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Abstract. This paper investigates the heat equation for domains subjected to an internal source with a
sharp spatial gradient. The solution is first approximated using linear finite elements, and sufficiently
small time-step sizes to yield stable simulations. The main area of interest is then in the ability to
approximate the solution using Generalized Finite Elements, and again explore the time-step limitations
required for stable simulations. Both high order elements, as well as elements with special enrichments
are used to generate solutions. When compared to linear finite elements, the high order elements deliver
better accuracy at a given level of mesh refinement, but do not offer an increase in critical time-step size.
When special enrichment functions are used, the solution can be approximated accurately on very coarse
meshes, while yielding solutions which are both accurate and computationally efficient. The major
conclusion of interest is that the significantly larger element size yields larger allowable time-step sizes
while still maintaining stability of the time-stepping algorithm.

Keywords: generalized FEM; extended FEM; partition of unity methods; multi-scale methods; explicit
time-stepping; critical time-step sizes.

1. Introduction

There are many application areas in engineering practice which involve the analysis of structures

which have multiple spatial scales of interest. In this work, the desired application area is in the transient

analysis of structures which are subjected to localized thermal loadings. Welding (Lindgren 2006, Yaghi

et al. 2008) and laser forming of metal plates (Yu et al. 1999, Yu et al. 2001) are two possible

applications areas exhibiting localized heating events. The motivation for this particular study is the

localized heating experienced by hypersonic flight vehicles due to the effects of shock impingement on

the skin of the aricraft (D'Ambrosio 2003,  Friedmann et al. 2004, Friedmann et al. 2005, Moselle

et al. 1988, Spearman 2005, Thornton et al. 1991, Turner and Ash 1990, Wieting 1987).

The analysis of this type of problem has been the emphasis of many previous investigations

(Ching and Chen 2006, Li et al. 1996, Merle and Dolbow 2002, Tamma and Saw 1989, Tzou
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1992), and in the 3D case, using standard finite elements, an excessively large number of degrees-of

freedom is required (O'Hara 2007), making efficient analyses very difficult. These difficulties are

further amplified when transient simulations involving many time-steps are required, and the

excessively large system of equations needs to be solved at each time-step.

Adaptive meshing in the transient setting is possible, but it can also prove to be computationally

expensive, and the mapping of time-dependent solutions between successive meshes is a non-trivial

process. Even in a parallel computing environment, effective dynamic load balancing, and thus good

parallel efficiency is also non-trivial to achieve.

The high refinement levels required by the FEM to achieve suitable accuracy further complicates

the situation through the requirement of excessively small time-steps. There have been many

investigations similar to the one presented in this paper which have focused on the alleviation of the

infeasibly small time-step requirements.

There is a growing body of literature addressing explicit time-integration for dynamic fracture

within the X-FEM framework. Menouillard et al. (2006) propose a mass-lumping technique which

enhances the allowable time-step size in dynamic X-FEM simulations. The authors note the problem

with the allowable time-step size tending to zero as the crack approaches a support boundary when

a consistent mass matrix is used. They develop their lumping strategy which allows for feasible

allowable time-steps. The allowable step size does not tend to zero as the crack approaches a

support boundary, and remains on the order of magnitude of allowable time-steps obtained using

standard finite elements of the same size. The authors note that the X-FEM and FEM critical time-

step sizes are related by .

Menouillard et al. further extend the idea of mass-lumping for the X-FEM in (Menouillard et al.

2008). In this work the mass-lumping technique combined with a straight-forward transformation of

crack-front coordinates results in a block-diagonal mass matrix yielding allowable time-step sizes

which again do not tend toward zero as the crack approaches a node, and remain on the order of

allowable time-steps using standard finite elements of the same size.

Elguedj et al. (2009) extend the mass-lumping work of Menouillard et al. (2008) to be used with

arbitrary enrichments, and not solely for enrichments used for fracture mechanics applications. They

adopt the same basic lumping strategy for arbitrary enrichments and are once again able to obtain

critical time-steps that are on the order of those obtained with standard FEM. The authors note that

the allowable time-step size is dependent on where the discontinuity is located relative to support

boundaries. They note that the most stringent allowable time-step can be one half of that obtained

for standard FEM and as such put forth this rule of thumb to be used for dynamic X-FEM

simulations utilizing arbitrary enrichments. In part two (Gravouil et al. 2009) of the previous paper

the authors then propose a stable-explicit/explicit dynamic scheme, based on a stable-explicit

scheme proposed by Chang (2002, 2007, 2008). The method as posed by Chang is unconditionally

stable, and second order accurate. The method requires the use of a more sophisticated analysis on

an element-by-element basis which produces the end result of allowable time-steps which are

identical to those obtained for standard FEM, regardless of the crack front location relative to a

nodal support boundary.

