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Abstract. In most framed structures the nonlinearities and the damages are localized, extending over a
limited length of the structural member. In order to capture the details of the local damage, the segments
of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional
element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional
(1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple
the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional
coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of
the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column
and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and
dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform
built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8.
The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the
validity of the Element-Coupling model. A comparison of the accuracy and the computational effort
indicates that by the proposed Element-Coupling method the accuracy is almost the same but the
computational effort is significantly reduced.

Keywords: element-coupling structural model; mixed dimensional elements; kinematic coupling; non-
linear analysis.

1. Introduction

The coupling of complex systems of variou scales is an important problem of structure analysis

by the Finite Element and other numerical methods. One key problem is to describe the proper

coupling characterization of different scales (Glimm et al. 1997, Wang et al. 2004). Barenblatt

(1993) proposed a theory to solve the coupled problems, which first determine the proper transform

characterization, then build a coupling equation across scales based on that characterization. For

structural coupled scales, the length of the structure is a basic scale. The size of the length scale

varies widely from material scale to member scale and global scale (Li et al. 2007). To predict the

* Corresponding author, Ph.D. Student, E-mail: 79jgyue@tongji.edu.cn

DOI: http://dx.doi.org/10.12989/imm.2010.3.2.192



193 Jianguang Yue, Apostolos Fafitis and Jiang Qian

structural behavior accurately at different length scales, it is fundamental to appropriately describe

the coupling of those length scales. Many methods have been proposed to simulate this coupling,

such as the coupling Finite Element Method (FEM) and Boundary Element Method (BEM)

(Ganguly et al. 2000, Haas and Kuhn 2003), the coupling of FEM/FEM (McCune et al. 2000) and

the transmit elements method (Garusi and Tralli 2002, Kim and Hong 1995).

The FEM and BEM are well-known powerful numerical techniques for solving a wide range of

problems. These methods can describe the structure/member behavior at different length scales.

Each method has its own advantages and disadvantages: the FEM is well suited for plastic

deformation problems while the BEM allows exact satisfaction of the boundary conditions at

infinity (Li et al. 1986). With this coupling method of FEM and BEM, the model setup is less

complicated, the stress concentrations are captured more accurately in BE domains compared to FE

models, and the computational effort is higher than for the FEM/FEM coupling (Haas and Kuhn

2003, Helldorfer et al. 2008). M. Hass gave a numerical example (a mixed dimensional 2D/3D-

coupling problem of a clamped beam) to demonstrat the accuracy of the method. Using Symmetric

Galerkin Boundary Element Method, FEM-like stiffness matrices can be produced which are

suitable for coupling the Boundary Element Method (BEM) and the Finite Element Method.

Helldorfer (2008) introduced the application of this technique used in commercial finite element

systems. 

In FEM, a global scale with fully 3D numerical model provides the most precise tools to capture

critical details of the structural response, although its computational cost is high (Mata et al. 2008,

Spacone and El-Tawil 2004). Moreover, a fully 1D numerical technique is rather limited to predict

the mechanical behavior of structures which present local weakness that can determine their global

response (Mata et al. 2008). Therefore, it would be desirable to combine the different dimensional

elements in a single finite element model for the local damage and global behavior analysis. The

mixed-dimensional FEM/FEM coupling was presented by McCune et al. (2000) and Shim et al.

(2002) and further developed by Monaghan et al. (2000). The proper connections between beam

and solid elements, and shell and solid elements could be achieved via multipoint constraint

equations evaluated by equating the work done on either side of the dimensional interface. This

method has been shown to give good results for coupling beam-solid elements, beam-shell

elements, and shell-solid elements (Monaghan et al. 2000). The derivation and implementation of

the corresponding weak coupling equation is a topic of current research. 

The kinematic coupling is a widely-used method of coupling of FEM/FEM. The constraints

imposed by kinematic coupling are usually calculated as a function of the nodal coordinates

(ABAQUS 2008). This method avoids the use of multi-point constraints or Lagrange multipliers

(Mata et al. 2008). In general, the design of the multi-point constraints requires a hypothesis about

the interface stress field which is valid mainly for the simple (non-composite) materials (McCune et

al. 2000). The Lagrange multipliers result in an increased number of variables to be determined.

Another strategy to solve the different dimensional coupling is to elaborate specific finite elements

which combine the different types of elements to be connected. Kim (1995) presented three types of

transition elements to solve the incompatibility related to different degrees of freedom between

beam and wall elements in FE analysis. Since the transition elements can accurately model the

connecting beam, the connection of coupled wall structures can be analysed effectively and reliably.

