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1. Introduction 
 

Urban land use has been a leading cause of many 

impaired water bodies worldwide due to urban stormwater 

runoff, characterized by high runoff volume and pollutant 

loads with toxic anthropogenic chemicals (Elliott and 

Trowsdale 2007, Roy et al. 2008, Xu et al. 2017, Eckart et 

al. 2018). Urbanization has progressed rapidly around the 

world (including South Korea), and is still underway 

(Meierdiercks et al. 2010), underscoring the importance of 

controlling urban non-point sources among water quality 

managers.  

A common practice to control non-point source 

pollution caused by stormwater runoff is the installation of 

structural treatment facilities, known as stormwater best 

management practices (BMPs) (Lee et al. 2010, Liu et al. 
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2015). Stormwater BMPs include detention ponds, 

infiltration trenches, grass swales, wetlands and 

underground devices, and use gravitation, 

infiltration/filtration, evapotranspiration or a combination of 

the aforementioned mechanisms depending on the type of 

BMPs required to control the quantity and quality of 

stormwater runoff (Lee et al. 2012). In general, most 

stormwater BMPs, with the exception of underground 

devices, are installed on land and thus require large land 

space, which is not feasible in highly urbanized areas (i.e., 

ultra-urban areas) due to limited space availability (Zhang 

and Chui 2018). In light of this situation, installation of 

underground devices such as underground filters and 

hydrodynamic separators is generally preferred in ultra-

urban areas. Underground devices are non-powered 

facilities that physically separate pollutants from 

stormwater runoff using filtration, gravity settling, or swirl 

actions (US EPA 1999) and require relatively small land-

space.  

An underground stormwater device is brought on-line 

within the drainage pipe as a flow-through system (FHWA 

2000). Therefore, the design depends on the characteristics 

of the pipe flow such as flow rate, flow velocity, and the 

dynamics of pollutant discharge, which are substantially 
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Abstract.  In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for 

best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the 

stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport 

characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for 

effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for 

designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total 

installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic 

Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the 

developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in 

Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a 

subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe 

network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at 

each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and 

underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the 

SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal 

efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency 

was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results 

suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without 

significantly compromising the pollutant removal efficiency when the pipe network is optimally designed. 
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influenced by the pipe network configuration in a given 

catchment (Hatt et al. 2004, Afshar et al. 2006). Pipe 

network configurations that can alter the characteristics of 

the pipe flow include the connectivity, lengths, diameters, 

and materials of the pipes within the pipe network. 

Different pipe network configurations can result in different 

installation costs and stormwater treatment performances 

and therefore the pipe network design needs to be optimized 

to cost-effectively manage the stormwater runoff in an 

urban catchment adapting underground devices. 

In this article, a methodology to optimize the pipe 

network configuration for cost-effective stormwater control 

in an urban catchment is presented. The total installation 

costs and annual removal efficiencies of total suspended 

solids (TSS) were compared among different pipe network 

configurations with different pipe connectivities and pipe 

sizes for end-of pipe underground stormwater devices. For 

this purpose, a multi-objective optimization algorithm, the 

non-dominated sorting genetic algorithm II (NSGA-II), was 

applied (Perez-Pedini et al. 2005, Zhen et al. 2004). Total 

installation costs for the pipes and underground devices 

were estimated based on the simulated flow rates and TSS 

discharge rates for different pipe network scenarios using 

the United States Environmental Protection Agency’s 

(USEPA) Storm Water Management Model (SWMM). 
 

 

2. Methodology 
 

2.1 Site description and field monitoring 
 

The study site is 100% commercialized area located 

within the Geumhak watershed in Yongin, Korea. The study 

site has a total area of 66.18 ha and contains 72 

subcatchments and finally discharges to eight outfalls along 

the Geumhak stream (see Fig. 1(a)). Because the study site 

was developed as a commercial area, the slope little varies 

across the area (average slope = 4.51%). A small  

 
 

