Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

Guo R. Xie^{1a}, Chan S. Choi^{*1}, Bong S. Lim^{2b} and Shao X. Chu^{2c}

¹Department of Applied Chemistry, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, Republic of Korea ²Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, Republic of Korea

(Received July 17, 2019, Revised May 14, 2020, Accepted May 22, 2020)

Abstract. This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr⁶⁺ increased from 10 ppm to 60 ppm. Almost complete removal of Cr⁶⁺ and low removal of Cu²⁺ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr⁶⁺ and Cu²⁺ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu²⁺, Ni²⁺, and Zn²⁺ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu²⁺, Ni²⁺ and Zn²⁺ ions in the effluent was due to the fact that the Cr⁶⁺ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr⁶⁺ and Cu²⁺ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr⁶⁺, Cu²⁺, Ni²⁺ and Zn²⁺ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr⁶⁺ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Keywords: microbial fuel cell; microbial electrolytic cell; removal of mixed heavy metal ions; removal efficiency; hydraulic retention time; wastewater treatment

1. Introduction

Water is regarded as the most essential natural resource and of course important in daily life. The earth is largely covered with water, and gradually polluted due to human and industrial activities. The increasing contamination of water systems by the industrial and natural chemical compounds is one of the key environmental problems that human society faces. Numerous contaminants, such as heavy metal ions and some organic contaminants, are introduced into water supplies from industrialization and human activity (Schwarzenbach *et al.* 2006). Heavy metal ions, such as cadmium, lead, chromium, nickel, zinc and copper ions are naturally occurring elements, and are considered systemic toxicants that induce multiple organ damages. Hence, the development of efficient techniques for the removal of these heavy metal ions from wastewater

- ^a Post-Master
- E-mail: xgr1992@hotmail.com

E-mail: c375383051@hotmail.com

is an important task in terms of protection of not only environment but also public health. A number of technologies have been widely employed to remove heavy metal ions from aqueous solutions: adsorption, chemical precipitation, ion exchange, electrochemical treatment, reverse osmosis, solvent extraction and membrane filtration (Mahmood *et al.* 2010). Most of these methods are not widely acceptable due to their high cost, low efficiency, disposal of sludge and inapplicability to a wide range of pollutants.

Bioelectrochemical systems (BESs) have attracted considerable attention for their innovative features and environmental benefits (Mu et al. 2009). BESs include the microbial fuel cell (MFC), where electrical power is harvested ($\Delta G < 0$), and the microbial electrolytic cell (MEC), where a small amount of electrical energy is supplied to drive non-spontaneous reactions in the cell (ΔG > 0). In MFC, electricity can be produced spontaneously because the microorganisms (biofilm) on the anode metabolize organic matters and produce electrons and protons causing electrons to flow from the anode to the cathode with a potential gradient through an external electrical circuit. Then the electrons react at the cathode of MFC with the electron accepters in the solution. Biofilmcoated electrodes and outer cell membrane-mimicked electrodes were examined to verify an extracellular electron transfer mechanism using Marcus theory for a donor-

^{*}Corresponding author, Professor

E-mail: pchoi7@hotmail.com

^b Professor

E-mail: bslim@dju.kr

^c Ph.D. Student

acceptor electron transfer. The electron transfer was believed to occur sequentially from acetate to nicotinamide adenine dinucleotide (NAD⁺), c-type cytochrome, flavin mononucleotide (FMN) (or riboflavin (RBF)) and the anode substrate (Yang et al. 2019). The MFC system can achieve power generation and remove heavy metal ions from the wastewater. The MFC and MEC systems were applied to reduce electrochemically heavy metal ions at the cathode, such as Cu²⁺, Hg²⁺, Cd²⁺, and Cr⁶⁺, to metal elements or ions with lower chemical valences (Wang et al. 2010, Wang et al. 2011, Choi et al. 2014, Wang et al. 2008). The reactions for these metal ions to accept electrons at the cathode of MFC are spontaneous, when the anode is coated with biofilm. In this study, the relatively high standard reduction potentials of Cr(VI) and Cu(II) can make MFC's enable them to act as electron acceptors at the cathode of the MFC system. The metal ions may be reduced in MFC through the following processes, and their reversible halfcell reduction potential values (E) were calculated for 10 ppm concentrations:

$$HCrO_{4}^{-} + 7H^{+} + 3e^{-} = Cr^{3+} + 4H_{2}O \qquad E$$

= +1.33 V (vs. SHE at 25°C) (1)

$$Cu^{2+} + 2e^{-} = Cu$$
 $E = +0.23 V$ (vs. SHE at 25°C) (2)

Many metal ions, such as Ni²⁺ and Zn²⁺, cannot accept electrons spontaneously due to their relatively low reduction potentials, which make the voltage difference between the anodic and cathodic potentials too small to transfer the electrons from the anode to cathode, even if a bioelectrochemical system is formulated with these metal ions, i.e., a microbial electrolytic cell (MEC). Therefore, MEC without an input of external electrical energy cannot treat wastewaters containing Ni²⁺ and Zn²⁺. The additional voltage and power should be supplied to MEC as a direct current power source or another MFC. Ni²⁺ and Zn²⁺ can be reduced in MEC with an input of external electrical energy through the following processes, and the reversible half-cell reduction electrode potential values (E) were also calculated for 10 ppm metal ions:

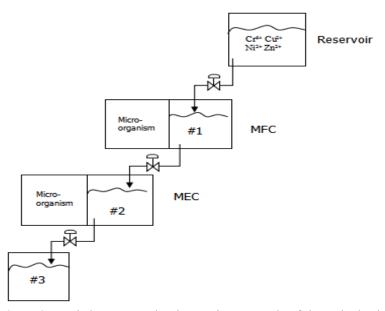
$$Ni^{2+} + 2e^- = Ni^0 E$$

= -0.37 V (vs. SHE at 25°C) (3)

$$Zn^{2+} + 2e^{-} = Zn^{0}$$
 E
= -0.87 V (vs. SHE at 25°C) (4)

Therefore, it would be clear that the metals would be removed more favorably in the order of $HCrO_4^-$ >Cu²⁺>Ni²⁺>Ni²⁺ for the given experimental conditions, based on the half-cell reduction potentials.

It is important to know that MEC can reduce Ni^{2+} and Zn^{2+} in its cathode chamber with additional voltages (E_{add}) lower than the applied voltage (E_{app}) of the conventional electrolytic cell because of the supply of electrons by bacteria in the bio-anode. MEC required voltage and power from an external electrical energy source to operate. The electrical energy from MFC could be applied by connection


in series, and MEC functioned as an electrical load. There were no voltage reversal problems during the operation of the MFC-MEC system, while the voltage between the MEC was measured to monitor the system.