Garusi (2002) presented a new transition element for modeling solid-to-beam and plate-to-beam

connections, which are easily implemented and inserted in existing FE codes.

In simulating the material behavior, the classical plasticity model describes the phenomenological
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behavior of the concrete failure at the macroscopic level, but cannot demonstrate the stiffness

degradation caused by the micro-cracking process. The concrete plastic damage model elaborated by

Lee (1998) can reflect the stiffness degradation subjected by cyclic loading at the microscopic level.

Jason (2006) developed an elastic plastic damage formulation for concrete, in which the isotropic

damage is responsible for the softening response and the decrease in the elastic stiffness, while

hardening plasticity accounts for the development of irreversible strains and volumetric compressive

behavior. Oliver et al. (2008) proposed a new methodology to individually identify the reinforced

concrete failure as the concrete mixture theory, rebar mechanical failure, bond/slip effects and dowel

action, and their relative contribution can be accounted for by using the classical mixture theory. A

fiber model proposed by Cosenza et al. (2006) was used to simulate the existing structures where

the smooth bars changed the bond mechanism.

In this paper, the focus of our research is on the Element-Coupling modeling method using the

kinematic coupling technique. The Element-Coupling modeling examples of a column and a

structure are given to introduce this method. The concrete plastic damage model was used to

describe the local nonlinearity in the 3D model. The concrete plastic model was used to describe the

global nonlinearity in the 1D model.

2. Element-coupling modeling strategies

2.1 Description of the proposed model

Structural analysis can be carried out at different length scale levels (see Fig. 1) which can be

represented by different dimensional elements with different material constitutive relations. The

beam elements can be at the meter level for global structural analysis or centimeter level for normal

stress analysis, and solids or shell elements can be at the millimeter level for local detailed analysis.

An element-coupling model of a frame structure is shown in Fig. 1. The material scale, member

scale and global scale of the structure can be determined by different analyses. The major damaged

positions, such as the joints, can be determined at material scale simulated with solid elements and a

complex material constitutive relation to reflect the detailed mechanical behavior. Other positions,

such as beam or column members, can be determined at member scale with beam elements or shell

Fig. 1 Element-Coupling model
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elements and a normal material constitutive relation to reflect normal mechanical behavior. The

length scale shifting can be realized by coupling mixed dimensional elements, using “kinematic

coupling” or “multi-point constraint equation” methods. 

2.2 Kinematic coupling

The dimensional-coupling between different scales is performed through interface where the

kinematic coupling technique is uesd to consider the finite rotations and displacements. Kinematic

coupling is enforced in a strict master-slave approach (see Fig. 2). Each slave node has a separate

relationship with the master node. An additional node is created internally for each slave node in

order to implement these constraints.

In current configuration, the position of the slave nodes can be obtained from

(1)

where xrm and xrs are the position of the master node and slave node in the reference configuration,

respectively; the superscript r denotes the reference configuration;  is the fully constrained slave

node position in current configuration; xm is the position of the master node in the current

configuration;  is the rotation matrix associated with the master node rotation .

The selectively constrained slave node position can be described as 

(2)

(3)

where xs is the position of the slave node in the current configuration, fi is the translation degree of

freedom at the additional node, eri and ei are the reference configuration base vectors and current

configuration base vectors, respectively. Eq. (3) is independent of the choice of rotation constraint at

the slave node. The release of slave node translation degree of freedom i is described as the release

of translation degrees of freedom on the additional node. With these constraints on fi, Eq. (2) can

define the constraint equations.

The initial stress stiffness terms can be obtained from the second-order form of Eq. (2)
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Fig. 2 Kinematic coupling of the 1D/3D models
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2.3 Concrete plastic damage model

The “concrete plastic damage” model of ABAQUS is used to describe the nonlinear material

behavior of concrete. In the plastic damage model (Lubliner et al. 1989), there is only one fracture-

energy-based scalar damage variable used to represent all damage states. This model can simulate

monotonic loading but is not appropriate for modeling cyclic loading of concrete. Lee (1998)

presented a plastic damage model for cyclic loading, with two damage variables, one for tensile

damage and one for compressive damage, and a yield function with multiple-hardening variables.

The strain tensor  is decomposed into the elastic part  and the plastic part 

;  (5a, b)

where E is the elastic stiffness tensor,  is the stress tensor.

The plastic strain represents all irreversible deformations including those caused by microcracks.

From Eq. (5) the stress-strain relation is

(6)

From the concept of the continumm damage theory, the stress is mapped into the effective stress

 by a rank four tensor D

(7)

A scalar degradation damage variable  is used to represent the isotropic damage, then

, where I is the rank four identity tensor, and the effective stress is

(8)

where E0 is the initial elastic-stiffness tensor, D represents the degradation of the elastic stiffness.