subcatchment (Area = 2.38 ha) with an outfall to the stream  

was selected for field monitoring as a “benchmark 

subcatchment” to characterize the representative 

characteristics of the stormwater runoff in the study area, 

and was used for SWMM calibration (Fig. 1(b)). Field 

monitoring was conducted for six rainfall-runoff events that 

occurred from June to October in 2012. A portable flow 

meter (Nivus, Germany) was installed at the outfall to 

measure flow rate, flow velocity and flow depth during the 

stormwater runoff. To characterize the water quality of the 

runoff, grab samples were collected using a first flush-

enhanced sampling strategy (Lee et al. 2014). That is, 

samples were taken at the beginning of the runoff, after 5, 

10, 15, 30, and 60 minutes, and at intervals of 1 hour after 

the initial 1 hour until the end of the runoff. A base flow 

sample was collected if base flow existed before the runoff 

started. The rainfall data for the study site was obtained 

using a tipping bucket type portable rainfall gauge (HOBO, 

USA). 
 

2.2 SWMM setup and calibration 
 

SWMM 5.1 (EPA, Ohio, USA) was used for rainfall-

runoff simulation in the study area. A CAD drawing of the 

existing pipe network of the study area provided by the 

local agency was used to delineate subcatchments and to 

obtain drainage system information including the length, 

invert slope, burial depth, diameter, and material of the 

pipes as well as the locations of manholes. From the pipe 

network drawing, 72 polygonal subcatchments were 

delineated for the model setup. The topographical 

characteristics of each subcatchment such as the slope, 

width, elevation, and flow path were extracted from a 

digital elevation model (DEM) using ArcGIS 10.0 (ESRI, 

California, USA.). Imperviousness of the subcatchments 

was estimated using a high resolution satellite image 

(40cm×40cm) and a land use map of a 5m×5m spatial 

resolution. Values of pipe roughness, Manning’s overland  

 

Fig. 1 Map of study site and the benchmark subcatchment for SWMM calibration 
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roughness, and depression storage for pervious and 

impervious areas were estimated based on the ranges given 

by Rossman (2010). The subcatchment width was 

calculated based on the method described by Huber and 

Dickinson (1992). 

The model parameters of the SWMM were 

automatically calibrated by minimizing the difference 

between the monitored and simulated water quantity and 

quality data, respectively, for the benchmark subcatchment. 

For automatic calibration of the model parameters, Box’s 

Complex algorithm (Box 1965) was used. The advantages 

of this method are that it evaluates the cost function without 

calculation of derivatives and can manage local 

optimization problems by simply increasing the number of 

vertices for evaluating the cost function (Barco et al. 2008). 

For this reason, it has been used in various research fields 

such as water treatment, computer hardware optimization, 

and structural optimization (Yuan et al. 1993, Haque 1996, 

Subramanian et al. 2005).  

The SWMM was calibrated for water quantity and 

quality in order. The calibrated water quantity parameters 

included the infiltration parameter (curve number), the 

evaporation rate, and the subcatchment width factor in the 

study area. The subcatchment width factor was defined as a 

multiplication factor to the estimated catchment width 

calculated as the catchment area divided by the longest flow 

path. The constraints of the infiltration parameter and 

evaporation rates for the study area were based on the 

SWMM manual (U.S. EPA 2010). The lower and upper 

bounds of the subcatchment width factor were respectively 

set to 1 and the minimum value for the ratio of the longest 

side length of the polygonal subcatchment to the estimated 

catchment width among the 72 subcatchments. The above 

three water quantity parameters were calibrated by 

minimizing the sum of the relative errors between the 

observed and modeled total runoff volume and the peak 

flow rate as shown in Eq. (1) (Barco et al. 2008). 

min 𝐽 = (
𝑅𝑉𝑜 − 𝑅𝑉𝑀

𝑅𝑉𝑂

)
2

+ (
𝑃𝐹𝑜 − 𝑃𝐹𝑀

𝑃𝐹𝑂

)
2

 (1) 

where, RVO = observed runoff volume (m3), RVM = modeled 

runoff volume (m3), PFO = observed peak flow rate (m3/hr), 

and PFM = modeled peak flow rate (m3/hr). An exponential 

 
 

type equation was used for the functions of pollutant 

buildup and washoff. The calibrated water quality 

parameters were the maximum buildup, the rate constant of 

buildup, and the washoff coefficient. The objective 

functions for water quality calibration were the sum of the 

root mean squared error between the observed and modeled 

TSS mass rates and the root error between the observed and 

modeled total TSS discharge loads as shown in Eq. (2). The 

constraints of the maximum buildup, the buildup rate and 

the washoff coefficient were 30 – 100, 0.122 – 0.382 and 

0.1 – 0.2 (Hossain et al. 2010). 