In this study, removal of heavy metal ions from synthetic wastewaters simulating zinc plating solutions was investigated using a MFC-MEC-coupled system, which was connected in series. The MFC contains a mixed solution of Cr^{6+} , Cu^{2+} , Ni^{2+} , and Zn^{2+} in its cathodic chamber, and can generate electrical power to supply with the following MEC which contains Ni^{2+} and Zn^{2+} wastewater in its cathode chamber. It can complement voltage required to reduce Ni²⁺ and Zn²⁺ ions to Ni and Zn metals. Cr⁶⁺ and Cu²⁺ in the mixed solution of Cr⁶⁺, Cu²⁺, Ni^{2+} , and Zn^{2+} were treated by reduction in the cathode chamber of MFC, and the treated solution was transferred to the cathodic chamber of MEC from that of MFC. The main objective of this study was to study the feasibility of removal of mixed heavy metal ions from wastewater using a MFC-MEC-coupled system both in a batch mode and in a continuous-flow mode, which was not attempted previously. In the batch mode, effects of Cr⁶⁺'s initial concentration in MFC for removal efficiency of Zn²⁺ and Ni²⁺ in MEC were studied. In the continuous mode, effects of HRT were studied as well as the influence of Cr6+'s initial concentration for the optimum experimental condition.

2. Experimental

2.1 Materials

Potassium dichromate (purity of > 99.5%), nickel(II) sulfate hexahydrate (purity of > 98.5%), zinc sulfate heptahydrate (purity of > 99.0%), 4-(2-hydroxyethyl)-1piperazineethanesulfonic acid) (HEPES), ammonia solution (purity of 30.0%) and hydrochloric acid (purity of > 35.0%) were obtained from Dae-Jung Chemicals & Metals Co., Ltd. (Seoul, Republic of Korea). Potassium phosphate dibasic (purity of > 98.0%, ACS reagent grade), potassium phosphate monobasic (suitable for plant cell culture, purity of > 99.0%) were obtained from Sigma-Aldrich (Seoul, Republic of Korea). Sodium acetate (anhydrous, 98.5%) and sodium perchlorate monohydrate were obtained from Samchun Chemicals & Metals Co., Ltd. (Seoul, Republic of Korea). Copper(II) chloride dihydrate (purity of > 97.0%) was purchased from Right Price Chemicals & Metals Co., Ltd. (Texas, USA). Bacto yeast extract was obtained from DIFCO Laboratories (New Jersey, USA). The Bacto yeast extract is the water-soluble portion of autolyzed yeast, and it is a source of naturally-occurring B-complex vitamins and other growth-promoting substances, making this product an excellent host for a large variety of microorganisms. Anion exchange membrane (AEM, AMI-7001) were purchased from Membrane International, Inc. (New Jersey, USA). Carbon fiber (PANEX[®] 35) was purchased from Zoltek (Missouri, USA). Carbon felt (3.18 mm thick, 99.0%) and hard graphite plate were purchased from Alfa Aesar (Massachusetts, USA) and MTI Corporation (Shanghai, China), respectively.

Schematic 1 Diagram of MFC-MEC coupled system under the continuous mode of the cathode chamber set up in the lab. #1, cathodic chamber of MFC; #2, cathodic chamber of MEC; #3, effluent. All chamber volumes were 180 mL. MFC is electrically connected to MEC in series. Reservoir volume was 200 mL.

2.2 Preparation of MFC and MEC

A cubical dual-chamber made from acrylic rectangle was used in this study. Both anode and cathode chambers held a volume of 216 mL with an effective volume of 200 mL. The membrane, which is an anion exchange membrane, was used to separate the chambers, as shown in Schematic 1. It was sandwiched with two rubber gaskets and the two chambers were tightened with bolts and nuts to prevent the solution from leaking. The membranes used have a thickness of 0.5 mm. The function of the anion exchange membrane was stable with a catholyte at pH 2 in the present experimental time range. The carbon felt anode and the graphite cathode with a nominal surface area of 20 cm² (4 cm \times 5 cm) were prepared.

The anaerobic inoculum was collected from anaerobic sludge, as previously published by Choi and Cui (2012). Each anodic chamber of four MFCs was inoculated by filling them with a mixture of 50 mL sludge and 150 mL artificial wastewater (AW) (pH 7). The components of AW were 2.0 g/L CH₃COONa, 1.05 g/L NH₄Cl, 1.5 g/L KH₂PO₄, 2.2 g/L K₂HPO₄, and 0.2 g/L veast extract. The buffer, which contained solution containing 1.5 g/L KH₂PO₄ and 2.2 g/L K₂HPO₄, was poured into the cathodic chamber; and then simultaneously purged with air to utilize dissolved oxygen (DO) as an electron acceptor, growing microorganisms on the anode. For longer than three months, four MFCs were operated, producing stable voltage output cycles. When starting the experiments, the cathodic chamber of MFC was replaced with a mixture of Cr⁶⁺, Cu²⁺, Ni²⁺, and Zn²⁺ as a catholyte. The cathodic chamber was purged with N₂ gas for 15 min to remove dissolved O₂. All chambers were kept air-tight, and the electrolytes were stirred continuously with magnetic stirrers. The mixture was prepared by dissolving K₂Cr₂O₇, CuSO₄, ZnSO₄, NiSO₄ with distilled water to obtain a stock solution of 10 ppm each. Then, it was divided into four parts, and three parts

were chosen to obtain Cr⁶⁺ solutions of 20 ppm, 40 ppm,and 60 ppm by adding more K₂Cr₂O₇. The pH was adjusted to 2 with HCl (35%). Different Cr⁶⁺ concentrations of 10 ppm, 20 ppm, 40 ppm, and 60 ppm were prepared in the background solution containing the remainder of species of 10 ppm, and were used as electron acceptor solutions for MFC, and were used as electron acceptor solutions for MFC. Each heavy metal ion concentration of the catholyte was set to 10 ppm, except that Cr(VI) concentration was varied from 10 ppm to 60 ppm. Another mixture of Ni²⁺ and Zn²⁺ was prepared for MEC by dissolving NiSO₄ and ZnSO₄ with distilled water to get a stock solution of 10 ppm each. The difference between MFC and MEC was to use catholytes containing heavy metal ions having high and low reduction potentials, when the same biofilm-coated electrodes were used as anodes. Anolyte was pumped continuously into the anode chamber with a peristaltic pump. Sampling time interval for solution analysis and cell voltage was set to one hour. The experiments were repeated three times.

2.3 Continuous-flow experiments

A continuous operational mode was adopted in this experiment, infusing from the reservoir containing 200 mL solution with an infusion tube to cathodic chambers at a different flow rate. The cathodic chamber volumes were 180 mL. The experiments were conducted in the MFC-MEC coupled systems by using cathodic inlet and outlet flow rates of 1.66 mL/min, 0.83 mL/min, 0.56 mL/min, 0.42 mL/min, 0.33 mL/min, 0.16 mL/min, and the corresponding hydraulic retention times (HRT) were estimated to be approximately 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h, respectively. Each heavy metal ion concentration of the catholyte was also set to 10 ppm. Sampling intervals for the different hydraulic retention times were 2 h, 4 h, 6 h, 8 h, and 10 h. For all the experiments, the samples of the

corresponding effluents were collected at different locations (#1, #2 and #3 in Schematic 1) for analyzing remaining concentrations for each metal ion. The sample size was 10 mL.