Mesh partitioning methods are similar to the stable-explicit/explicit dynamic scheme proposed by

Chang and utilized by Elguedj et al. in that they allow for different time-integration schemes in

different portions of the mesh (Belytschko and Mullen 1978, Belytschko et al. 1979, Hughes and

Liu 1978, Hughes et al. 1979, Neal and Belytschko 1989). This class of methods often uses

implicit-explicit mesh partitioning so as to allow for the use of implicit time-integration with

1 2⁄
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significantly larger time-step sizes for a portion of the mesh, and do not have the entire simulation

bound by the more stringent time-step size required for stability in the explicit partition. While this

class of methods is aimed at more efficient time-integration, they are of less interest to the research

presented in this paper as they do not directly seek to increase the allowable time-step size.

In this work we aim to relax meshing requirements while still achieving a high level of accuracy

through the use of special enrichment functions. To this end, the GFEM relies on a-priori

knowledge of the solution to obtain analytically defined enrichment functions. While these

enrichments are able to deliver accurate solutions on relatively coarse meshes, we seek in this work

to investigate how the larger elements used will impact the magnitude of the allowable time-step

size.

The outline of this paper is as follows. In the next section we present the formulation for 3D heat

transfer, followed by a description of the model problem to be used for analysis in Section 3. A

brief description of GFEM approximations is presented in Section 4. Section 5 discusses the

discretization in both space and time, along with the stability requirements for numerically

approximating the heat equation. Section 6 presents an analysis of the model problem with the use

of both polynomial, and exponential enrichment functions, and compares the methods in terms of

computational cost and relative accuracy. Conclusions are then provided in Section 7.

2 Problem formulation

Consider a domain  with boundary  decomposed as  with

. The strong form of the governing equation is given by the 3D heat equation

     in Ω (1)

where u(x, t) is the temperature field, κ is the thermal conductivity tensor, ρc is the volumetric heat

capacity, and Q(x, t) is the internal heat source.

The following boundary conditions are prescribed on 

     on  (2) 

−κ u · n =      on  (3)

where n is the outward unit normal vector to  and  and  are prescribed normal heat flux and

temperature, respectively.

The initial conditions must also be satisfied

u(x, 0) = u0(x)     at t0 (4)

where u0(x) is the prescribed temperature field at time t = t0.

3. Model problem

The problem selected for analysis is taken from (Merle and Dolbow 2002), and it involves a sharp

spatial gradient in the temperature field (5), as well as in the resulting source term (6). There is also

Ω R
3⊂ ∂Ω ∂Ω Γu Γf∪=

Γu Γf∩ 0=

ρc
∂u

∂t
------ ∇ κ∇u( ) Q+=

∂Ω

u u= Γu

∇ f Γf

Γf
f u



238 P. O’Hara, C.A. Duarte and T. Eason

a temporal gradient, but it is smooth in nature. This model problem is selected because it is similar

to the type of severe, localized thermal loading which can be experienced by hypersonic flight

vehicles.

 (5)

(6)

xfront(t) = x0 + Vt (7)

The initial and boundary conditions are given in Eqs. (8) and (9), respectively.

 (8)

(9)

In the above equations, x0 = 125 mm, L = 500 mm, V = 250  and γ is a parameter controlling

the roughness of the solution. Unless otherwise indicated, the value of γ is taken as 1.0.

The material properties are taken as thermal conductivity, κ = 1 and volumetric heat capacity, 

. The reference solution (5) is plotted in Fig. 1 and the initial condition (8) is plotted in  Fig.