min 𝐽 = 
1

2
(√

∑ (𝑀𝑅𝑂 − 𝑀𝑅𝑀)2𝑛
𝑖=1

𝑛
) +

1

2
(|√𝑀𝐷𝑂 − 𝑀𝐷𝑀|) (2) 

where, MRO = observed TSS mass rate (g/sec), MRM = 

modeled TSS mass rate (g/sec), MDO = observed TSS 

discharge (kg), and MDM = modeled TSS discharge (kg). 
 

2.3 Multi-objective optimization framework 
 

The multi-objective optimization problem in this study 

was to identify tradeoffs between two conflicting 

objectives: the annual removal efficiency of TSS and the 

total installation cost for the pipes and the underground 

stormwater devices. To solve the mul ti-objective 

optimization problem, the Non-dominated Sorted Genetic 

Algorithm-II (NSGA-II) (Deb et al. 2002) was applied. The 

population in the algorithm was the number of cases for all 

possible pipe network configuration scenarios and the sizes 

of the underground stormwater devices installed at the 

outfalls. For the given locations of 72 manholes, the pipe 

network configuration could change according to the 

connectivity between upstream and downstream manholes. 

Fig. 2(a) illustrates the binary options of the pipe 

connectivity between the upstream-downstream manholes. 

Of the 72 manholes, 34 upstream manholes had two 

connectivity options to downstream manholes whereas the 

other manholes had only a single connectivity option. In 

this manner, a total of 234 different pipe network 

configurations could exist in the study area. It was assumed 

that an underground stormwater device is installed at each 

outfall and the design flow rate of each underground device 

is proportional to the annual average discharge rate of the  

  

(a) Binary options for the connectivity of upstream-

downstream manholes 

(b) Structure of the chromosome consisting of 35 genes that 

represent the connectivity of the upstream-downstream 

manholes and the design flow rate 

Fig. 2 Generation of the population using the pipe network configuration scenarios and the sizes of the underground 

stormwater devices 
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Table 1 Summary of water quantity parameter calibration 

Evaporation rate 

(mm/day) 

Infiltration parameter 

(Curve no.) 

Percent change 

in subcatchment width (%) 

Constraint Calibrated Constraint Calibrated Constraint Calibrated 

1.26-32 32 55-65 55.23 100-155 155% 

 

 

corresponding outfall. The proportionality factor to the 

annual average discharge rate for the design flow rate of the 

underground stormwater device was also to be optimized. 

The chromosome of the NSGA-II algorithm consisted of 35 

genes; 34 genes were for the binary connectivity options of 

the upstream-downstream manholes and the last gene was 

for the proportionality factor to the annual average 

discharge rate for the design flow rate of the underground 

stormwater device. The proportionality factor to the annual 

average discharge rate was allowed to vary from 0.5 to 3 in 

the optimization. Fig. 2(b) shows the structure of a 

chromosome composed of 35 genes with upstream-

downstream manhole connectivity and the design flow rate 

for the underground stormwater devices.  

The objective functions (installation cost and annual 

TSS removal efficiency) were estimated based on the 

SWMM simulation for different pipe network configuration 

scenarios. The total installation cost was calculated as the 

sum of the installation costs of pipes and underground 

stormwater devices in USD using empirical equations as 

shown in Eq. (3) (Heaney et al. 2002). 

𝐶𝑃 = (1.38 × 10−3𝐷1.3024)𝐿 (3) 

where, CP is the pipe construction cost (USD), D is the pipe 

diameter (m), and L is the total pipe length (m). The 

diameter of a pipe was derived from the peak flow rate as 

the design flow rate. The installation cost of an underground 

stormwater device was calculated using the average 

installation cost per design flow rate as shown in Eq. (4) 

(U.S. EPA 1999).  