The anolyte of each cell was continuously pumped into the anode chamber at a flow rate of 1.66 mL/min (HRT of 2 h). The cell voltage was registered in one-hour interval, and all experiments were performed at $25^{\circ}C\pm1^{\circ}C$ under the normal atmospheric pressure.

2.4 Instruments and analysis

The voltage was recorded in one-hour interval by using a LabView system (National Instruments Models, NI-cDAQ 9219, Texas, USA). Different external resistances from 150 $k\Omega$ to 0.010 $k\Omega$ were connected to obtain a polarization curve for the determination of the maximum power generation. Additionally, electrochemical impedance spectroscopy (EIS) could also be applied to characterize the performance of microbial fuel cells. At each scheduled sampling interval, a sample of 10 mL was withdrawn from the cathodic chamber for each heavy metal ion analysis to determine the removal efficiency. The concentrations of Cr(VI) were determined by UV-visible spectrophotometry using biphenyl carbazide in acidic solution. The concentrations of Cu²⁺, Zn²⁺ and Ni²⁺ were analyzed using an atomic absorption spectrometer (PG Instruments Ltd., Model PG-990, Leicestershire, UK).

3. Results and discussion

3.1 Effects of different initial concentration of Cr⁶⁺ on maximum power density

Fig. 1A shows power density vs. current density (P-J) curves with a change in the initial Cr⁶⁺ concentration from 10 ppm to 60 ppm. The maximum current densities (J_{max}) and maximum power densities (Pmax) increased with an increase in Cr6+ concentration. Pmax increased from 0.5347 ± 0.0001 Wm⁻² (5.347 kW/m⁻³) to 0.9593 ± 0.0110 Wm⁻² (9.593 kWm⁻³) (Fig. 1A and Table 1). Cr⁶⁺ concentration increase can be attributed to the increase in the reaction rate at the cathode, when the anodic reaction rate was ideally fast enough not to affect the cathodic reaction. To characterize the MFC, the electrochemical impedance spectroscopic (EIS) analysis of the MFCs was performed with catholytes containing different concentrations of Cr(VI) (10-60 ppm) in the cathode chamber under the open circuit potential. The parameters of Nyquist plots of MFC with respect to Cr(VI) concentrations were obtained by fitting them to the equivalence circuit. The solution resistance (R_s) was reduced from 19.33 Ω for 10 ppm to 13.37 Ω for 60 ppm; the charge transfer resistance R_{ct} also decreased from 28.14 Ω to 21.54 Ω under the same concentration change. The internal resistance (R_{int}) , which is the sum of solution resistance and charge transfer resistance, decreased quickly for Cr6+ concentration increase from 10 ppm to 20 ppm, and decreased slowly for Cr⁶⁺ concentration from 20 ppm to 60 ppm. The internal

resistance was significantly influenced by the Cr^{6+} concentration, leading to higher exchange current density with higher Cr^{6+} concentration involvement. Higher Cr^{6+} concentration exhibited higher MFC performance (e.g., higher P_{max}) by lowering internal resistance of the MFC cathode, compared to lower Cr^{6+} concentration, until reaching an anodic polarization quenching (Choi C. and Hu N. 2013), as shown in Fig. 1A.

3.2 Discharge curves of MFC with different concentrations of Cr⁶⁺

The reversible potentials (E_{rev}) of Ni²⁺/Ni and Zn²⁺/Zn for 10 ppm were -0.37 V and -0.87 V vs. SHE, respectively, as calculated using the Nernst equation. If the anode is assumed to be set at a constant potential of -0.30V, the minimum electrolysis voltage that should complement the MEC of the Ni²⁺/Ni redox couple is 0.07 V, and that of the Zn^{2+}/Zn redox couple is 0.57 V, which is about 0.50 V lower for the former than for the latter. Nickel ion reduction is expected to be energetically easier than zinc ion reduction, when considering only the minimum voltage required for electrolysis of the ions. Fig. 1B shows voltage vs. reaction time curves of the MFC-MEC coupled system. The voltages were recorded by measuring the voltage across the MEC acting as a load resistor of MFC. By complementing the necessary voltage of MEC using the power from MFC (Fig. 1A), the recovery reactions of Ni²⁺ and Zn^{2+} were accelerated when keeping the voltage high, as shown in Fig. 1B. The discharging voltage shown in Fig. 1B is a working voltage ($E_{wk} = E_{cell} - \eta_a - \eta_c - IR$) of MFC. Recall that the available maximum powers of MFC from 0.5347±0.0001 Wm⁻² to 0.9593±0.0110 Wm⁻² could be utilized with the initial concentrations of Cr⁶⁺ changed from 10 ppm to 60 ppm in MFC (Fig. 1A and Table 1). Therefore, the discharging voltage (E_{dis}) decreases with internal resistance increase of the cell system, in particular, by reduction of metal ions in the cathodic chambers of MFC and MEC. The initial concentration was set to 10 ppm for Ni²⁺ and Zn²⁺ each in MEC. The metal ion reduction would accelerate, and the voltage of MFC dropped faster, when higher power was applied to MEC by increasing electron acceptor concentration of the cathodic chamber of MFC (Fig. 1B).

To remove nickel ions and zinc ions from wastewaters by their reduction in the cathodic chamber of MEC, least amounts of voltages of 0.07 V + η_a + η_c + IR and 0.57 V + η_a + η_c + IR were needed to be complemented to the MECs consisting of the cathode containing nickel ions and zinc ions (10 ppm), respectively, thus achieving a current of I. η_a is over-voltage for the anode, η_c is overvoltage for the cathode, and IR is over-voltage caused by Ohmic resistance. The additional voltage ($\eta_a + \eta_c + IR$) for Ohmic resistance ($R = R_{solution} + R_{separator} + R_{circuit}$) could be added to achieve nickel ion and zinc ion reduction in MEC generating power from a MFC consisting of the anode containing acetate and the cathode containing Cr⁶⁺, Cu²⁺, Ni²⁺ and Zn²⁺ ions of 10 ppm each. An average supply voltage of 0.4104 ± 0.02 V was obtained (Fig. 1B) under this condition. Cr⁶⁺ concentration was varied from 10 ppm