2. As can be seen, from the spatial standpoint, the thermal spike moves from  to  in 1sec

(t0 = 0sec , t f = 1sec). From the temporal standpoint, the solution undergoes a smooth, exponential

decay in time.
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Fig. 1 Shows the temperature field described in Eq. (5)
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4. Generalized FEM approximations

The generalized FEM (Babu ka and Melenk 1997, Babu ka et al. 1994, Duarte et al. 2000, Oden

et al. 1998, Strouboulis et al. 2001) is an instance of the partition of unity method, which has its

origins in the works of Babu ka et al. (Babu ka and Melenk 1997, Babu ka et al. 1994, Melenk

and Babu ka (1996) and Duarte and Oden (Duarte 1996, Duarte and Oden 1995, Duarte and Oden

1996, Duarte and Oden 1996, Oden et al. 1998). Many meshfree methods recently proposed can

also be viewed as special cases of the partition of unity method.

The key feature of these methods is the use of a partition of unity (POU), which is a set of

functions whose values sum to the one at any point in a domain. Additional methods based on the

partition of unity concept are, for example, (De and Bathe 2000, Griebel and Schweitzer 2000,

Moës et al. 1999, Strouboulis et al. 2000).

In the GFEM, a discretization space is built using the concept of a partition of unity along with

local spaces that are generated based on a-priori knowledge about the solution of a problem. A

GFEM shape function, φαi, is computed as the product of a linear finite element shape function, ϕα,

and an enrichment function, Lαi

φαi (x) = ϕα (x) Lαi (x) (no summation on α) (10)

where α is a node in the finite element mesh. The linear finite element shape functions ϕα, α = 1,…,

N, in a finite element mesh with N nodes constitute a partition of unity, i.e.  for all

x in a domain Ω covered by the finite element mesh. Fig. 3 illustrates the construction of a GFEM

shape function.

4.1 Enrichment functions

The GFEM has been successfully applied to the simulation of boundary layers (Duarte and

Babu ka 2002), dynamic propagating fractures (Duarte et al. 2001), line singularities (Duarte et al.

2000), acoustic problems with high wave number (Babu ka et al. 1995), polycrystalline

microstructures (Simone et al. 2006), porous materials (Strouboulis et al. 2001), etc. These

applications have all relied on closed-form enrichment functions that are known to approximate well

the underlying physics of the problem investigated. These special enrichment functions are able to
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Fig. 2 Initial conditions as described in (8)
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provide more accurate and robust simulations than the polynomial functions traditionally used in the

standard FEM, while at the same time relaxing some meshing requirements of the FEM.

In this particular work we use knowledge of the solution to select our special enrichment function

(11). The special, exponential enrichment functions are only applied to the nodes whose supports

contain the thermal spike. All other nodes have only polynomial enrichments. The GFEM

framework is what allows us to use Eq. (11) as our enrichment function, and we note the

enrichment function is time dependent.

Lαi (x, t) = exp−γ (x−x
front

(t))2 (11)

where xfront(t) = x0 + Vt. The variables x0 and V are defined as in Section 3. It should be again noted

that the location of the exponential spike in the enrichment function is known beforehand from the

analytical solution. If this was not the case, one would need to use information from the gradients in

the loading function, or from a global error indicator in order to properly center the exponential

enrichment function; both of which are beyond the scope of this paper.

5. Discrete equations and time-integration

In this paper, we use the transient Formulation 2, as derived in detail in (O'Hara et al. 2010), with

the time-stepping parameter α = 0.0, yielding the conditionally stable, Forward Euler algorithm.

Substituting α = 0.0 into (33) from (O'Hara et al. 2010) leads to the following linear system of

Fig. 3 Construction of a generalized FEM shape function using a non-polynomial enrichment. Here, ϕα is the
function at the top, the enrichment function, Lαi, is the function in the middle, and the generalized FE
shape function, φαi, is shown at the bottom
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equations

(12)

where

(13)

(14)

(15)

(16)

In the previous equations φ is the vector of finite element shape functions, Ω is the domain, Q is

the internal source, ρc is the volumetric heat capacity, and κ is the thermal conductivity of the

material. un+1 is the solution vector at t n+1, and un is a known quantity from time tn.

5.1 Generalized eigenvalue analysis to determine stability requirements

For the conditionally stable Forward Euler algorithm, special care must be taken in selection of

the time-step size (∆t) such that stability is maintained throughout the simulation. We solve the

generalized eigenvalue problem arising from the global system of equations, as posed in Eq. (17) to

determine the magnitude of the dominant eigenvalue, λmax. The critical time-step size (∆tcr) is then

related to the dominant eigenvalue as in Eq. (18). More discussion of this stability criterion can be

found in Reddy and Gartling (2001).