𝐶𝑆𝐷 = 247,000 × 𝑊𝑄𝐹 (4) 

where, CSD is the installation cost for an underground 

stormwater device (USD) and WQF is the design flow rate 

(m3/s). The inflation rate should be reflected on all 

installation costs calculated based on the year of the 

referred literature (Weiss et al. 2005). In this study, the 

calculation of the construction costs for the pipe network 

 

Table 2 Summary of water quality parameter calibration for 

each storm event 

Event date 

(mm-dd-yyyy) 

Maximum buildup 

possible (kg/ha) 

Buildup rate 

constant ( /day) 

Washoff 

coefficient 

06-29-2012 49.81 0.369 0.16 

07-18-2012 46.79 0.231 0.19 

08-12-2012 99.95 0.38 0.1 

09-4-2012 30 0.122 0.1 

09-13-2012 92.98 0.122 0.18 

10-22-2012 30.13 0.13 0.13 

Average 58.16 0.23 0.14 

 

 

and the underground stormwater devices was adjusted to the 

year 2017 by considering the inflation rate (U.S. DOL 

2018). The annual TSS removal efficiency for a given pipe 

network configuration was estimated assuming 40% TSS 

removal efficiency for each underground stormwater device 

(Lee et al. 2014).  

Three population sizes (50, 100 and 200) were used for 

the optimization, and the maximum evolution number (the 

number of iterations) varied according to the convergence 

to the optimal solutions to reduce unnecessary computation 

(Ishibuchi et al. 2009). 

 

 

3. Results and discussion 
 

3.1 Water quantity and quality calibration 
 

Table 1 shows the ranges and optimized values of the 

evaporation rate, the infiltration parameter (Curve number), 

and the percentage change in subcatchment width, which 

were 32 mm/d, 55.23, and 155%, respectively. The 

evaporation rate was relatively high, but this value was 

accepted in this study to reflect unexpected loss of runoff 

like infiltration through cracks in impervious areas such as 

roads and sidewalks (Tobio et al. 2015). The pervious 

fractions of urban sites such as urban green landscapes can 

be another cause of runoff loss. In addition, there may be 

leaks in the pipe systems, introducing losses in the runoff 

(Vale et al. 1986). 

Water quantity simulations of the calibrated SWMM for 

each of the individual six events were performed.  

   
(a) Runoff volume (b) Peak flow rate (c) TSS discharge load 

Fig. 3 Comparison between measured and calibrated values of runoff volume, peak flow rate and TSS discharge load 
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Table 3 Summary of the optimized pipe networks and BMP 

installations 

Cost-efficiency aspect of 

models 

existing pipe 

network 

model 

Scenario 1 Scenario 2 

(1) Cost of BMP 

installation (USD) 
137,460 146,840 169,810 

(2) Cost of pipe network 

installation (USD) 
503,980 436,890 447,710 

Total cost, (1)+(2) (USD) 641,440 583,730 617,520 

Total TSS loading (kg) 50,096 50,096 50,096 

Total removal 

TSS loading (kg) 
17,549 19,553 20,297 

TSS removal efficiency (%) 35 39 41 

 

 

Simulations on runoff volume showed a good fit between 

the measured and simulated data (see Fig. 3(a)). The 

simulated scenario had a Nash Sutcliffe model efficiency 

coefficient (NSC) of 0.97, reflecting a satisfactory 

predicting power for runoff volume. NSC is one of the tools 

used to assess the predictive power of a hydrological model 

(Rosa et al. 2015). An NSC value close to 1 indicates a 

more accurate model. Fig. 3(b) shows the measured versus 

simulated peak flow rates, which have a satisfactory NSC 

value of 0.68. The calibrated values of the maximum 

 

 

buildup, the buildup rate constant and washoff coefficient 

were 58.16 kg/ha, 0.226 and 0.074, respectively. Fig. 3(c) 

compares the simulated and observed TSS loads with an 

NSC value of 0.73. 

The calibrated water quality parameters for each event 

are summarized in Table 2. The average values of the 

calibrated parameters were used for the optimization. The 

number of monitored storm events was just six. Monitoring 

more rain events, will likely provide a more definitive range 

of parameter values, and may minimize the differences 

between parameters calibrated from different storm events. 

Nevertheless, to attain one value for each parameter to 

represent all the monitored events, the average values of the 

calibrated parameters were taken and applied to the entire 

study site. 

