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Abstract. The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this
research has rapidly oscillating initial conditions which contain both the large scale and small scale
information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis
method is developed based on the mathematical homogenization theory. For the incompressible flow of a
linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell
problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate
the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the
pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons
between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale
model not only captures large scale features accurately, but also reflects kinetic interactions between the
large and small scale of the incompressible flow of a linear viscoelastic fluid.

Keywords: linear viscoelastic fluid; incompressible flow; multiscale analysis; averaged equations; cell
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1. Introduction

Various kinds of flows exist widely in physics and engineering, and some flows have multiscale

phenomena, for example, the incompressible flow with rapidly oscillating initial data. It is very

difficult to solve this kind of multiscale problem by the classical direct numerical simulation (DNS

for short) because an accurate solution usually requires very fine meshes and this leads to

tremendous amount of computer memory and CPU time. So, it is worthy to develop an effective

method of coupling large scales and small scales based on coarse grids, but without solving directly

all characteristic quantities on fine grids. In other words, one needs to establish a multiscale model

which not only captures the large scale information but also reflects the effects of small scales on

large ones. Up to now, there have been some works devoted to developing effective and credible

methods, for example, the homogenization method and the multiscale method, to simulate the

incompressible flow with rapidly oscillating initial data (McLaughlin et al. 1985, Hou et al. 2004,

Hou et al. 2005, Hou et al. 2008).
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The earliest attempt was made by McLaughlin, Papanicolaou and Pironneau (MPP for short) in

1985 to research the homogenization of the incompressible Euler equations with rapidly oscillating

initial data (McLaughlin et al. 1985). They introduced the mean Lagrangian map and assumed that

the oscillation was convected by the mean velocity field so as to construct a multiscale asymptotic

expansion for the solution of the Euler equations. Based on the multiscale expansion, a periodic cell

problem was obtained for the velocity and pressure fields by assuming that the multiscale solution

was periodic in the small scale time and spatial variables. However, the well-posedness of the cell

problem was uncertain. So, they imposed the additional assumptions in order to obtain the well-

posed equations and then derived a variation of k-ε model.

In recent years, some researchers have presented the multiscale analysis method for the

incompressible flow with the rapidly oscillating initial velocity field (Hou et al. 2004, Hou et al.

2005, Hou et al. 2008). Their key idea in constructing the multiscale solution for the incompressible

Euler equations was to reformulate the problem using a new phase variable to characterize the

propagation feature of the small scale flow. In virtue of this phase variable the multiscale structure

of the solution became apparent. Their analysis was strongly motivated by the pioneering work of

MPP; however, the main difference was that they found that the small scale flow was convected not

by the mean flow, but by the full velocity field. They thus exactly characterized the nonlinear

convection of the small scale flow by a Lagrangian description and turned a convection dominated

transport problem into an elliptic problem on a stream function. Then the classical mathematical

homogenization theory for elliptic problems (Bensoussan et al. 1978, Oleinik et al. 1992, Jikov et

al. 1994, Cioranescu and Donato 1999, Pavliotis and Stuart 2008, Li et al. 2008) can be used to

obtain a multiscale asymptotic expansion for the stream function. But since the averaged equation in

the Eulerian formulation is more convenient for computations, a coupled homogenized system on

the velocity and pressure fields was finally derived according to the key observation from the

multiscale analysis in the Lagrangian formulation.

The objects of the aforementioned methods almost focus on Newtonian fluids, while the purpose

of this article is to develop the multiscale analysis method for non-Newtonian fluids. The flows of

viscoelastic non-Newtonian fluids exist generally in nature and living. We start our studies with a

kind of linear viscoelastic non-Newtonian fluid, namely, the incompressible flow of a Maxwell

fluid. In comparison with a Newtonian fluid, the governing equations of a non-Newtonian fluid are

more complex due to the existence of constitutive equations. Then the effect and evolution of the

stress field must be considered in developing the multiscale analysis method for a viscoelastic non-

