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1. Introduction 
 

The fresh water demand is increasing rapidly all over 

the world due to rise in population, irrigation area and 

industrial need all over the world. The lack of available 

natural water resources instigated to look for new 

alternatives around the world to meet the fresh water 

demand. The desalination of sea/brackish water is one of 

the alternatives to meet these requirements. Multi-stage 

flash (MSF) desalination and reverse osmosis (RO) 

processes are two mostly used techniques for desalination 

of sea/brackish water (Alatiqi et al. 1989). However, RO 

process is preferred over MSF on a wide scale due to less 

amount of energy consumption. At present, RO process is 

becoming most well-known and popular filtration process 

producing fresh water at low cost and low energy 

consumption (Malwatkar et al. 2009, Bartman et al. 2010, 

Karuppiah et al. 2012). High product quality and reliability 

are its added advantages. 

Many researchers in their studies suggested different 

model structures for RO desalination. In (Alatiqi et al. 

1989), a multi-loop control design structure is presented for 

RO plants, where one pressure control variable and two pH 

control variables are used. In (Robertson et al. 1996), a 

model-based control system is described for RO plants, 

where two output variables i.e., permeate flow rate and 

conductivity were considered. However, this approach is  
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not found successful for large-scale RO plants. Article 

(Chaaben, Andoulsi et al. 2011) developed a MIMO model 

approach based on empirical transfer function matrix for a 

small photovoltaic RO plant. The practical implementation 

of these methods is difficult due to parametric uncertainties, 

large computational time involved and selection of 

manipulated and control variables. 

In RO desalination plants, membranes are very sensitive 

to formation of concentration layer due to which high 

concentrate volumes are deposited on the membrane side. 

As a result, membrane fouling occurs which degrades the 

membrane performance resulting in its frequent 

replacement (Bartels et al. 2005). This, in turn, changes the 

system parameters rapidly and increases the production cost 

of RO water. 

In recent, many works have been reported in the 

optimum tuning of controller parameters with state-of-art 

optimization algorithms. Articles (Kim et al. 2008, Kim et 

al. 2009) are devoted to the applications of immune genetic 

algorithm (IGA) and real-coded genetic algorithm (RCGA) 

for tuning of PID controller for the RO system. The authors 

presented a comparison of these algorithms with classical 

Ziegler-Nichols (ZN) tuning method. In (Gambier et al. 

2009), the improvement of controller parameters is 

proposed using game theory. A PSO based PID controller 

tuning is proposed by Rathore et al., where a comparative 

study with ZN tuning method is given for RO system 

(Rathore et al. 2013). The main limitations of applying 

these approaches lie in the proper tuning of algorithm-

specific parameters, which is the utmost requirement for the 

effectiveness of these algorithms. However, tuning of the 

controller with algorithm-specific parameters increases 

sluggishness and computational time in the plants. 

In this work, simplified decoupling based PID 
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controllers are presented for the unit model of RO system. 

The tuning of these PID controller-parameters are 

accomplished with minimization of the integral of squared 

error (ISE) performance criterion. The ISEs are minimized 

using a new optimizing algorithm i.e., TLBO, which 

doesn’t need any algorithm-specific parameters and is one 

of the popular technique used in mechanical designs, 

benchmark functions and numerical solutions to many 

linear and non-linear optimization problems (Rao and Patel 

2013, Basu 2014, Baykasoğlu et al. 2014). The 

experimental results show the comparisons of TLBO based 

PID controllers with the controllers designed using PSO, 

ABC and DE algorithms. 

The remainder of this paper is organized as follows. The 

reverse osmosis plant is introduced in section 2. The details 

of control strategy using simplified decoupling are 

discussed in section 3. Section 4 discusses the proposed 

method of tuning, experimental settings, and performance 

metric. Section 5 describes the basics of TLBO algorithm. 

Section 6 gives the experimental results followed by 

discussion. Finally, the concluding remarks are presented in 

Section 7. 

 

 

2. The basics of reverse osmosis plant 
 

The reverse osmosis desalination plant comprises four 

main stages: pre-treatment, high-pressure pump, RO 

membrane assembly and post-treatment (Gambier et al. 

2009). The saline water is first treated in the pre-treatment 

stage to avoid scaling problem in RO plants, thus, 

preventing RO membranes from degradation.  