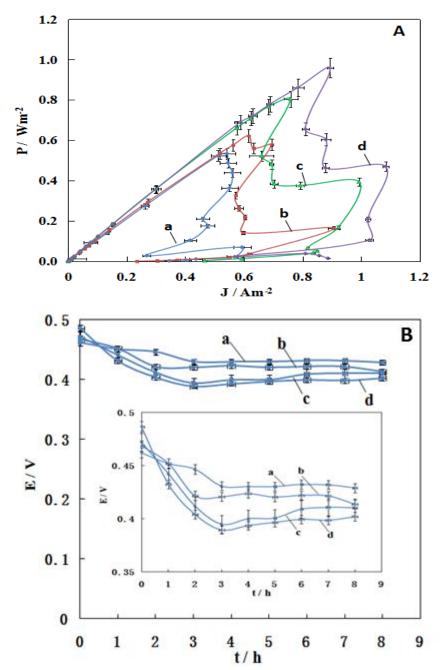


Fig. 1 (A) Effects of initial concentration of Cr(VI) on power density of the uncoupled MFC, and (B) voltage change with respect to reaction time for the MFC-MEC-coupled system. The Cr(VI) concentration was changed; (a) 10 ppm, (b) 20 ppm, (c) 40 ppm, and (d) 60 ppm in MFC. Cu(II) concentration in MFC was 10 ppm. The concentrations of Ni(II) and Zn(II) in MEC were 10 ppm each. The solution pH was 2.0. Data were measured in triplicate.

to 60 ppm in the cathodic chamber of MFC, and the cathodic chamber of MEC contained Ni²⁺ and Zn²⁺ of 10 ppm each. The discharging voltage increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr⁶⁺ increased from 10 ppm to 60 ppm. Consequently the discharge voltage dropped faster for higher initial concentration of Cr⁶⁺ than the lower ones within the first two hours. The voltage dropped slowly with further increase in time (Fig. 1B). This initial increase in discharging voltage can be attributed to the power of MFC which was increased with an increase in Cr⁶⁺ concentration from 10 ppm to 60 ppm. As the power of the MEC

complemented by MFC was increased, Ni²⁺ and Zn²⁺ reduction rates of the MEC were increased, presumably indicating a faster resistance increasing rate due to the reduction of electron acceptors in MEC. The discharging voltage decreased faster initially, but after 2 hours the decreasing rate of the voltage became low with a slow removal rate in the cathode chamber of MEC. Prolonged high voltage for a long duration is an indicator of the stable performance of the MFC-MEC coupled system under the batch operation (Fig. 1B). Removed metals were deposited on the cathode. A quick scanning electron micrograph/energy dispersive spectroscopy (SEM/EDS)

Table 1 Electrochemical parameters for MFC with different initial Cr^{6+} concentrations*

Initial Cr(VI) Concentration	V _o /V	V _{max} /Am ⁻²	J _{peak} /Am ⁻²	J _{max} /Am ⁻²	P _{max} /Wm ⁻²
10 ppm	1.1330±	$0.9870 \pm$	$0.5420 \pm$	0.5935±	$0.5347 \pm$
to ppin	0.0005	0.0001	0.0001	0.0057	0.0001
20 ppm	$1.1560 \pm$	$1.0100 \pm$	$0.6161 \pm$	$0.6943 \pm$	$0.6225 \pm$
20 ppm	0.0076	0.0005	0.0005	0.0022	0.0005
40 ppm	$1.2430\pm$	$1.0620\pm$	$0.7586 \pm$	$0.8505 \pm$	$0.8056 \pm$
to ppin	0.0002	0.0234	0.0234	0.0610	0.0234
60 ppm	$1.2630 \pm$	$1.073 \pm$	$0.8941\pm$	$1.0837 \pm$	$0.9593 \pm$
*D (0.0016	0.0110	0.0110	0.0108	0.0110

*Data were measured in triplicate.

analyses would have given decent results for confirmation; these analyses were not performed. Copper, nickel, and zinc metals were assumed to be obviously deposited on the cathode because many SEM/EDS experiments performed in this laboratory showed metallic deposition on the cathodes (Wang *et al.* 2010, Hu *et al.* 2019).

 $HCrO_{4}$ can cross over with the use of an anion exchange membrane, but the mixture ions in the cathode chambers of the present MFC-MEC-coupled system contained cations except $HCrO_{4}$ anion. So, the anion exchange membrane was commonly applied to separate the anode and cathode chambers, and the loss of $HCrO_{4}$ to the anode was not monitored through the membrane, even if anion exchange membranes are not ideal and thus allowing a certain degree of crossover of the metal cations.

3.3 Removal efficiency (RE) and remaining concentration (RC) of the MFC-MEC-coupled system in a batch mode

3.3.1 RE's and RC's of Cr⁶⁺, Cu²⁺, Ni²⁺, and Zn²⁺

Fig. 2 shows RE and RC occurred in heavy metal concentrations in the cathodic chambers of MFC and MEC with time. All initial concentrations of heavy metal ions were 10 ppm. MFC and MEC were operated in a batch mode by connecting them in a series mode. This figure shows that most of the metal removal reactions almost stopped in an hour, while the removal was not complete. The electron acceptors Cr⁶⁺ and Cu²⁺ in MFC were rapidly consumed and minimized within an hour, and then slowly reacted at a later time in the MFC-MEC-coupled system. The MFC could not function fully as a power supplier for MEC because the concentration of 10 ppm Cr⁶⁺ was not enough to finish the reduction of metal ions in MEC. Removal rate of Ni²⁺ and Zn²⁺ in MEC was also limited. Fig. 2A shows almost complete removal of Cr⁶⁺ and low removal of Cu2+ occurring in MFC after 8 hours. RC's of $Cr^{6+} \text{ and } Cu^{2+} \text{ were nearly zero ppm and } 6.950 \pm 0.001 \text{ ppm},$ and REs of Cr^{6+} and Cu^{2+} were 99.76% and 30.49%, respectively (Table 2). RE of Cu²⁺ was lower than that of Cr^{6+} by a factor of 3.3 because electrons were presumably transferred from the produced Cu metal to Cr⁶⁺. On the other hand, Fig. 2B shows RCs and REs of nickel and zinc ions in MEC. After 8 hours RCs of nickel ions and zinc ions were 4.485 ± 0.011 ppm and 2.379 ± 0.002 ppm,

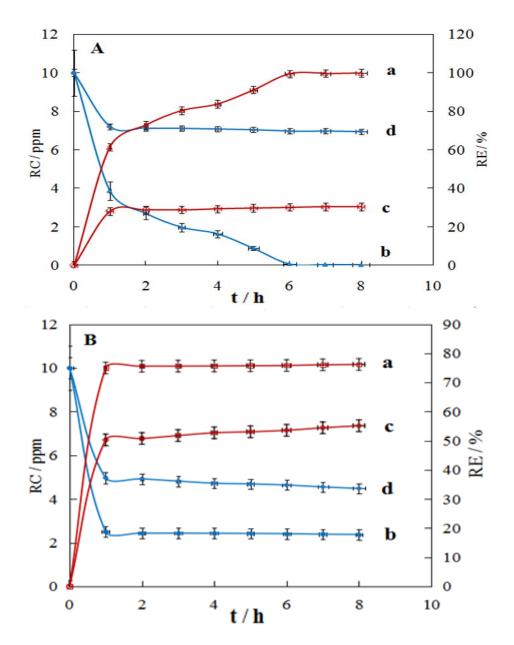
Table 2 Variation of removal efficiency of heavy metal ions from MFC and MEC under the batch mode^{*}