Newtonian fluid. And so it is very difficult and complicated to establish a multiscale model for the

incompressible flow of a Maxwell fluid with rapidly oscillating initial data. According to the

relation between the velocity and stress field, we expand the stress tensor into a different multiscale

asymptotic form from the velocity and pressure fields. Based on these multiscale asymptotic

expansions, a multiscale system including the averaged equations and the cell problems is obtained

through detailed derivations. However, owing to the complexities of the final averaged equations

and cell problems, the numerical simulations become hard and troublesome. In order to solve our

multiscale system, the pseudospectral method (Canuto et al. 1988, Shen and Tang 2006, Beris and

Dimitropoulos 1999) is used to discretize the governing equations in space, while the integration of

the governing equations in time is based on a time-splitting semi-implicit influence matrix method

(Beris and Dimitropoulos 1999, Beris and Sureshkumar 1996, Phillips and Soliman 1991). This

numerical algorithm ensures not only high precision but also the couplings of velocity-pressure and

velocity-stress. It is worth emphasizing that the averaged equations are solved on coarse grids in
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whole domain, while all cell problems are computed in a small periodic subdomain.

The remainder of the paper is organized as follows. The fundamental properties and the governing

equations of the 2D incompressible flow of a Maxwell fluid with rapidly oscillating initial data are

described in Section 2. Section 3 is devoted to establishing the multiscale model based on the

appropriate multiscale asymptotic expansions. And some numerical experiments to verify our

multiscale analysis method are carried out in section 4. Conclusions and future research directions

conclude the manuscript.

2. Governing equations

The 2D incompressible flow of a Maxwell fluid with rapidly oscillating initial data is governed by

the following equations

(a) 

(b) 

(c) 

(d) 

(e) (2.1)

where  is the velocity vector,  the pressure,  the extra-stress tensor,  a body force,  the

relaxation time,  the viscosity and  is a very small positive number compared with the

dimension of macro domain, and the superscript T denotes the transpose of a matrix. In the initial

velocity field,  is assumed to be a smooth mean velocity field and the smooth function

 with , which represents the oscillating component of the velocity field, is y-

periodic with a period 2π and has zero mean, that is

(2.2)

where  and the sign <•> indicates the space average in . These conditions mean

that the initial velocity field contains both the large sacle and small scale information. The

constraints on the small scale component  are typical hypotheses in the mathematical

homogenization theory (Bensoussan et al. 1978).

What concerns us is how to derive the averaged equations on the averaged velocity, pressure and

stress fields for a small but finite ε. Actually, the classical mathematical homogenization theory

(Bensoussan et al. 1978, Oleinik et al. 1992, Jikov et al. 1994, Cioranescu and Donato 1999,

Pavliotis and Stuart 2008, Li et al. 2008) has given us some valuable insights into how the small

scale solution interacts with the large one and is propagated in time. So the multiscale analysis

method in our research is inspired by the mathematical homogenization theory. However, here the

multiscale asymptotic expansions cannot copy the formulas in the classical homogenization method.

Otherwise one would not be able to obtain a well-posed cell problem. In addition, how to
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approximate the stress tensor employing a multiscale asymptotic expansion is another difficulty. In

order to tackle these problems, we have to look for appropriate multiscale asymptotic expansions.

3. Multiscale analysis

The key to multiscale analysis is a proper understanding of how to reflect the evolution on the

small scale. Some studies concerning the incompressible flow (Hou et al. 2004, Hou et al. 2005,

Hou et al. 2008) have suggested that the small scale solutions are propagated by the Lagrangian

map  which is defined as follows 

,     (3.1)

where  is a Lagrangian coordinate, i.e., the position at time t of the particle transported by

the flow  from position x at the initial time. A multiscale expansion is employed to approximate

the Lagrangian map as

(3.2)

where ,  are the small scale time and spatial variables respectively. And  is the

average of  with respect to  over one period and  is assumed to be a -periodic function with

zero mean. From now on, if the small scale and large scale variables are considered to be

independent, then the time and spatial derivatives may be calculated by the chain rule

(3.3)

where  denotes the total derivative in relation to t.

Considering the structure of the initial data and the multiscale expansion of the Lagrangian map

as well as the correlation between the velocity and stress field, we employ the multiscale expansions

of the velocity, pressure and stress fields with the following forms

(a) 

(b) 

(c) (3.4)

where ,  and  are total mean components including higher-order terms, and ,  and  are

periodic functions and have zero mean with reference to y.