In this stage, pH value of saline water is adjusted by 

adding some inhibitors. Then, it is passed through sand 

filter which removes suspended impurities like solid 

particles, microorganisms, etc. of the range 0.005-0.050 

Kg/m3 (5-50 mg/l). Further, activated cartridge filters trap 

organic chemicals and chlorine of the range 5-10 µm. The 

high-pressure pump supplies the pressure needed to push 

feed water through the membrane assembly. Typically, the 

range of pressure for brackish water is around 1.6-2.6 MPa 

(225-325 psi) and for sea-water, it is around 6-8 MPa (800-

1180 psi). Because of this pressure, water gets separated out 

from the saline water after passing through RO membrane 

assembly retaining concentrate (brine) at brine discharge. 

Membrane assemblies have two or more semi -

permeable membranes consisting of thin-film composite 

polyamide type membrane. In post-treatment stage, product 
 

 

 

Fig. 1  A schematic block diagram of RO system 

water is stabilized with adjustment in pH level in the range 

of 6 to 8 and is prepared for distribution. The generalized 

schematic block diagram of the RO system is shown in Fig. 

1. 

Fig. 1 demonstrates all four stages of RO system along 

with variables of interest: flux-rate (Fp) and conductivity 

(Cp) of permeate as controlled variables and, angular speed 

of high-pressure pump (As) and reject valve aperture (θr) as 

manipulated variables. 
 
 

3. Design of control system for reverse osmosis 
module 
 

The prime task in control system design of a RO 

membrane is to maintain a certain flux-rate at permeate side 

with lowest possible value of operating pressure at the inlet 

side as it results in reduction of the operation costs i.e., 

electric power consumed by the high-pressure pump and 

most important it extends the life of membrane assembly 

used in the plant. Hence, a suitable controller design will 

enhance the performance of RO system. 

In this work, the multivariable model given by (Chaaben 

et al. 2011) is considered for the experimental purpose. The 

relation between output variables and input variables of RO 

module are represented as follows 

and
p s
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where Fp is flux (flow) rate and Cp is conductivity and these 

are considered as the fundamental control variables at the 

permeate side and are responsible for maintaining product 

water quantity and quality. As is angular speed of the pump 

and θr is reject valve aperture. These two parameters are 

treated as manipulated variables at the feed side. The 

MIMO RO unit model transfer function can be represented 

as follows 
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where 11( )pG s , 12 ( )pG s , 21( )pG s and 22 ( )pG s are first and 

second order elementary transfer function models and are 

represented as follows 
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where nominal values of the parameters are obtained using 

system identification. The model parameters values are 
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given in Appendix A (Chaaben et al. 2011). 

 

3.1 Decoupling of RO model system 
 

The RO plant model is basically the MIMO system 

having the combination of more than one input and output 

variables. It means one input variable affects more than one 

output variables. To avoid such type of problem of 

interaction, decoupling method is used in many controller 

designs (Riverol and Pilipovik 2005, Kim et al. 2008, Park 

et al. 2009). A design of decoupling control system for RO 

system is shown in Fig. 2. 

Decoupling at the input of a two input two output 

(TITO) process Gp(s) requires the design of a transfer 

matrix Gff(s) such that Gp(s)Gff(s) is a diagonal transfer 

matrix T(s) (Gagnon et al. 1998). Hence, matrices, Gff(s), 

Gp(s), and T(s), given in Eqs., (2), (7) and (8), respectively. 
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should satisfy 
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(9) 

In this work, decoupling control design method 

proposed by (Luyben 1970), known as simplified 

decoupling, has been used. In this technique, the decoupler 

Gff(s) is given by 
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The resulting transfer matrix ( )T s  can be formed as 
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Thus, the decoupled system is represented as 
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where, T11(s) and T22(s) represent the transfer functions for  

 

Fig. 2 Decoupling control system for RO system 

 

 

Fig. 3 Total decoupled scheme of an RO system with 2-

PID controllers 

 

 

channel I (Flux) and channel II (Conductivity), respectively. 

Thus, decoupler will remove the interactions among input 

variables. The total decoupled scheme of the RO system is 

stable as each of subsystem block is open loop stable having 

negative real poles. Finally, the resulting scheme with feed-

forward compensators is represented in Fig. 3. The PID 

controllers now can easily be tuned with different 

optimization algorithms even if one of the control loops is 

open. 
 