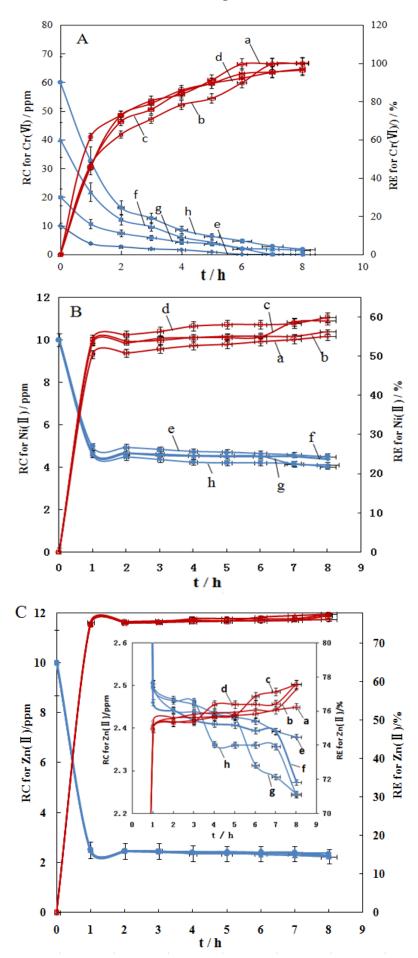
Reaction	MFC	MEC				
time/h	RE/%(Cr ⁶⁺) RE/%(Cu ²⁺)	$RE/\%(Ni^{2+})$ $RE/\%(Zn^{2+})$				
1	61.40±0.002028.01±0.002	650.30±0.002175.00±0.0015				
2	72.90±0.013228.76±0.004	250.79±0.002575.59±0.0011				
3	80.39±0.007028.95±0.013	251.79±0.001075.64±0.0008				
4	83.74±0.011629.25±0.003	052.74±0.011975.69±0.0011				
5	91.11±0.002529.69±0.003	553.09±0.017375.76±0.0016				
6	99.36±0.001530.36±0,017	353.59±0.004575.86±0.0012				
7	99.66±0.001530.38±0.004	254.45±0.015976.09±0.0012				
8	99.76±0.001230.50±0.001	055.15±0.010976.21±0.0020				

*Data were measured in triplicate.

respectively. The REs of nickel and zinc ions were 55.15%, and 76.21% (Fig. 2B and Table 2). MFC can spontaneously generate a high power with a high voltage ($\Delta G < 0$), which can be complemented to insufficient voltage of MEC $(\Delta G>0)$ for the electrolysis reaction to proceed, when the bio-films are applied as anodes for both MFC and MEC. The MFC cathode potential is higher (i.e. producing a Galvanic cell voltage with the bio-anode) than that of an MEC. MFC needs to provide four electrons to reduce Ni²⁺ and Zn^{2+} to metallic Ni(0) and Zn(0) in MEC. Cr³⁺ and metallic Cu(0) are created in MFC by five electrons returning from MEC. In MFC, metallic Cu(0) can react with Cr^{6+} to form Cu^{2+} and Cr^{3+} electrochemically to increase Cu^{2+} concentration and decrease Cr^{6+} concentration. Therefore, Cr⁶⁺ in MFC seems to be consumed faster than Ni²⁺ and Zn²⁺ in MEC for the same concentration of each ion, whereas Cu²⁺ in MFC is consumed slower than other ions. The removal efficiency of Cr6+ would have been greater than the rest of the ions in the MFC-MEC system arranged in series. That of Cu²⁺ could be lower than that of Cr^{6+} (Fig. 2 and Table 2).

The RE of zinc ion was higher than that of nickel ion by a factor of 1.39. This observed result differs from the result expected based on the reduction potential difference calculated from the Nernst equation. The voltage (E_{app}) required by Zn^{2+} ion reduction is higher than that of Ni²⁺ and the removal efficiency of Zn^{2+} is expected to be lower than that of Ni²⁺, but it is opposite (76.21% for Zn^{2+} vs. 55.15% for Ni²⁺). This result seemed to be attributed to a faster electrochemical reduction rate of zinc ions than that of nickel ions at the cathode according to $P = \sigma Q$. P is amount of product, σ is selectivity, and Q is amount of charge consumed. P of Zn^{2+} is larger than that of Ni^{2+} due to a better $\boldsymbol{\sigma}.$ Over-voltage and charge transfer resistance of $Ni^{2\scriptscriptstyle +}$ reduction seemed to be much larger than those of $Zn^{2\scriptscriptstyle +}$ reduction. Here, the reason why both $Ni^{2\scriptscriptstyle +}$ and $Zn^{2\scriptscriptstyle +}$ ions were not completely removed is that the Cr⁶⁺ in the cathode chamber of MFC is almost completely consumed, leading to a loss of power before the completion of Ni²⁺ and Zn²⁺ reduction. Therefore, those metal ions can be removed completely by connecting MFC to MEC repeatedly. It is




Fig. 2 Removal efficiency (RE) and remaining concentration (RC) vs. time of (A) Cr(VI) (a; RE, b; RC) and Cu(II) (c; RE, d; RC) in MFC, and (B) Zn(II) (a; RE, b; RC) and Ni(II) (c; RE, d; RC) in MEC. All initial concentrations of metal ions were 10 ppm. Data were measured in triplicate.

concluded that MFC functioned well as a complementary voltage source and a power supplier to MEC to recover nickel and zinc from the cathode chamber of MEC. However, the removal efficiencies (55.15% for Ni²⁺ and 76.21% for Zn²⁺) in MEC of this study was lower than that of Cd²⁺ removal (~95%) in MEC previously reported in the reference (Choi *et al.* 2014) because the concentration ratio of Cr⁶⁺ to heavy metal ion was relatively lower, and the reaction time of this study (8 hours) was shorter than the latter (60 hours). The concentration ratio of Cr⁶⁺ to Cd²⁺ in the published paper was 4:1, while that of Cr⁶⁺ to heavy metal ion in the present study was 1:1. Modin et al. published bioelectrochemical recovery of Cu, Pb, Cd, and Zn from the dilute solution electrolyte (Modin *et al.* 2012).

The electrode potentials were controlled successively to selectively deposit metals on titanium cathode by an external power source, when the bio-film was applied as an anode in the bioelectrochemical reactor. However, in the present study the MFC-MEC-coupled system was applied to remove Cr^{6+} , Cu^{2+} , Ni^{2+} , and Zn^{2+} . There was no input of external electrical energy to remove the metal ions from the wastewaters.