According to the equality  and the incompressible

condition , Eq. (3.1) can be rewritten as
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Substituting the multiscale expansions Eq. (3.2) and Eq. (3.4 (a)) into Eq. (3.5) yields

(3.6)

If we average Eq. (3.6) with respect to y and apply the periodic and zero mean properties of 

and , then the following equation is derived

(3.7)

Subsequently, inserting the multiscale expansions Eq. (3.4) into Eq. (2.1) gives

(3.8)

By taking the average of Eq. (3.8) with regard to y and making use of the facts that ,  and 

are periodic and have zero mean, we have

(a) 

(b)  

(c) (3.9)
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ũ

∂tθ ∇
x

u θ⊗( )⋅ ε∇
x
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(c)  

(3.10)

From Eq. (3.7), Eq. (3.9 (a)) and Eq. (3.10 (a)), the first three terms of Eq. (3.10 (b)) can be

simplified as

(3.11)

Substituting the equality Eq. (3.11) into Eq. (3.10) results in

(a) 

(b) 

(c) 

(3.12)

In order to further simplify our multiscale model, the leading order terms of  will be

researched. To this end  are expanded as

(a) 

(b) 

(c) (3.13)

We neglect the  terms for the averaged Eq. (3.7) and Eq. (3.9). This implies that
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and
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T

( ∇
x
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x
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( ∇xũ ∇xũ( )T+ + +[ ]
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(a) 

(b) 

(c) 

(3.16)

To the leading order approximation, we neglect the  terms associated with the divergence

operator in the momentum Eq. (3.16 (b)) and the time derivative operator in the constitutive Eq.

(3.16 (c)), and then the following equation is obtained

(a) 

(b) 

(c) (3.17)

To sum up, considering the corresponding initial conditions, we get the following multiscale

model:

(1) Averaged equations for the leading order velocity, pressure and stress fields

(a) 

(b) 

(c) 

(d) 

(e) (3.18)

(2) Averaged equations for the leading order Lagrangian map

(a) 

(b) (3.19)

(3) Leading order equations for the fluctuations of the velocity, pressure and stress fields
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(c) 

(d) 

(e) (3.20)

The averaged Eq. (3.18) with respect to  and the cell problem Eq. (3.20) with regard to

 plus the averaged Eq. (3.19) with respect to  constitute the multiscale model of the

incompressible flow of a linear viscoelastic fluid. By contrast with the corresponding Newtonian

fluids (Hou et al. 2004, Hou et al. 2005, Hou et al. 2008), this multiscale model is more complex

owing to the evolution of the stress field, and it is more difficult to solve these equations

numerically. Moreover, it is found that the averaged Eq. (3.18) describes the incompressible flow of

a Maxwell fluid driven by a force, while the cell problem Eq. (3.20) is relatively intricate.

4. Numerical experiments

In this section, the computational results obtained from the multiscale system are compared with

the direct numerical simulations for the purpose of checking the validity and accuracy of the

multiscale analysis method.

4.1 Numerical algorithm

In the following, the numerical algorithm of multiscale simulations is described. The averaged

equations are solved on a coarse grid with a large time-step , while a subgrid space-step  and

a subgrid time-step  are adopted to solve the cell problems with the periodic boundary condition

in y. For an integer , let  and . Define  and  to be the

local time average given by

(4.1)

Furthermore, we note that the large scale solutions  and  have the following forms
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(c) 

(d) (4.2)
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(4.3)

Then start the iteration for  as follows:

Step 2. (Update the small scale solutions) Solve all cell problems for  where every

cell solution  satisfies the following equation while keeping x and t fixed as parameters

(a) 

(b) 

(c) 

(d) 

(e) (4.4)

It is worth noting that the coefficients of this equation vary with the location of cells, that is to

say, every cell may have the different solution.
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Repeat Step 2 to Step 5 until the final time arrives.