 

4. Proposed scheme of optimal PID controller design 
 

The goal of proposed optimal PID controller is to keep 
the water flux and water conductivity at desired value. A 
PID controller consists of proportional, integral and 
derivative gains. The feedback control system is illustrated 
in Fig. 4 where, r(t) is reference input, e(t) is the error 
between reference input and output variable, and y(t) is 
controlled output variable. GPID(s) represents controller 
transfer function and Gp(s)  represents transfer function of 
the plant. The transfer function of PID controller, GPID(s), is 
given as 
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( ) i

PID p d

K
G s K K s

s
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(14) 

where Kp, Ki and Kd are the proportional, integral and 

derivative gains, respectively, of the PID controller. 

The set of controller parameters for the formation of 

objective function in RO model can be shown as 

p i dS K K K     
(15) 

The performance index is described as a quantitative 
measure to determine the system performance with the 
designed PID controller. This is used to design optimum 
system settings with adjusting the controller parameters to 
fulfil the specific design criteria in the system. In this work, 
ISE has been considered as a performance index for the 
problem due to its fast response and quick elimination of 
large errors. 

In proposed scheme, TLBO based tuning of PID 

controller-parameters is carried out for the RO plant. The 

performance index of controller for channel I (Flux) can be 

evaluated by 

2
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J1 is ISE. The Laplace transform of e1(t), obtained using Eq. 

(12), is given as 
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where, n0,n1,n2,...n5 represent the numerator coefficients and 

d0,d1,d2,...d6 represent the denominator coefficients (see 

Appendix B). 

The ISE evaluated by Eq. (16) is determined from the 

generalized formula shown as follows 
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where the p1 is the order of E1(s) and the parameters αi  

and βi are determined from the denominator and numerator 

coefficients of the E1(s) (Å ström 2012). 

Furthermore, in a similar manner, the performance index 

J2 for channel II (Conductivity) of RO model is determined 

as 
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Fig. 4 A common feedback control system with PID 

controller 

The Laplace transform of e2(t), obtained using Eq. (13), 

is represented as 
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(20) 

where N0,N1,N2,...N5 represent the numerator coefficients 

and D0,D1,D2,...D6 represent the denominator coefficients 

(see Appendix C). 

Now, the performance index J2 can be determined as 
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(21) 

where, the p2 is order of E2(s) and the parameters Ai and Bi 

are determined from the denominator and numerator 

coefficients of the E2(s) (Å ström 2012). 
The performance indices are given by Eqs. (18) and (21) 

are minimized using TLBO, DE, ABC and PSO algorithms 
to show the comparative assessment. The details of TLBO 
algorithm is given in following section. 
 

 

5. Teacher-learner-based-optimization 
 

The tuning of PID controller-parameters is carried out 
with TLBO algorithm in this work. TLBO is newly 
introduced and quite popular metaheuristic algorithm. It is a 
population-based algorithm like other nature-inspired 
algorithms such as PSO, ABC, DE, etc., but unlike others, it 
does not possess any algorithm-specific parameters (Rao 
and Patel 2013). This algorithm takes into account the effect 
of influence of a best learner (teacher) onto the knowledge 
of other learners (students) in a class (or a group) and the 
knowledge gain of each learner through interaction. The 
total number of learners in a class constitutes the population 
and the total numbers of subjects offered are the decision 
variables. TLBO algorithm is mainly classified into two 
sections: the teacher phase and the learner phase. 
 

5.1 Teacher phase 
 

In this phase, the teacher tries to modify the results of 

the class based on his knowledge. The mean difference 

∆M(n) between the existing mean, Mj(n), and new mean of 

class at n
th

 iteration is given by 

 ,( ) ( ) . ( )best j f jM n r X n T M n  
 

(22) 

where , ( )best jX n  represents the performance of the best 
learner (called as teacher) in j

th
 subject at n

th
 iteration, r is 

randomly generated number in the range [0,1] and Tf is 
teacher factor which is chosen as 1 or 2 (Rao et al. 2012). 
The value of Tf is obtained randomly with equal 
probabilities. 