 

3.2 Optimization of pipe network and BMPs 
 

In this study, optimization of the pipe network 

configuration and underground stormwater devices was 

performed by setting the population size to 50, 100, and 200 

and the corresponding number of generations to 100, 100, 

and 50, respectively. The results of the optimization are 

shown in Fig. 4. Fig. 4(a) shows the progression of gradual 

convergence of the population to the Pareto front as the 

  
(a) Pareto front evolution at population size = 50 and 

generation number = 100 
(b) Pareto front evolution at population size = 100 and 

generation number = 100 

  
(c) Pareto front evolution at population size = 200 and 

generation number = 50 
(d) Final Pareto fronts 

Fig. 4 Pareto plots for different population sizes and generation numbers 
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number of generations increased with a population size of 

50 and a generation number of 100. Likewise, Figs. 4(b)-(c) 

show the convergence process when the population size is 

100 or 200 and generation number is 100 or 50. Fig. 4(d) 

compares the final Pareto fronts for different population 

sizes and generation numbers. The cost-efficiency 

characteristic common to all Pareto plots is that cost 

variance is higher than efficiency, which means that the 

efficiency is relatively insensitive to the change in the cost. 

Using these results can help decision makers avoid an 

excessive design for the installation of a pipe network 

including underground stormwater devices in urban areas 

and identify optimal conditions for maximum TSS removal 

efficiency at minimum installation cost. 

For further analysis, two optimal cases were selected 

from the Pareto front for a population size of 200 (Fig. 

4(d)). Scenario 1 was the case with the minimum total cost, 

and Scenario 2 was the case corresponding to the reflection 

point of the Pareto front. These two scenarios were 

compared with the existing pipe network for the total 

installation cost and annual TSS removal efficiency Table 3 

summarizes the installation costs and annual TSS removal 

efficiencies for the existing pipe network model, Scenario 1, 

and Scenario 2. Scenario 1 was the best in terms of total 

installation cost and Scenario 2 was the best in terms of 

TSS removal efficiency. 

Fig. 5 shows the pipe configurations for the existing 

pipe network, Scenario 1, and Scenario 2, respectively. The 

number of final outfalls increased in Scenarios 1 and 2 

 

 

compared to the existing pipe network, and the number of 

pipes was the same in all three scenarios. This is because 

the manholes installed in the existing study site were always 

used in the optimization. On the other hand, the total pipe 

length of Scenario 1 was 4,836 m and that of scenario 2 was 

5,090 m, which were both shorter than that of the existing 

pipe network. Both Scenarios 1 and 2 were better than the 

existing pipe network model in terms of cost-effectiveness. 

 

 

4. Conclusion and recommendations 
 

The benchmark subcatchment area in the study area was 

monitored for six storm events and this data was used to 

calibrate SWMM with Box’s complex method. Simulation 

results for the calibrated model showed a good fit water 

quantity and an acceptable fit for water quality. The 

calibrated parameters were applied to solve the multi-

objective optimization problem of the stormwater drainage 

system including pipe networks and underground 

stormwater treatment devices at the outfalls. The 

optimization was performed using NSGA-II, one of the 

most commonly used multi-objective optimization 

algorithms, to identify tradeoffs between conflicting 

objectives such as maximizing annual TSS removal 

efficiency while minimizing the total installation cost for 

the pipe network and underground stormwater treatment 

devices. The following results were confirmed through 

optimization of the pipe network in this study. 

 
Fig. 5 Comparison of pipe networks for the existing pipe network, scenario 1 and scenario 2 
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•  It is possible to efficiently manage stormwater runoff 

by re-arrangement (or re-installation) of existing pipe 

network configurations in urban (or ultra-urban) areas. 

•  Installation of underground stormwater devices at the 

outfalls with an optimized pipe network configuration can 

cost-effectively reduce non-point pollutants into the stream. 

The location of the installed device, the capacity of the 

device and the number of devices installed are important 

cost-effectiveness considerations. 

•  Two scenarios were derived from the Pareto plots for 

cost and efficiency for the pipe network configuration and 

underground stormwater device installation using the 

NSGA-II multi-objective optimization algorithm, and both 

scenarios showed more cost-effective results than the 

existing pipe network. 