3.3.2 Effects of different initial Cr⁶⁺ concentrations in MFC on Cr⁶⁺, Ni²⁺ and Zn²⁺ ion removal efficiencies

Fig. 3A shows RE and RC of Cr^{6+} ions in MFC of the MFC-MEC-coupled system. REs of Cr^{6+} for different initial concentrations were 100% for 10 ppm, 99.57% for 20 ppm,

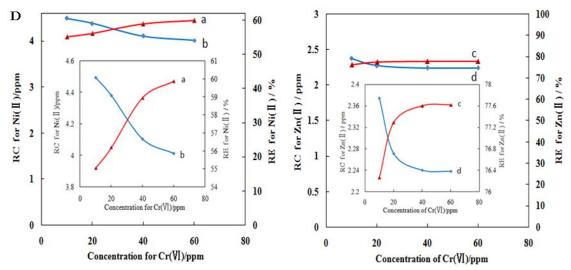


Fig. 3 Effects of different initial Cr(VI) concentrations in MFC on removal efficiency (RE) and remaining concentrati on (RC) of heavy metal ions: (A) Cr(VI) in MFC, (B) Ni(II) in MEC, and (C) Zn(II) in MEC. RE: a; 10 ppm, b; 20 ppm, c; 40 ppm, d; 60 ppm. RC: e; 10 ppm, f; 20 ppm, g; 40 ppm, h; 60 ppm. (D) RE's (a, c) and RC's (b, d) of Ni(II) and Zn(II) vs. different concentrations of Cr(VI) for a reaction time of 8 h.

Table 3 Effects of different initial Cr ⁶⁺ concentrations in MFC	on the removal efficiency (RE) and remaining concentration
(RC) of heavy metal ions [*]	

Initial concentration of Cr(VI)/ppm	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h
			А	: Removal effic	ciency of Cr ⁶⁺	/ %		
10	61.40±0.0021	72.79±0.000	580.32±0.0006	683.68±0.0006	91.09±0.0006	599.370.±0.001	99.64±0.0006	100 ± 0
20	46.74±0.0006	62.66±0.000	670.67±0.0005	578.11±0.0005	81.56±0.0010	89.74±0.0006	99.43±0.0001	99.57±0.0002
40	45.59±0.0005	69.45±0.000	675.77±0.0004	84.85±0.0005	89.41±0.0010	94.39±0.0005	95.33±0.0006	96.33±0.0010
60	45.52±0.0006	72.71±0.000	678.87±0.0020	085.74±0.0012	89.41±0.0010	92.08±0.0015	95.14±0.0016	96.94±0.0006
			В	: Removal effic	ciency of Ni ²⁺	/ %		
10	50.40±0.0202	50.78±0.002	551.84±0.0165	52.68±0.003	53.03±0.0153	353.63±0.0080	54.26±0.0192	55.07±0.0040
20	53.31±0.0040	53.32±0.005	154.49±0.0035	54.76±0.0030	54.99±0.0192	255.01±0.0181	55.07±0.0040	56.20±0.0036
40	53.65±0.0025	53.76±0.003	153.94±0.0042	254.65±0.0031	54.68±0.0035	54.87±0.0025	58.67±0.0252	58.96±0.0122
60	54.30±0.0020	55.33±0.002	056.33±0.0015	57.66±0.0015	58.02±0.0010	58.03±0.0010	58.35±0.0025	59.87±0.0015
			C	Removal effic	ciency of Zn ²⁺	/ %		
10	74.82±0.0266	75.59±0.002	075.64±0.0025	575.7±0.0020	75.78±0.0036	575.86±0.0021	76.10±0.0036	76.26±0.0050
20	75.43±0.0026	75.60±0.002	075.85±0.0030	075.84±0.0084	75.99±0.0204	76.09±0.0030	76.12±0.0038	77.29±0.0025
40	75.06±0.0087	75.34±0.003	175.48±0.0040	075.68±0.0040	75.78±0.0035	576.85±0.0131	77.18±0.0040	77.59±0.0051
60	75.07±0.0035	75.38±0.002	575.39±0.0015	576.41±0.0025	76.42±0.0025	576.43±0.0031	76.47±0.0032	77.62±0.0046

*Data were measured in triplicate.

96.33% for 40 ppm, and 96.94% for 60 ppm after 8 hours of reaction time (Table 3A). Remaining Cr^{6+} concentrations, which were nearly completely consumed in MFC after 8 hours, made the MFC lose capability to function as a complementary voltage and a power source to remove Ni^{2+} and Zn^{2+} from the cathode chamber of MEC.

The effects of Cr^{6+} initial concentration in MFC of the MFC-MEC-coupled system on nickel and zinc ion removals from its MEC were investigated (Fig. 3B and Fig. 3C). The MFC contained Cr^{6+} with different concentrations (10 ppm,

20 ppm, 40 ppm and 60 ppm) in its cathode chambers of MFC. It could generate electrical power to supply with the following MEC containing Ni²⁺ and Zn²⁺ of 10 ppm each to investigate their removal efficiencies. Data for the reaction time of 8 hours were compared. Fig. 3B shows RC and RE of Ni²⁺ ions (RE of 59.87%) (Table 3B). Fig. 3C shows RC and RE of Zn²⁺ (RE of 77.62%) (Table 3C). RC of Fig. 3C appears to be showing one curve because there is no obvious difference of remaining concentration for Zn²⁺. The range of remaining Zn²⁺ concentration was 2.51 ppm - 2.49

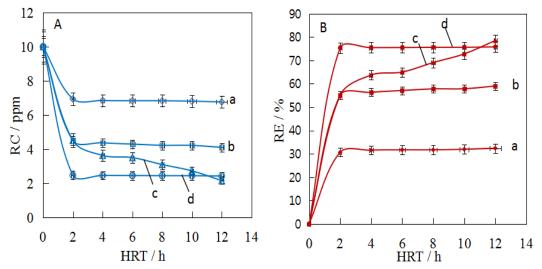


Fig. 4 (A) Remaining concentration (RC) and (B) removal efficiency (RE) of heavy metal ions in the effluent wit hdifferent HRT's. a; Cu(II), b; Ni(II), c; Cr(VI), d; Zn(II). The samples were collected from the effluent container (#3 of Schematic 1). Data were measured in triplicate

Table 4 Remaining concentration and removal efficiency of heavy metals in the effluent under the continuous operation*