On the basis of mean difference, the new solution in the 

teacher phase is obtained as 

, ,( ) ( ) ( )i j i jX n X n M n  
 

(23) 

where , ( )i jX n  denotes the new value of the , ( )i jX n  at  

n
th

 iteration. Accept , ( )i jX n  if it gives better performance 
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index otherwise retain , ( )i jX n  and obtain new solution,

, ( )i jY n , as 

   
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where  , ( )i jf X n  and  , ( )i jf X n
 are, respectively, the 

values of performance index for , ( )i jX n  and , ( )i jX n . 

Thus, obtained new solution , ( )i jY n  is retained and 

used as input to the learner phase. 
 

5.2 Learner phase 
 

In learner phase, learners improve their knowledge by 

two methods: first through input from the teacher (or best 

learner) and second through interactions among themselves. 

In this way, the solution, , ( )i jY n , obtained in teacher phase, 

is used as an input and the interaction between learners is 

kept random. 

Further, select two learners, a and b, randomly such that

a b . Modify the solution according to Eq. (25) as 
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where , ( )a jZ n  represents the modified solution obtained 

in learner phase, and  , ( )a jf Y n  and  , ( )b jf Y n  are the 

values of performance index for , ( )a jY n  and , ( )b jY n , 

respectively. The parameters r1 and r2 are two random 

numbers in the range [0,1]. Accept , ( )i jZ n  if it gives 

better performance index otherwise retain , ( )i jY n . Thus 

obtained , ( )i jZ n  becomes input to the next iteration of 

teacher phase. 

Repeat the above procedure of teacher phase and learner 

phase until the termination criterion is met. 

The main steps of the TLBO are summarized in Fig. 5. 

Experimental results and comparative assessments are given 

in the following section. 
 

 

6. Experimental results and comparisons 
 

To verify the efficiency of TLBO algorithm for PID 
controller tuning, two experiments, first minimization of 
ISE for channel I (Flux) of RO system and second 
minimization of ISE for channel II (Conductivity), have 
been performed. The common-control parameters and 
algorithm-specific parameters considered in 
experimentations are as follows. 

 

6.1 Common-control parameters 

 

Fig. 5 Main steps of TLBO algorithm 

 
 
The two common control parameters i.e., population 

size and maximum iteration number are set to 10 and 10, 

respectively, for all the four algorithms mentioned above in 

both the experiments. 
 
6.2 Algorithm-specific parameters 
 

TLBO settings: Except common parameters (i.e., 

population size and iteration numbers), no algorithm-

specific parameter is required to be set in case of TLBO 

algorithm. 
DE settings: In DE, mutation factor F=0.8, crossover 

rate CR=0.8 have been considered (Corne et al. 1999). 

ABC settings: ABC algorithm employs one control 

parameter i.e., limit. It is denoted as limit=SN*D where SN  

is number of food sources and D is dimension of the 

problem (Karaboga and Akay 2009). 

PSO settings: The inertia weight, cognitive factor, social 

factor, minimum velocity, maximum velocity are set to 0.5, 

2, 2, -5 and 5, respectively, in the case of PSO (Trelea 

2003). 

Experiment 1: Minimization of ISE for Channel I (Flux) 
In this experiment, performance index given by Eq. (18) 

is minimized to obtain the optimal values of PID controller 
gains i.e., Kp1, K i1, and Kd1. Quantitative as well  
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Table 1 Values of PID gains for different algorithms for 

channel I (Flux) 

Algorithms Kp1 Ki1 Kd1 

TLBO-PID 50.4540 -0.2016 1.0000 

DE-PID 49.3316 16.3272 6.9678 

ABC-PID 20.2817 19.4890 9.9771 

PSO-PID 19.4279 6.7184 9.9088 

 

Table 2 Comparisons of performance of different algorithms 

for channel I (Flux) 

Performance measure TLBO-PID DE-PID ABC-PID PSO-PID 

J1 (Performance index) 2.3023E-05 0.1326 0.9542 4.7754 

Rise Time 0.0336 0.2391 0.2895 0.3366 

Settling Time 0.9646 3.8408 2.8090 5.8284 

Overshoot (%) 0.0102 1.2554 1.9326 0.9689 

Undershoot 0 0 0 0 

Peak 1.0096 1.0126 1.0193 1.0096 

 

 

