/( 𝐾𝑅𝑆). 𝐾𝑅𝑆  is the reflection coefficient of the semicircular breakwater, while 𝐾𝑅𝑅  is 

the reflection coefficient of the rectangular breakwater. (b) Comparison of the transmission performance of 

the semicircular and rectangular sections, 100(𝐾𝑇𝑆 – 𝐾𝑇𝑅)/( 𝐾𝑇𝑆). 𝐾𝑇𝑆  is the transmission coefficient 

of the semicircular breakwater, while 𝐾𝑇𝑅  is the transmission coefficient of the rectangular breakwater. (c) 

Comparison of the dissipation performance of the semicircular and rectangular sections, 100(𝐾𝐷𝑅 −
 𝐾𝐷𝑆)/( 𝐾𝐷𝑆 ). 𝐾𝐷𝑆   is the dissipation coefficient of the semicircular breakwater, while 𝐾𝐷𝑅   is the 

dissipation coefficient of the rectangular breakwater 
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breakwater. Considering all the information provided in this section, the rectangular geometries 

seem to have a better overall performance than the semicircular section. 
To summarize, quantitatively the transmission coefficients 𝐾𝑇  for rectangular breakwaters are 

lower than that for the semicircular breakwaters. But the reflection and diffusion coefficients (𝐾𝑅 

and 𝐾𝐷) are 5-15% and 3-23% higher for rectangular barriers, respectively. This Indicates that the 

performance of rectangular breakwaters is better compared to semicircular barriers when interacting 

with solitary waves.  
 
 
8. Conclusions 

 

In this paper, a numerical model has been applied to compare the performances of the rectangular 

and semicircular submerged breakwaters. Since these submerged breakwaters are installed in waters 

of intermediate depth, the Boussinesq equations have been used to simulate the interaction of the 

solitary wave with submerged breakwaters. The first order Adams-Bash forth-Moulton Predictor-

Corrector method is applied for solving the governing equations together with solid wall and spongy 

boundary conditions. 

To validate the model, five tests have been considered and the numerical results have been 

compared against analytical and experimental data. First, solitary wave propagation has been 

simulated for a long distance with a constant depth and the results have been compared with 

analytical data. Wave propagation for a long time range does not produce a change in its shape 

indicating conservative and stability properties of the numerical schemes. second, to assess the 

nonlinear terms of the model, solitary wave propagation has been considered on a beach with a 

variable slope and the results have been compared against experimental data. Fairly good agreement 

of the results indicates that the model is capable of simulating the wave run-up on the beach of 

variable slope and nonlinear effects with desirable accuracy. Third, in addition to modeling the 

nonlinear terms, wave propagation velocity and the reflecting boundary condition is analyzed. In 

this test, after runup on the slope, the wave collides with the solid wall and gets reflected. This, in 

turn, reveals that the model has good performance in simulating incident waves and its reflection. 

However, the slight difference between the numerical results and experimental data can be attributed 

to the fact that the numerical model does not involve any energy absorption by the solid wall, while 

in the experimental model, part of the wave energy gets absorbed by the solid wall. This causes the 

minimal difference between the wave heights by numerical and experimental models.  

Next, in order to compare the performance of the intended submerged breakwaters, two tests 

have been considered for the simulation of a solitary wave interacting with interaction rectangular 

and semicircular submerged breakwaters. A comparison of our computed results against 

experimental data shows that the model performs well in simulating the interaction of waves with 

obstacles. After validating the model, an extensive set of parametric studies has been conducted on 

the RTD performance of rectangular and semicircular sections with various dimensions and different 

wave heights. The RTD coefficient charts related to each of the submerged breakwater structures 

presented in this work (Figs. 11 and 12) can be a suitable reference for engineering design. Another 

notable observation in our numerical study is the dissipative effect of the non-dissipative model 

equations. This is due to the nonenergy conserving transmission and reflection coefficients (𝐾𝑅 and 

𝐾𝑇).  

uur comparison of the performance of the rectangular and semicircular breakwaters shows that 

the rectangular sections perform up to 15% better than the semicircular sections in reflecting waves. 
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Also, the dissipative effects of the rectangular sections are up to 23% better than the semicircular 

sections. un the other hand, it is observed that by increasing the height of the breakwater, the effects 

of geometry become more and more visible. By comparing the transmission coefficients of both 

barriers with different dimensions and waves, one can say that by increasing the wave height, the 

difference between transmission coefficients of the two sections increases and rectangular sections 

have a better performance. The transmission coefficients 𝐾𝑇 for rectangular breakwater shows the 

better performance up to 2.47% better than that for the semicircular breakwaters. Based on the 

results reported here, the conclusion is that in the hydrodynamical context the rectangular section 

has a better overall performance than the circular section. Generalization of our approach to multiple 

submerged obstacles (Zhou and Li 2012) may be possible but will not be discussed here. Finally, in 

many circumstances solitary waves can be utilized to represent certain behavior of long waves 

(leading waves of tsunami, for instance) in ocean. Performing numerical simulations for other types 

of waves, such as periodic and irregular waves, and comparison with our present calculations could 

yield more meaningful results. Such a theme can be the subject of future study. 
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