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Revisiting exponential stress corrosion model
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Abstract. One of the prevailing models that describe the stress corrosion is represented by an
exponential dependence between rate of corrosion and stress, suggested by Gutman, Zainullin and
Zuripov. This study revisits the exponential model and derives analytical expressions for the structures’
durability which is postulated as the time for stress level to reach its yield value. Comparison is
conducted with other possible models, namely with linear, quadratic or cubic cases.
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1. Introduction

The durability of a structure under corrosion is one of the main issues in ocean engineering. The

problems remain not well understood, and applied methods used appear to be not on the safe side. 

Applying a stress to an element of metal situated in a corrosive environment increases the stress

corrosion rate beyond its initial stress-free corrosion rate counterpart. Copson (1983) identifies

several factors associated with the stress-corrosion cracking, namely specific alloy composition,

unique microstructure resulting from metallurgical processing, a tensile stress at exposed surfaces, a

specific environment.

Revie (2007) explains that the multiplicity of the factor leads to a complicated prediction of the

mechanism of time to failure. He writes “Depending on the metal – environment combination and

the stressing condition, the time to failure can vary from minutes to many years. … Such failure

occurred, for example, in 0.7% C steel cables of the Portsmouth, Ohio, bridge after 12 years in

service. The cables cracked at their base where rain water, presumably containing trace amounts of

ammonium nitrate from the atmosphere, had accumulated and concentrated”.

It is natural to assume that stress-corrosion dependence ought to utilize experimental data

pertinent to alloy composition and corrosive environment. Still, analytical approaches to stress

corrosion appear the only means of both the reconciling with experimental data and providing

prediction of future life of structure. Several models have been proposed in the literature. Dolinskii

(1967) studied the case when stress σ(t) and corrosion rate v(t) are connected linearly. Miglis and

Elishakoff (2011) generalized the Dolinskii’s (1967) linear relationship by proposing a nth order

polynomial relationship. In their paper, Gutman, Zainullin and Zuripov (1984) and monograph by

Gutman (2000) proposed an exponential relationship. In this study, we revisit Gutman’s (2000)
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exponential model with attendant closed-form expression for the time to failure.

2. Elastic deformation of a bar in a corrosive environment

In this study, we consider a bar subjected to a tensile load P. The cross section area is circular

with radius r. The tensile stress equals

(1)

The bar is placed in a corrosive environment that causes radius r to decrease in time. As a result

the radius is a time dependent quantity r(t). Consequently, for a given stress, the radius will reach a

value such as the bar reaches the yield stress of the metal σy .

In the following study, we derive Eq. (1) in order to find analytical expressions for the Time to

Failure Tf of a structure under corrosion.

We differentiate stress σ with respect to time t in Eq. (1) to get

(2)

At the initial time the radius equals r0. The stress level at t = 0 equals 

 (3)

In view of the fact that , Eq. (2) can be rewritten as

(4)

From Eq. (1) we express . Hence the derivative of stress becomes

(5)

Bearing in mind that according to Eq. (1)  and substituting it in Eq. (5) we get

(6)

According to Gutman, Zainullin and Zuripov (1983) the variation of the radius can be described as a sum

(7)
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direction equals
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 (8)

Then, using Poisson’s equation with  we get 

(9)

Differentiation of this expression with respect to time leads to

(10)

where  is the Poisson’s ratio. The second term is postulated by Gutman, Zainullin and Zuripov

(1983) as

(11)

where V
m 

is the molar volume of the metal, the universal gas constant, T the

absolute temperature in K. Introducing Eqs. (10)  and (11)  in Eq. (6) we obtain

 (12)

In view of the identity  and we get governing differential equation

(13)

or, after some algebra

(14)

Eq. (14) is arranged conveniently as

(15)

We integrate this function between 0 and t for the time variable, and from  to  for the stress

(16)
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,   (17)

Differentiation of  with respect to t yields 

(18)

Substitution of Eq. (18) into Eq. (16) leads to

(19)

In view of the equality

(20)

with  denoting the error function defined as 

(21)

Eq. (19)  is reduced to

(22)

with F0 being the ratio of initial stress to yield stress, and F the ratio of the stress at the time t to

the yield stress

,    (23)

Eq. (22) can be simplified by using Eq. (23)
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Substituting , F = 1 and replacing t the time to failure Tf results in the expression of the

structure’s durability

(26)

In Figs. 1 and 2, the time to failure Tf in Eq. (26) is plotted for different . The initial radius of

the bar is fixed at . The metals considered are iron and aluminum. The temperature is set

at T = 293 K. The mechanical and chemical properties of the iron are ,

, , . The respective properties of the aluminum

are , , E = 69 MPa, m =0.34. 

In both cases, the durability Tf decreases when the corrosion rate v0 increases, as expected. With

the increase of σ0 the durability Tf decreases. For the iron bar (Fig. 1), the durability reduces by

53% when the initial stress increases three times, from 30 to 90 MPa. The durability decreases from

16 years to 8 years for an initial corrosion rate v0 set at , when the initial stress increases
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Fig. 1 Time of failure Tf of an iron bar versus the initial corrosion rate v0

Fig. 2 Time to failure Tf of an aluminum bar versus initial corrosion rate v0



126 Isaac Elishakoff and Yohann Miglis

tenfold for the aluminum bar, from to σ0 = 2 MPa (Fig. 2). For the fixed initial corrosion rate v0,

with increase of the initial stress σ0 the time to failure Tf decreases, this result is in accordance with

our anticipation. For example, for , the time to failure Tf for the iron bar with

σ0 = 50 MPa constitutes 2.42 years whereas for the aluminum bar Tf = 4.12 years for σ0 = 5 MPa.