Fig. 6 Step response of flux (gpm) for channel I 
 

Table 3 Values of PID gains for different algorithms for 

channel II (Conductivity) 

Algorithms Kp2 Ki2 Kd2 

TLBO-PID -200.0000 -12.6108 -6.8074 

DE-PID -141.8406 0.6859 -3.0184 

ABC-PID -188.9216 0.6022 -1.5198 

PSO-PID -192.5347 -36.3334 -5.3529 

 

Table 4 Comparisons of performance of different algorithms 

for channel II (Conductivity) 

Performance measure TLBO-PID DE-PID ABC-PID PSO-PID 

J2 (Performance index) 0.0012 0.0038 0.1545 0.0172 

Rise Time 0.0182 0.1437 0.0996 0.1313 

Settling Time 0.0247 5.1968 2.4703 2.5441 

Overshoot (%) 0.1980 8.0394 6.3216 6.2678 

Undershoot 0 0 0 0 

Peak 1.0019 1.0801 1.0632 1.0626 

 

Fig. 7 Step response of conductivity(μS /cm) for channel II 
 
 
as qualitative results are obtained which are shown in 
Tables 1 and 2 and Fig. 6. Table 1 shows the optimum 
values of PID gains obtained for channel I. Table 2 
represents mean performance index. The value of the 
performance index for TLBO-PID is found to be 2.3023E-
05 which is lowest when compared to other algorithms 
based PID controllers. In addition to performance index, 
time domain characteristics of step responses are also 
shown in Table 2. Numerical analysis of the results obtained 
shows that rise time, settling time and overshoot are lowest 
in case of TLBO-PID which is a good indication for a stable 
system. The plot of step responses using TLBO-PID, DE-
PID, ABC-PID and PSO-PID is shown in Fig. 6. The 
superiority in terms of performance index and time domain 
analysis indicates the successful implementation of TLBO 
algorithm for PID controller tuning of RO unit. 

Experiment 2: Minimization of ISE for Channel II 

(Conductivity) 

In the second experiment, performance index given by 

Eq. (21) is minimized to obtain the optimal values of PID 

controller gains i.e., Kp2, Ki2, and Kd2. All the four 

algorithms i.e., TLBO, DE, ABC, and PSO are implemented 

for same criterion. Quantitative as well as qualitative results 

are obtained from these algorithms are shown in Tables 3 

and 4.  

Table 3 shows the optimum values of PID gains 

obtained using TLBO, DE, ABC and PSO. Table 4 gives the 

performance index comparisons and time domain 

specifications. The value of performance index is lowest for 

TLBO-PID when compared to DE-PID, ABC-PID and 

PSO-PID in all the cases. In addition to performance index, 

time domain characteristics i.e., rising time, settling time, 

overshoot, undershoot and peak value calculated from step 

response have also been improved. The step response plot 

obtained for all these algorithms is shown in Fig. 7. 
 
 

7. Conclusions 
 

In this work optimal PID controller tuning is presented 
using teacher-learner-based-optimization (TLBO) for 
reverse osmosis (RO) desalination plant. The simplified 
decoupling technique has been used for designing feed-
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forward compensator for RO transfer function model. ISE is 
considered as performance index for tuning of controller 
parameters. Two experiments, one for channel I and second 
for channel II of RO plant, were performed. The 
performance of TLBO algorithm is verified with the well-
known optimizing techniques such as particle swarm 
optimization (PSO), artificial bee colony (ABC), and 
deferential evolution (DE) algorithms. The experimental 
results show the superiority of TLBO-PID over PSO-PID, 
ABC-PID, and DE-PID. Future scope of this research lies in 
the design of TLBO based robust PID controller for RO 
desalination plants. Additionally, a multi-objective design 
for RO can also be investigated using TLBO algorithm. 
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Appendix A 
 

The model parameters for unit RO system are 

considered as (Chaaben et al. 2011) 

11 2.50k  , 22 0.20k   , 11 1.00  , 22 1.00  , 11 1.50  ,

22 2.15  , 1 0.50  , 2 0.75  , and 1 2 1r r   

 

 

Appendix B 
 

Numerator coefficients of E1(s) are given as 

Denominator coefficients of E1(s) are given as 

 
 

Appendix C 
 

Numerator coefficients of E2(s) are given as 

Denominator coefficients of E2(s) are given as 
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