		Cr(VI)		Cu(II)		Ni(II)		Zn(II)		
HRT/h	E _o /V	T _{dis} /ł	RC/ ppm	RE/%	RC/ ppm	RE/%	RC/ ppm	RE/%	RC/ ppm	RE/%
2	0.5331 to 0.5116	2	4.502±0.002	54.98±0.0015	6.937±0.002	30.63±0.0021	4.495±0.001	55.04±0.001	2.465 ± 0.002	75.35±0.0015
4	0.6017 to 0.4749	3	3.626±0.002	63.74±0.0015	6.843±0.001	31.57±0.0010	4.365±0.001	56.34±0.001	2.454±0.001	75.46±0.0010
6	0.5936 to 0.5838	3	3.499±0.001	65.01±0.001	6.831±0.001	31.69±0.0006	4.29±0.001	57.1±0.001	2.449 ± 0.002	75.51±0.0021
8	0.6901 to 0.6721	5	3.092±0.001	69.08±0.001	6.828±0.001	31.72±0.001	4.221±0.001	57.79±0.0006	2.441±0.001	75.56±0.0010
10	0.6931 to 0.6066	8	2.720 ± 0.002	72.80±0.0015	6.803±0.002	31.97±0.002	4.215±0.001	57.85±0.001	2.438±0.001	75.62±0.0012
12	0.6911 to 0.6043	8	2.150±0.002	78.50±0.0015	6.761±0.002	32.39±0.0015	4.095±0.003	59.02±0.0036	2.422±0.001	75.78±0.0010
		-								

*Sampling was performed in the effluent (in the container #3 of Schematic 1).

ppm for 1 hour and 2.23 ppm - 2.37 ppm for 8 hours. The data is described in Fig. 3D. RE of Zn²⁺ in MEC increased rapidly initially and then slowed down to gradual increase for concentrations higher than 20 ppm of Cr⁶⁺ (Fig. 3D). RE of Ni²⁺ in MEC had similar pattern of rapid initial increase then slowly increasing for concentrations higher than 40 ppm of Cr⁶⁺ (Fig. 3D). RE of Zn²⁺ was higher than that of Ni²⁺ by a factor of 1.3 for the concentration of 60 ppm Cr⁶⁺ in MFC most likely due to higher reaction rate and selectivity σ of Zn²⁺ than those of Ni²⁺, even if relatively higher complementary voltage was required for Zn²⁺.

3.4 Removal efficiency of the mixed heavy metal ions using the MFC-MEC coupled system under the continuous mode

3.4.1 Effects of different initial Cr⁶⁺ concentrations in MFC on Cr⁶⁺, Ni²⁺ and Zn²⁺ ion removal efficiencies

The solution was infused from the reservoir to the cathodic chambers of MFC (#1), cathodic chamber of MEC (#2), and effluent (#3), as given in Schematic 1. All

concentrations of heavy metal ions in this experiment were 10 ppm in the reservoir. Voltage change with respect to hydraulic retention time (HRT) was recorded by measuring the voltage across MEC, which functioned as a load resistor of MFC. The voltage initially increased, then gradually decreased and further increased in time. The gradual decreasing voltage indicated a stable performance of the MFC-MEC coupled system under the continuous operation mode. The average voltage was found to be 0.523 ± 0.013 V for HRT of 2 h, 0.527 ± 0.048 V for HRT of 4 h, 0.585 ± 0.019 V for HRT of 6 h, 0.655 ± 0.012 V for HRT of 8 h, 0.606 ± 0.020 V for HRT of 10 h and 0.598 ± 0.020 V for HRT of 12 h.

Fig. 4 shows remaining concentration vs. HRT (Fig. 4A) and removal efficiency vs. HRT (Fig. 4B) of the mixed heavy metals in the effluent sampled at #3, as shown in Schematic 1, under the continuous operational mode. The data is summarized in Table 4. A longer HRT was expected to result in the effluent containing low levels of heavy metal ions but needs a large reactor size. A wide range of HRT of 2, 4, 6, 8, 10 and 12 hours was studied in order to compare

continuous mode arter 12 n									
Sampling locations	Cr(VI)		Cu(II)		Ni(II)		Zn(II)		
	RC/ppm	RE/%	RC/ppm	RE/%	RC/ppm	RE/%	RC/ppm	RE/%	
MFC (#1)	1.005 ± 0.001	89.95± 0.0013	6.531±0.001	34.69± 0.0013	3.662 ± 0.003	63.38± 0.0029	2.426 ± 0.002	75.74± 0.0015	
MEC (#2)	0.542 ± 0.002	94.58± 0.0017	6.605 ± 0.002	33.95± 0.0016	4.343±0.003	56.57± 0.0034	2.424 ± 0.001	75.76± 0.0012	
Effluent (#3)	2.150 ± 0.002	78.50±	6.761±0.002	32.39±	4.095±0.004	59.02±	2.422 ± 0.001	75.78±0.001	

0.0015

Table 5 Remaining concentration (RC) and removal efficiency (RE) of heavy metal ions from different sampling locations in a continuous mode after $12 h^*$

*#1, cathode of MFC; #2, cathode of MEC; #3, effluent. Data were measured in triplicate.

0.0015

the removal efficiencies of the heavy metals at different HRTs. Almost constant open circuit voltage (E_o) was applied to MEC because the voltage applied to MEC did not significantly change during the experiments (Table 4). From 0 hours HRT to 2 hours HRT, Cr^{6+} , Zn^{2+} , and Ni^{2+} were rapidly removed from the catholyte, compared with Cu2+. The removal efficiency (RE) of Cr6+ was increased from 54.98% (RC of 4.502±0.002 ppm) to 78.50% (RC of 2.150±0.002 ppm) for an increase of HRT from 2 h to 12 h (Fig. 4B and Table 4). A minimal change in RE of Cu(II) from 30.63% (RC of 6.937±0.002 ppm) to 32.39% (RC of 6.761±0.002 ppm) was observed during the same range of HRT change. These phenomena were caused by transferring electrons from Cu metal to Cr⁶⁺ electrochemically. As illustrated in Table 4. RE's of Ni²⁺ were increased from 55.04% (RC of 4.495±0.001 ppm) for HRT of 2 hours to 59.02% (RC of 4.095±0.003 ppm) for HRT of 12 hours (Fig. 4 and Table 4). The RE's of Zn^{2+} nearly had no significant change with HRT from 2 hrs to 12 hrs, indicating that it reached maximization up to 75.35% (RC of 2.465 ppm) within HRT of 2 hours. This quick maximization may be attributed to a decrease of voltage and power density of MFC with consumption of Cr6+ and Cu2+. The Cr6+ reduction was nearly completed before the completion of heavy metal ions reduction. Cu2+ reduction reaction was slow and power contribution to MEC was low. In conclusion, HRT of 2 hours would be the optimum HRT needed to ensure mixed heavy metal ion removal. The removal efficiencies of Cr6+, Cu2+, Ni2+, and Zn2+ were 54.98%, 30.63%, 55.04%, and 75.35%, respectively. The reason why the removal efficiencies did not reach 100% is that the current flowing through the entire system was insufficient due to the low concentration level of Cr⁶⁺ (RE of Cr⁶⁺ of 78.50±0.0015% for HRT of 12 h, Table 4) in MFC, regardless of voltage being nearly constant during the operation. The complete removal of heavy metal ions in MEC can be achieved by connecting fresh MFC's repeatedly or using higher concentration levels of heavy metal ions with high reduction potentials in MFC.