(K − λM) x = 0 (17)

(18)

In Eq. (17), when time-dependent shape functions are used, M =Mn+1 as defined in Eq. (13) and

K = Kn+1, defined as

 (19)

When time-dependent shape functions are not used, the distinction is inconsequential because

M =Mn+1 =Mn+1,n, and similarly for K.

6. GFEM analysis of model problem

6.1 Calculation of critical time-step sizes for stable simulations

In this section, Eq. (17) is solved for a series of uniform meshes, with different element sizes and
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polynomial orders. Table 1 summarizes the results of the generalized eigenvalue problem resulting

from each discretization. The results for each type of element are investigated in more detail in

subsequent sections. For the elements containing exponential enrichments (11), the eigenvalues need

to be calculated at multiple time-steps due to the changing discretization, and then the most

stringent ∆tcr is selected to yield a stable simulation. The elements with exponential enrichments

will henceforth be referred to as exponential elements. In the table, Linear Exponential refers to

elements with only a linear shape function, and an exponential enrichment; whereas Quadratic

Exponential refers to elements with both a quadratic, as well as an exponential enrichment. As a

result, a Linear Exponential element has only a linear and an exponential shape function; whereas a

Quadratic Exponential element has linear, quadratic and exponential shape functions. It may be

noted that the value of ∆tcr is very similar for both the Linear and Quadratic Exponential elements

as the magnitude of the lead eigenvalue λmax is essentially governed by the presence of the sharp,

exponential enrichment function. The calculation of the critical time-steps for each discretization

used is performed separately from the simulations run in subsequent sections. As such, CPU Times

reported in the following sections do not reflect the time required for the calculation of the ∆tcr.

6.2 Analysis of model problem using polynomial enrichment functions

6.2.1 Linear Elements 

In this section, we further investigate the results obtained for linear elements. In this, and

subsequent sections, the accuracy of the solution, as well as CPU Time required to produce the

solution are examined. For the CPU Time shown in the subsequent tables, both the assembly and

solution times are considered. For polynomial elements, the stiffness matrix is only assembled once,

whereas for the exponential elements, with time-dependent shape functions, the assembly is

performed at each time-step. Since the exponential elements do cause this slight inconvenience, it is

appropriate that the CPU Times recorded are reflective of the minor drawback.

For the plots provided dealing with internal energy, the internal energy at time-step n (Un), is

defined as the inner product of the flux and temperature gradient vectors, as shown in Eq. (20).

Since the analytical solution is known, an exact curve for the internal energy as a function of time

can be generated and plotted as a means for comparison. To put a single number which can serve to

tell how well the curves match up, a discrete L2-norm for the error is calculated as in Eq. (21)

Table 1 Summary of output for calculation of ∆tcr

Shape function type p-order hx (width) λmax ∆tcr

Linear 1 1.250 196910 1.02e-5

Linear 1 0.625 787402 2.54e-6

Polynomial 2 2.500 246130 8.13e-6

Polynomial 2 1.250 985222 2.03e-6

Polynomial 2 0.625 3938400 5.08e-7

Polynomial 4 5.000 389910 5.13e-6

Polynomial 4 2.500 1559300 1.28e-6

Polynomial 4 1.250 6242700 3.20e-7

Linear exponential − 100 128205 1.56e-5

Quadratic exponential − 100 125786 1.59e-5
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where the summation is performed over each time-step along the curve.

(20)

(21)

The output for linear elements is summarized in Table 2. As expected, with a more refined mesh

as well as a smaller time-step, greater accuracy is obtained, but at a severe cost in CPU Time. The

internal energy is plotted as a function of time in Fig. 4. As can be seen, there is a lot of noise in

the solution due to its poor quality. As the mesh is refined, and the time-step size is reduced to

maintain stability, it can be seen that the noise in the solution seems to damp out and the

oscillations become smaller. Not surprisingly, greater accuracy is also achieved. The same data is

then plotted in Fig. 5 where a least squares fit is used to smooth out the noise in the data.