•  The variance of total installation cost was high 

compared to the TSS removal efficiency in the Pareto plots, 

which indicates that the increase in pollutant removal 

efficiency can be obtained with a small increment in cost, 

and thus an excessive design can be avoided. 

Through the series of studies and results described, we 

demonstrated how a more cost-effective design of storm 

drainage system can be achieved. This study can be applied 

before developing new urban areas, before replacing pipe 

networks in existing urban areas, or when considering areas 

in which underground stormwater devices will be installed. 

Additionally, the results of this study can help decision 

makers to compromise the conflicting purpose of 

maximizing pollutant removal efficiency with minimal cost 

in developing or retrofitting urban areas. 
 

 

Acknowledgments 
 

This research was financially supported by a grant 

(2015R1D1A1A01056753) from the National Research 

Foundation (NRF) of Korea. 
 
 

References 
 

Afshar, M.H., Afshar, A., Mariño, M.A. and Darbandi, A.A.S. 

(2006), “Hydrograph-based storm sewer design optimization by 

genetic algorithm”, Can. J. Civil Eng., 33(3), 319-325. 

Barco, J., Wong, K.M. and Stenstrom, M.K. (2008), “Automatic 

calibration of the U.S. EPA SWMM model for a large urban 

catchment”, J. Hydraul. Eng., 134(4), 466-474. 

Box, M.J. (1965), “A new method of constrained optimization and 

a comparison with other methods”, Comput. J., 8(1), 42-52. 

Deb, K., Pratap, A. and Agarwal, S. (2002), “A fast and elitist 

multiobjective genetic algorithm: NSGA-II”, IEEE Transactions 

on Evolutionary Computation, 6(2), 182-197 

Eckart, K., McPhee, Z. and Bolisetti, T. (2018), “Multiobjective 

optimization of low impact development stormwater controls”, 

J. Hydrolog., 562, 564-576. 

Elliott, A.H. and Trowsdale, S.A. (2007), “A review of models for 

low impact urban stormwater drainage”, Environ. Modell. 

Softw., 22(3), 394-405. 

FHWA (2000), “Stormwater best management practices in an 

ultra-urban setting: Selection and monitoring”, Office of Natural 

Environment, Washington, DC, U.S.A. 

Haque, M.I. (1996), “Optimal frame design with discrete members 

using the complex method”, Comput. Struct., 59(5), 847-858. 

Hatt, B.E., Fletcher, T.D., Walsh, C.J. and Taylor, S.L. (2004), 

“The influence of urban density and drainage infrastructure on 

the concentrations and loads of pollutants in small streams”, 

Environ. Manag., 34(1), 112-124 

Heaney, J.P., Sample, D., Wright, L. and Fan, C. (2002), “Costs of 

urban stormwater control”, EPA-600/R-02/021; National Risk 

Management Research Laboratory, Office of Research and 

Development, Cincinnati, Ohio, U.S.A. 

Hossain, L., Imteaz, M., Trinidad, S.G. and Shanableh, A. (2010), 

“Development of a catchment water quality model for 

continuous simulations of pollutants build-up and wash-off”, J. 

Environ. Ecolog. Eng., 4(1), 11-18. 

Huber, W.C. and Dickinson, R.E. (1992), “Storm water 

management model, version 4.0: User’s manual”, EPA/600/3-

88/001a; Environmental Research Laboratory, Office of 

Research and Development, Athens, Georgia, U.S.A. 

Ishibuchi, H., Sakane, Y., Tsukamoto, N. and Nojima, Y. (2009), 

“Evolutionary many-objective optimization by NSGA-II and 

MOEA/D with large populations”, IEEE International 

Conference on Systems, Man and Cybernetics, Miyazaki, Japan, 

October. 

Lee, D.H., Min, K.S. and Kang, J.H. (2014), “Performance 

evaluation and sizing method for hydrodynamic separators 

treating urban stormwater runoff”, Water Sci. Technol., 69(10), 

2122-2131. 

Lee, E.J, Maniquiz, M.C., Gorme, J.B., Kim, L.H. (2010), 

“Determination of cost-effective first flush criteria for BMP 

sizing”, Desalination Water Treat., 19(1-3), 157-163. 

Lee, J.G., Selvakumar, A., Alvi, K., Riverson, J. and Zhen, J.X. 