3. Effect of neglecting the stress dependence

Some authors evaluate the time to failure Tf without taking into account the effect of the stress σ.

They are using the so-called uniform corrosion model. We will show hereinafter that this

simplification may yield large errors. Within this assumption time to failure is denoted as Tf,u.

To deal with this case we put formally in Eq. (11) σ = 0 to get

(27)

tegrating Eq. (27) with respect to time gives 

r(t) = r0 - v0t (28)

Expressing Eq. (28) in terms of time t and radius r(t) yields

(29)

The value of the radius r(t) when the yield stress is reached is denoted as ry . From Eq. (1) we set

 (30)

Durability estimate Tf,u becomes

(31)

Values for the time of failure Tf,u for an iron bar with a corrosion rate v0 set at  are

summarized it Table 1.
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the percentagewise difference constitutes 173%. It must be observed that the uniform corrosion

model yields an overestimation of the time to failure Tf,u, and thus is not on the safe side. In Table 2
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As we observe, the uniform corrosion rate does not provide a good estimate for the time to failure

v0 5 10
10–

m s
1–

⋅⋅=

dr

dt
----- v0–=

t
r0

v0

---- 1
r t( )

r0

--------–=

ry r0⁄ σ0 σy⁄ F0= =

Tf u,

r0

v0

---- 1 F0–( )=

10
10–

m s
1–

⋅

Table 1 Comparison of the time to failure for two different corrosion models (iron bar)

σ0 (MPa)
Time to failure Tf in years with the exponen-

tial stress corrosion relationship
Time to failure Tf,u in years with the uniform 

corrosion model

30 15.97 26.92

50 12.26 24.71

70 9.51 23.43

80 8.36 22.86
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in the case of the aluminum bar either. The effect of stress on the corrosion rate is not negligible,

overestimation in the case of σ0 = 30 MPa constitutes a factor of over 6.

4. Approximation of the coefficients with a polynomial relationship using Gutman’s

model

Dolinskii (1967) proposed a linear relationship between stress and corrosion rate. Miglis and

Elishakoff (2011) proposed polynomial based relationships between stress and corrosion rate. We

first deal with Dolinskii’s linear relationship. The value of the radius at the time instant t is 

(32)

Differentiating Eq. (32) yields the decrease in time of the radius

(33)

v(x) being the corrosion velocity in , expressed with a polynomial with coefficients that are

determined experimentally. 

The first case we study is the one when corrosion rate and stress depend linearly upon each other.

The decrease in time of the radius can be expressed as  

(34)

the coefficient m being a characteristic of the material. In the case . So it is

instructive to expand expression in Eq. (11) as a Taylor series

 (35)

which leads to the estimate of m as
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The durability of an elastic bar with a linear relationship between stress and corrosion is (Gutman

et al. 1984)
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Table 2 Comparison of the time to failure for two different corrosion models (aluminium bar)

 σ0(MPa)
Time to failure Tf  in years with the exponen-

tial stress corrosion relationship
Time to failure Tf,u in years with the uniform 

corrosion model

5 19.50 29.08

10 14.77 28.00

20 8.39 26.46

30 3.75 25.28
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(37)

with R0 = R the inner radius of the bar, in our case R0 = 0. The expression in the parenthesis must

be evaluated at σ = σy and σ = σ0, with subsequent subtraction of results.

In the case of the iron bar, we get . For an initial stress of 30 MPa, the durability

within Dolinskii (Gutman 2000) model is 18.09 years, whereas it constitutes 15.98 years within

exponential model by Gutman, Zainullin and Zuripov (1983). These two results are relatively close.

For the aluminum bar, we have . The durability within Gutman’s model constitutes

14.77 years for an initial stress of 10 MPa, whereas it is 15.43 years within Dolinskii (Gutman

2000) model. This difference is also explained by the fact that the exponential model takes into

account the elastic deformations of the bar with the Poisson’s ratio.

We now compare Gutman, Zainullin and Zuripov’s (1983) model with the quadratic model

proposed in (Gutman 2000).  In this case the relationship between radius r(t) and stress σ(t) is

described by the following expression (Gutman 2000) 

 (38)
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(40)

introduced as roots of quadratic equation v0 + mσ(t) + nσ2(t) = 0. In Eq. (40), the permutation

function ωi is defined as

The permutation function ω is function which associates the value of the front row line to his

image in the second row line, so that we have, sω(1) = s1, sω(2) = s2, sω(3) = s1. 

As a result, for the iron bar we get a durability of 18.03 years, and 15.43 years for the

aluminum bar. Since Dolinskii’s linear relationship yielded respectively 18.09 years and 15.43

years we see that there is an extremely small difference yielded between linear and quadratic

relationships.

For a cubic case the relationship between corrosion and stress reads

(41)

The coefficient q must be evaluated as q = v0(Vm / 3RT)3 /3! using the Taylor’s series expansion

of the Gutman, Zainullin and Zuripov (1983) formula in Eq. (11). For the iron its value is

, and  for the aluminum. Its order of magnitude being small, we

derive the same results for the durability as the ones found within the quadratic case.

In Fig. 3, we show the differences of the decreasing rate of the radius  in Eq. (11) as a

function of σ(t) for the different types of dependence for the iron bar. As is seen, Gutman’s model

can be accurately approximated by a quadratic relationship.
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5. Conclusions

In this study we extend Gutman’s model for the durability of tensed bar under corrosion. For the

first time in the literature, the exact expression for the durability are derived and compared with

results furnished by linear, quadratic and cubic approximations.
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