6.2.2 High Order Polynomial Elements 

This section contains output for simulations run using higher order polynomial elements. Elements

with quadratic (p = 2) and quartic (p = 4) shape functions are selected for analysis. Due to the

excessive number of time-steps required for stability, only a percentage of the entire simulation is

run. For quadratic elements the simulation is run to 0.5 seconds, and for quartic elements the

simulation is only run to 0.25 seconds. The projected CPU Time is then taken as the time to run a

percentage of the simulation, then divided by that percentage. While this CPU Time will not be
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Table 2 Summary of output for linear elements

∆t Stability hx (width) Number time-steps LError
2 CPU Time

1.015e-5 Yes 1.250 98500 0.3231 1.842e5

1.03e-5 No 1.250 97087 − −

2.53e-6 Yes 0.625 396000 0.0909 1.611e6

2.56e-6 No 0.625 390000 − −

Fig. 4 Internal energy as a function of time for linear elements
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exact, it is representative of the time that would be required to run the entire simulation. In order to

determine if the LError
2 values are valid for comparison, Table 3 shows the values obtained for linear

elements when only certain percentages of the simulation are considered. From this table it is

apparent that the LError
2 values are relatively insensitive to the percentage of the simulation data

considered. As such it is not unreasonable to directly compare the values obtained for the high order

elements and shorter simulations with those obtained for linear and exponential shape functions

corresponding to the entire simulation.

Tables 4 and 5 summarize the data for quadratic and quartic elements, respectively. The internal

energy is then plotted as a function of time in Figs. 6 and 8. In both cases, we again see noise in

the data which is damped out as the element size and time-step size are both reduced. Once again

Fig. 5 Internal energy as a function of time for linear elements, using least squares to smooth out data

Table 3 Comparison of LError for different tf (Linear elements)

tf hx (width) LError
2

0.25 1.25 0.3228

0.50 1.25 0.3230

1.00 1.25 0.3231

Table 4 Summary of output for quadratic elements

∆t Stability hx (width) Number time-steps LError
2 CPU Time (projected)

8.10e-6 Yes 2.50 123400 0.2851 1.213e5

8.15e-6 No 2.50 122700 − −

1.99e-6 Yes 1.25 502000 0.0437 1.237e6

2.05e-6 No 1.25 487800 − −

Table 5 Summary of output for quartic elements

∆t Stability hx (width) Number time-steps LError CPU Time (projected)

5.10e-6 Yes 5.00 196000 0.2978 2.049e6

5.15e-6 No 5.00 194000 − −
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we also obtain better accuracy in the solution, but still at a severe cost in CPU Time. Figs. 7 and 9

have plots of the data for which a least squares fit has been used in order to smooth out the data.

Fig. 6 Internal energy as a function of time for quadratic elements

Fig. 7 Internal energy as a function of time for quadratic elements, using least squares to smooth out data

Fig. 8 Internal energy as a function of time for quartic elements



246 P. O’Hara, C.A. Duarte and T. Eason

6.3 Analysis of model problem using special enrichment functions

This section contains output for simulations for elements enriched with exponential functions (11).

Table 6 summarizes the data for each run. The internal energy is then plotted as a function of time

in Fig. 10. Again, Linear Exponential refers to elements with only a linear shape function, and an

exponential shape function; whereas Quadratic Exponential refers to elements with linear and

quadratic shape functions, as well as an exponential shape function.

Fig. 9 Internal energy as a function of time for quartic elements, using least squares to smooth out data

.
Table 6 Summary of output for elements enriched with exponential functions

∆t Stability hx (width) Number time-steps LError CPU Time

Linear Exponential

1.54e-5 Yes 100 65000 2.90e-4 2.756e4

1.62e-5 No 100 61800 − −

Quadratic Exponential

1.54e-5 Yes 100 65000 1.92e-4 2.789e4

1.62e-5 No 100 61800 − −

Fig. 10 Internal energy as a function of time for exponential elements
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The output for the exponential elements is summarized in Table 6. As can be seen, very good

accuracy is obtained with the use of the special enrichment functions. The internal energy is plotted

as a function of time in Fig. 10. From looking at the plot we can see that there is no noise in the

data, and that there is no discernable difference between the curves. In order to see a difference in

the curves, Fig. 11 shows a significantly zoomed-in view of the curves. Again, no least squares fit

was required for the special elements since the quality of the solution is very good, and there is no

noise in the data. 