3.4.2 Different sampling locations

Table 5 shows remaining concentration and removal efficiency of the heavy metal ions at the different sampling locations under the continuous mode. After HRT of 12 hours, Cr⁶⁺ and Cu²⁺ removal efficiencies in the cathodic

chamber of MFC (#1) were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr^{6+} , Cu^{2+} , Ni^{2+} , and Zn^{2+} in the cathodic chamber of MEC (#2). Removal efficiencies in the effluent (#3) represented 78.50%, 32.39%, 59.02%, and 75.78%, respectively, as also showed in Table 4. The Cr⁶⁺ removal efficiency was 94.58% in the cathodic chamber of MEC (#2), and then decreased to 78.50% in the effluent (#3), probably because the initial un-reacted high concentration of Cr6+ was transferred from the reservoir. The Cu2+ removal efficiencies started at 33.95% for MEC (#2), and then decreased to 32.39% in effluent (#3). The Ni²⁺ removal efficiencies started at 56.57% for the MEC (#2), and increased to 59.02% in effluent (#3). Zn^{2+} removal efficiencies started at 75.76% for the MEC (#2), and increased to 75.78% in effluent (#3). The low removal efficiency incurred for Cu²⁺ and Ni²⁺ seems to be attributed to the un-reacted Cr⁶⁺ flowing into the MEC (#2) and the Cr⁶⁺ reduction by reduced Cu(0) or Ni(0) can occur in MEC (#2). The power supplied to MEC was not enough due to the low level of Cr^{6+} at the end of MFC reaction.

0.0036

4. Conclusions

This study successfully demonstrated the feasibility of removing Cr⁶⁺, Cu²⁺, Ni²⁺, and Zn²⁺ from simulated zinc plating wastewaters containing the mixed heavy metal ions using a MFC-MEC-coupled system in batch and continuous modes, where MFC functioned as a power source to operate MEC. The discharging voltage of MFC increased initially from 0.4621 \pm 0.0005 V to 0.4864 \pm 0.0006 V as the initial concentration of Cr⁶⁺ increased from 10 ppm to 60 ppm. Almost complete removal of Cr⁶⁺ and low removal of Cu²⁺ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode. REs of Cr^{6+} and Cu^{2+} were 99.76% and 30.49%, respectively. RE of Cu²⁺ was lower than that of Cr^{6+} by a factor of 3.3 because electrons were presumably transferred from the produced Cu metal to Cr⁶⁺. After the same reaction time, the REs of nickel and zinc ions were 55.15%, and 76.21%. Cr⁶⁺, Cu²⁺, Ni²⁺, and Zn²⁺ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu²⁺, Ni²⁺ and Zn²⁺ ions in the effluent was due to the

fact that Cr⁶⁺ was remained low at the end of MFC reaction. As the power of the MEC complemented by MFC was increased, Ni²⁺ and Zn²⁺ reduction rates of the MEC were increased. RE of Zn²⁺ was higher than that of Ni²⁺ by a factor of 1.3 for the concentration of 60 ppm Cr⁶⁺ in MFC most likely due to higher reaction rate and selectivity σ of Zn²⁺ than those of Ni²⁺, even if relatively higher complementary voltage was energetically required for Zn²⁺. After HRT of 12 hours, at the different sampling locations, Cr⁶⁺ and Cu²⁺ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr⁶⁺, Cu²⁺, Ni²⁺ and Zn²⁺ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr⁶⁺ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2015R1D1A1A01059542) sponsored by the Ministry of Education, Science and Technology of Korea. We are grateful to Ms. Jane E. Choi for English correction and organization of this paper.

References

- Choi, C. and Cui, Y. (2012), "Recovery of silver from wastewater coupled with power generation using a microbial fuel cell", *Bioresour. Technol.*, **107**, 522-525. https://doi.org/10.1016/j.biortech.2011.12.058.
- Choi, C. and Hu, N. (2013), "The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell", *Bioresour: Technol.*, **133**, 589-598. https://doi.org/10.1016/j.biortech.2013.01.143.
- Choi, C., Hu, N. and Lim, B. (2014), "Cadmium recovery by coupling double microbial fuel cells", *Bioresour. Technol.*, **170**, 361-369. https://doi.org/10.1016/j.biortech.2014.07.087.
- Mahmood, T., Hameed, T., Siddiqui, N.R., Mumtaz, A., Safdar, N. and Masud T. (2010), "Effect of environmental changes on phytic acid content of wheat (Triticum Aestivum)", *Pakistan J. Nutr.*, 9(5), 447-451.
- Modin, O., Wang, X., Wu, X., Rauch, S. and Fedje, K.K. (2012), "Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions", J. Hazard. Mater., 235-236, 291-297. https://doi.org/10.1016/j.jhazmat.2012.07.058.
- Mu, Y., Rozendal, R.A., Rabaey, K. and Keller, J. (2009), "Nitrobenzene removal in bioelectrochemical systems", *Environ. Sci. Technol.*, **43**(22), 8690–8695. https://doi.org/10.1021/es9020266.
- Hu, N., Cui, Y. and Choi, C. (2019), "Recovery of platinum-group metals using a microbial fuel cell", *Trends in Diabetes and Metab.*, https://doi.org/10.15761/TDM.1000115.
- Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B. and Johnson, C.A. (2006), "The challenge of micropollutants in aquatic systems", *J. Science*, **313**(5790), 1072–1077. https://doi.org/10.1021/es9020266.
- Wang, G., Huang, L.P. and Zhang, Y.F. (2008), "Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells", *J. Biotechnol.*

Lett., **30**(11), 1959-1966. https://doi.org/10.1007/s10529-008-9792-4.

- Wang, Z., Lim, B. and Choi, C. (2011), "Removal of Hg²⁺ as an electron acceptor coupled with power generation using a microbial fuel cell", *Bioresour. Technol.*, **102**(10), 6304–6307. https://doi.org/10.1016/j.biortech.2011.02.027.
- Wang Z., Lim, B., Lu, H., Fan, J. and Choi, C. (2010), "Cathodic reduction of Cu²⁺ and electric power generation using a microbial fuel cell", *Bull. Korean Chem. Soc.*, **31**(7), 2025-2030. https://doi.org/10.5012/bkcs.2010.31.7.2025
- Yang Y., Choi C., Xie G., Park J.-D., Ke S., Yu J.-S., Zhou J. and Lim B. (2019), "Electron transfer interpretation of the biofilmcoated anode of a microbial fuel cell and the cathode modification effects on its power", *Bioelectrochem.*, **127**, 94-103. https://doi.org/10.1016/j.bioelechem.2019.02.004.

JK