According to the above algorithm procedure, the multiscale model is tested in a doubly periodic

box with size of . Then the original governing Eq. (2.1) and the averaged Eq. (4.5) satisfy

the periodic boundary conditions. In view of the periodicity the Fourier pseudospectral method

(Canuto et al. 1988, Shen and Tang 2006, Beris and Dimitropoulos 1999) is used to discretize the

governing equations in space. In order to eliminate the aliasing error in the pseudospectral method,

a 16th order Fourier smoothing function is employed to damp down the high frequency modes

(Shen and Tang 2006, Hou and Li 2006). And the integration of the governing equations in time is

based on a time-splitting semi-implicit influence matrix method (Beris and Dimitropoulos 1999,

Beris and Sureshkumar 1996, Phillips and Soliman 1991). In particular, a second order Adams-

Bashforth method is used for the explicit update of the non-linear terms and a second order Adams-

Moulton scheme for the implicit update of the linear terms (Beris and Dimitropoulos 1999, Beris

and Sureshkumar 1996).

We employ the averaged solutions and the cell solutions to reconstruct the fine grid velocity,

pressure and stress fields for the purpose of comparing with the DNS. That is

(4.8)

where the mean Lagrangian map in fine grid is obtained by the spectral interpolation (Shen and

Tang 2006).

4.2 Numerical results

In our numerical simulations, the value of viscosity is taken as  and the relaxation time

is . And the parameter ε is chosen as , then the domain of  is divided

into  cells. For the averaged equations the coarse mesh resolution is  along x1, x2,

respectively and the time-step is , while a mesh size of  and the subgrid time-

step  are used to solve the cell problems. In addition the DNS uses a  mesh.

We choose the initial velocity fields as the following forms

,     

,     

Then the initial stress distributions can be obtained according to the initial velocity field and Eq.

(2.1 (e)). The multiscale system and the original governing equations are solved numerically in

terms of these initial conditions. Fig. 1 gives the contour plots of the velocity and vorticity

distributions at , and those of the normal stress difference , shear stress  and

pressure field are shown in Fig. 2, where the left plots represent the DNSs and the right plots

represent the multiscale simulations. As shown in Fig. 1 and Fig. 2, the multiscale simulations are

basically accordant with the DNSs; especially good agreements are received for the velocity,

vorticity and pressure distributions. In view of Eq. (4.8), it is found that the approximation on the
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stress has low order compared to those of the approximations on the velocity and pressure, so the

differences between the multiscale simulations and the DNSs are more apparent for the normal

stress difference and the shear stress. In addition, the solutions tend to be more and more stable

over time, and the changes of the contour plots are getting smaller and smaller. These comparisons

and analyses indicate that the multiscale model not only captures the large scale features of the

Fig. 1 Contour plots of velocity field and vorticity at t = 0.8
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incompressible flow of a linear viscoelastic non-Newtonian fluid, but also reflects the kinetic

interactions between the large scale and small one.

Some different simulations were carried out for the different initial conditions and parameters

, especially for the different ε. It is found that the initial conditions and the parameters

 have little effect on the difference between the multiscale simulations and DNSs, while the

η λ ε, ,( )
η λ,( )

Fig. 2 Contour plots of normal stress difference, shear stress and pressure field at t = 0.8
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smaller the parameter ε is, the smaller differences between two methods have become. But the

value of ε is determined by the computational grid that we will use to solve the large scale solution,

and the amount of computation increases as the parameter ε decreases. Therefore, the appropriate ε

is chosen in our simulation.

5. Conclusions

For the incompressible flow of a Maxwell fluid with rapidly oscillating initial data, we introduce

the Lagrangian map and make the appropriate multiscale asymptotic expansions in the Eulerian

formulation, and then a multiscale system, which includes the averaged equations in the large scale

and the cell problems in the small scale, is established. The multiscale system and the original

governing equations are solved accurately by the pseudospectral algorithm based on a time-splitting

semi-implicit influence matrix method. The agreements between the multiscale solutions and the

DNSs indicate that the multiscale model not only captures the large scale features of flows, but also

reflects the interactions between the large and small scale. Therefore, our multiscale analysis method

is effective and feasible for the incompressible flow of a linear viscoelastic non-Newtonian fluid.

In the present work, we note that the difference between the multiscale solutions and DNSs

becomes more and more obvious when long time calculations are performed. The reason may be

the excessive deformation in the Lagrangian map. Then we need to look for the appropriate

technique to avoid this kind of deformation. Moreover, if initial data have many non-separable

scales, then how to develop a multiscale analysis method is a very significant issue. Furthermore,

extending the multiscale analysis method to non-linear viscoelastic non-Newtonian fluids is more

important and required. These are just few of the issues that will be investigated in our future work.
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