Due to the fact that the spike is moving throughout the course of the simulation, the ∆tcr may be

different at each time-step, depending on the location of the spike with respect to a given node. It

is noted in (Menouillard et al. 2006, 2008) for fracture applications with standard FEA, a term in the

stiffness matrix is ~  (hx is the element size) whereas the corresponding term in the mass matrix is ~ hx,

yielding an infinitely small time-step requirement to maintain stability. For fracture applications with

X-FEM’s use of the discontinuous Heaviside enrichment, the mass matrix becomes singular as the

crack front approaches the edge of an elemental support, again yielding an infinitely small time-step

requirement to maintain stability (Menouillard et al. 2006, 2008). For the present application, the

enrichment functions used do not have this property as the spike location nears the edge of an

elemental support, so the stability requirement does not become infeasible. There is some

dependency upon the location of the spike with respect to the location within the nodal support, but

it is not as dramatic as that seen in the application to fracture. Table 7 shows the value for ∆tcr as it

is affected by the location of the spike with respect to a nodal support. Distance refers to the distance

between the node with the special enrichment, and the location of the moving, thermal front.

1

hx

----

Fig. 11 Internal energy as a function of time for exponential elements. Zoomed in to see a difference in the curves

Table 7 Effect of spike location on ∆tcr

Distance ∆tcr

0 7.01e-5 1

2.60e-5 2.70

 hx 1.56e-5 4.50

∆tcr
max

∆tcr
------------

hx

2
----

≈
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6.4 Comparison of polynomial and exponential enrichments

Before comparing the different element types, several general conclusions can be made. Not

surprisingly, increasing mesh refinement for a given polynomial order yields a better  value,

but does so at a significant increase in CPU Time. Likewise, for the exponential elements, raising

the polynomial order of the elements at a fixed level of refinement also yielded better  values,

but at only a slightly higher requirement for CPU Time. In regards to the accuracy of the ∆tcr
produced from the generalized eigenvalue problem: for each discretization analyzed, the values of

∆tcr proved to be very reliable.

For the sake of an easy comparison, the pertinent data collected is summarized in Table 8. With

the data summarized here we can better determine if the exponential elements offer a significant

reduction in CPU Time spent in order to achieve a given level of error. From comparing the data in

the table, it is quite clear that the exponential enrichments offer superior performance when

compared to polynomial enrichments. The exponential enrichments offer extreme reductions in both

the error values, as well as the CPU Time required to generate the data. The exponential

enrichments also yield results which do not show any noise in the data. The overall conclusion to

be made is that for the case of explicit time-stepping with a parabolic PDE, the exponential

enrichments do in fact offer far superior behavior in regards to: time-step size required for stability,

accuracy of solution, and CPU Time required.

6.5 Effect of volumetric heat capacity magnitude

In this section we investigate the effect of the magnitude of the volumetric heat capacity, ρc. We

analyze a problem very similar to the model problem, but in this instance the spike remains

stationary, as indicated by the reference solution

L2

Error

L2

Error

Table 8 Summary of simulation data

Shape function type hx (width) LError
2 CPU Time

Linear 1.250 0.3231 1.842e5

Linear 0.625 0.0909 1.611e6

Quadratic 2.50 0.2851 1.213e5

Quadratic 1.25 0.0437 1.237e6

Quartic 5.00 0.2978 2.049e6

Linear exponential 100 2.90e-4 2.756e4

Quadratic exponential 100 1.92e-4 2.789e4

Fig 12 Comparison of element sizes for exponential and polynomial discretizations
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     0 < x < L (22)

where again, the internal source is derived as

 (23)

The initial and boundary conditions are the same as those applied to the original model problem,

Eqs. (8) and (9). A plot of the reference solution is shown in Fig. 13, where the solution is seen to

undergo the same decay in time, with the spike remaining stationary in space, with a fixed x0 =

125 mm. For larger values of ρc, the critical time-steps become larger. As such, longer simulations

are run, but the reference solution is now parameterized by tfinal, so only one reference curve is

required.

Simulation data is presented in Table 9 for simulations with and without the time-dependent

u x t,( )  
γ x x

0
–( )2–

exp
πx

L
------⎝ ⎠
⎛ ⎞sin+⎝ ⎠

⎛ ⎞ *  

t–

tfinal

-----------⎝ ⎠
⎛ ⎞

exp=

Q x t,( ) ρc
du

dt
------ x t,( ) κ

∂2
u

∂x
2

-------- x t,( )–=

Fig. 13 Reference solution for simulations involving larger values of ρc, described by (22)