(2012), “A watershed-scale design optimization model for 

stormwater best management practices”, Environ. Modell. 

Softw., 37, 6-18. 

Liu, Y., Ahiablame, L.M., Bralts, V.F. and Engel, B.A. (2015), 

“Enhancing a rainfall-runoff model to assess the impacts of 

BMPs and LID practices on storm runoff”, J. Environ. Manag., 

147, 12-23. 

Meierdiercks, K.L., Smith, J.A., Baeck, M.L. and Miller, A.J. 

(2010), “Analyses of urban drainage network structure and its 

impact on hydrologic response”, J. American Water Resour. 

Assoc., 45(5), 932-943. 

Perez-Pedini, C., Limbrunner, J.F. and Vogel, R.M. (2005), 

“Optimal location of infiltration-based best management 

practices for storm water management”, J. Water Resour. Plann. 

Manag., 131(6), 441-448. 

Rosa, D.J., Clausen, J.C. and Dietz, M.E. (2015), “Calibration and 

verification of SWMM for low impact development”, J. 

American Water Resour. Assoc., 51(3), 746-757. 

Rossman, L.A. (2010), “Storm water management model user’s 

manual version 5.1”, PA/600/R-50/040; National Risk 

Management Research Laboratory, Office of Research and 

Development, Cincinnati, Ohio, U.S.A. 

Roy, A.H., Wenger, S.J., Fletcher, T.D., Walsh, C.J., Ladson, A.R., 

Shuster, W.D., Thurston, H.W. and Brown, R.R. (2008), 

“Impediments and solutions to sustainable, watershed-scale 

urban stormwater management: Lessons from Australia and the 

United States”, Environ. Manag., 42(2), 344-359. 

Subramanian, N.K., Tingyu, L. and Seng, Y.A. (2005), 

“Optimizing warpage analysis for an optimal housing”, 

Mechatronics, 15(1), 111-127. 

Tobio, J.A.S., Maniquiz-Redillas, M.C. and Kim, L.H. (2015), 

“Optimization of the design of an urban runoff treatment system 

using stormwater management model (SWMM)”, Desalination 

Water Treat., 53(11), 3134-3141. 

U.S. DOL (2018), “Bureau of Labor Statistics consumer price 

index inflation”, U.S.A. www.bls.gov/data/inflation_caclulator.htm. 

U.S. EPA (1999), “Storm water technology fact sheet 

hydrodynamic separators”, EPA 832-F-99-017; Office of Water, 

81



 

Jin Hwi Kim, Dong Hoon Lee and Joo-Hyon Kang 

Washington, DC, U.S.A. 

U.S. EPA (2010), “Storm water management model user’s 

manual”, EPA/600/R-5/040; Office of Research and 

Development, Cincinnati, U.S.A. 

Vale, D.R., Attwater, K.B. and O’Loughlin, G.G. (1986), 

“Application of SWMM to two urban catchments in Sydney”, 

Proceedings of the 17th Hydrology and Water Resources 

Symposium on Institution of Engineers, Brisbane, Australia. 

Weiss, P.T., Gulliver, J.S. and Erickson, A.J. (2005), “The cost and 

effectiveness of stormwater management practices”, MN/RC-

2005-23; Department of Civil Engineering, University of 

Minnesota, MN, U.S.A. 

Xu, T., Jia, H., Wang, Z., Mao, X. and Xu, C. (2017), “SWMM-

based methodology for block-scale LID-BMPs planning based 

on site-scale multi-objective optimization: A case study in 

Tianjin”, Front. Environ. Sci. Eng., 11(4), 1-10. 

Yuan, W., Okrent, D. and Stenstrom, M.K., (1993), “Model 

calibration for the high-purity oxygen activated sludge process-

Algorithm development and evaluation”, Water Sci. Technol., 

28(11-12), 163-171. 

Zhang, K. and Chui, T.F.M. (2018), “A comprehensive review of 

spatial allocation of LID-BMP-GI practices: Strategies and 

optimization tools”, Sci. Total Environ., 621, 915-929. 

Zhen, X., Yu, S.L. and Lin, J. (2004), “Optimal location and sizing 

of stormwater basins as watershed scale”, J. Water Resour. 

Plann. Manag., 130(4), 339-347. 

 

 

CC 

82