Table 9 Simulation data for varying magnitudes of ρc

ρc tfinal ∆tcr ∆t Lerror
2 CPU Time

Exponential basis functions

0.1 7 0.0667 0.0636 3.63e-3 3.672

0.5 35 0.3333 0.3182 3.63e-3 3.701

1.0 70 0.6667 0.6364 3.63e-3 3.764

5.0 350 3.3333 3.1818 3.64e-3 3.731

10 700 6.6667 6.3636 3.67e-3 3.814

Polynomial basis functions

0.1 7 0.0052 0.0050 0.0678 1.03e3

0.5 35 0.0260 0.0250 0.0678 1.06e3

1.0 70 0.0521 0.0500 0.0678 9.87e2

5.0 350 0.2604 0.2500 0.0679 1.01e3

10 700 0.5208 0.5000 0.0681 1.03e3
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exponential enrichment (24) applied to nodes which contain the thermal spike. For analyses utilizing

Eq. (24), simulations are run with 110 time-steps, and elements of size hx = 100 mm. Simulations

run without Eq. (24) have 1400 time-steps, and quadratic elements with hx = 1.25 mm.

 (24)

As can be seen from the table, the exponential enrichment functions once again deliver much

higher levels of accuracy, with smaller requirements in terms of CPU Time. Fig. 14 shows time-

slices of the solutions generated using the exponential enrichment, and as would be expected, the

solutions generated match up very nicely with the reference solution shown in Fig. 13. Fig. 15

shows time-slices of the solutions generated using quadratic elements. The solutions are also in

good agreement with the reference solution, but in this case there is a much greater cost in terms of

CPU Time required to generate the solutions.

Lαi 1 *
x x

0
–( )2–

exp,  

t–

tfinal

-----------⎝ ⎠
⎛ ⎞

exp
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 14 Simulation results generated using the enrichment in Eq. (24)

Fig. 15 Simulation results generated using only quadratic, polynomial shape functions
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7. Conclusions

In this work we investigate the potential gains in computational efficiency that the GFEM with

special enrichments can provide for transient simulations due to its ability to produce accurate

results on coarse meshes. The alleviation in mesh density leads to less stringent stability

requirements on the time-step size. The end result is that fewer time-steps are required for a

simulation, and the system of equations is also smaller at each time-step. As such, the CPU Time

requirements are greatly reduced when compared to simulations run with the use of standard finite

elements. In the parabolic case, the use of the exponential enrichment functions led to not only

more efficient simulations, but also to more accurate simulations as well, since the enrichment was

selected specifically to capture the fine-scale portion of the solution.

The results presented here suggest that if the proper enrichment functions are available, larger

time-step sizes may be used without negatively impacting the accuracy of the results. However,

since this is not the case for most problems of interest involving multi-scale or non-linear

phenomena, we are currently developing numerically generated enrichment functions, as a transient

extension of O'Hara et al. (2009).
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Appendix A. Discrete Equations

A brief summary of the temporal and spatial discretization processes is presented here. For more

details, and a more in-depth discussion of the discretization process the reader is referred to (O'Hara

et al. 2010).

We start with the strong form of the heat equation

 (25)

Eq. (25) is multiplied by a weighting function, w, and integrated over the domain, Ω, yielding the

variational form

(26)

Integration by parts is used on the first term of the right-hand-side, and the domain integral is

moved to the left-hand-side of the equation. The boundary term is left on the right-hand-side with

the applied source term.

 (27)

The temporal discretization is performed first, and standard finite differencing is used, in the form

of the α-method, in which the following approximations are used

(28)

un+α = (1 − α)un + αun+1 (29)

Plugging Eqs. (28) and (29) into Eq. (27) yields the temporally discretized equation

 (30)

Boundary terms must be expanded out, and then Eq. (30) can be rearranged such that terms

involving un+1 are moved to the left-hand-side, and all known terms (those not dependent upon un+1)

are moved to the right-hand-side.

 (31)
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At this point, we have our system of equations fully discretized in time. Generalized finite

element shape functions are used for the spatial discretization, with special care being taken for the

discretization of w. The weighting function, w, is discretized using finite element shape functions at

time tn+1, as is discussed by Fries and Zilian (2009).

With the spatial discretization performed, we can pose the fully discretized system of equations as

 (32)

Plugging in α = 0.0, and dropping the terms related to applied fluxes (in this work the model

problem is 1-D with Dirichlet boundary conditions at both ends), we obtain

which is the same as Eq. (12), and where (·)(n+1,n) indicates a quantity which requires information

from time-steps tn and tn+1.
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