The plastic strain rate  is evaluated by a flow rule, which is assumed to be generated from a

scalar plastic potential function 

(9)

where  is a nonnegative function referred to as the plastic consistency parameter.

The damage variable κ is defined using  and , which are independent state variables. The

evolution is expressed as

(10)

where  is a nonnegative function referred to as the plastic consistency parameter, the fuction H

can be derived considering plastic dissipation.

The total stress  is determined by evaluating the degradation damage from

(11)

where the degradation damage variable D is defined as , which

describes tensile dt and compressive dc degradation damage responses. More details of the concrete

plastic damage can be found in Lee (1998) and ABAQUS Theory Manual (2008).
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The compressive damage variable and tensile damage variable are written as (Birtel and Mark 2006)

(12a)

(12b)

where bc is equal to 0.7 and bt is equal to 0.1.

The concrete model proposed by Desayi and Krishnan (1964) is used for the uniaxial compressive

stress-strain curve in this study

(13)

where  is the strain corresponding to the peak stress, , Ec is the concrete initial

elastic modulus,  is the concrete cylinder strength. The limited compressive strain  is assumed

as 0.0035.

By direct stress-crack strain curve, the concrete tensile stress-strain curve reflects the tensile

softening and is assumed as linear before tensile peak stress. After peak stress, the tensile stress-

strain curve is given as follows (Cornelissen and Reinhardt 1984)

(14)

where ft is concrete tensile strength,  is concrete limited tensile strain, here it is equal to 0.001,

c1and c2 are equal to 9.0 and 5.0, respectively.

3. Modeling of a structural member

Tu (2006) and Rong (2006) had done a quasi-static test of a reinforced concrete pipe column (see

Fig. 3). The column test model details are shown in Fig. 4. The compressive strength of the
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concrete is 42.0 MPa. At the top of the column, a constant vertical force of 360 kN was applied

vertically while a gradually increasing force was applied horizontally through controlling the top

displacement. As the top displacement was increasing, cracks developed at the bottom of the

column, and the concrete at the bottom failed (see Fig. 5). 

3.1 Calculation model

This test is simulated by two different finite element models, which are named model 1 and

model 2. Here, the longitudinal and hoop reinforcements are assumed as ideally elastic-plastic with

yielding stress of 360 MPa and 210 MPa, respectively. The plastic model and the plastic damage

model (mentioned in section 2.3) were used in the 1D and 3D elements to discribe the concrete

nonlinear behavior, respectively.

3.1.1 Model 1 – Full-3D-Element model

In general, a pure three dimensional element model will reflect accurately the column behavior

Fig. 4 Column test details (unit: mm)

Fig. 5 Column damage
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and it will sever as rference. The concrete and reinforcement of the column are simulated by the

C3D8R elements and T3D2 elements. C3D8R is an 8-node linear brick continuum element with

reduced integration by hourglass control. T3D2 is a 3D stress/displacement 2-node linear displacement

truss element of ABAQUS software. The reinforcement elements are embedded in the concrete

elements. The elements embedded technique is used to specify an element or a group of elements

that lie embedded in a group of host elements whose response will be used to constrain the

translational degrees of freedom of the embedded nodes.

3.1.2 Model 2 – Element-Coupling model

Within the region from the column bottom to a height of 750 mm, the simulations of the concrete

and reinforcement are the same with the Model 1. In the other region, the concrete is simulated with

B31 elements. B31 is a Timoshenko 2-node linear beam element in space. The 3D elements and 1D

element are coupled by the kinematic coupling technique of ABAQUS.

3.2 Calculation results

Fig. 6 shows the experimental load-displacement curves and the curves obtained by the two finite

element models. The calculation results of Model 1 and Model 2 are very similar, but the result of

test shows some variation. The limit load of the test is 67.4 kN (Tu 2006, Rong 2006), the

calculated limit loads of Model 1 and Model 2 are 61.7 kN and 61.1 kN, respectively. Those results

indicate that the two finite element models can reflect the column behavior well at the member

scale.

For studying the material damage, the local simulation accuracy of the Element-Coupling model is

verified by comparing the max equivalent plastic strain of concrete and the von Mises stress of

reiforcement in the two finite elements models. The equivalent plastic strain gives a measure of the

amount of permanent strain in an engineering body and it is calculated from the component plastic

strain. Equivalent plastic strain is defined as , where  is the equivalent plastic strain

rate. Fig. 7 shows the relation of the column top displacements and concrete max equivalent plastic

strain. The max equivalent plastic strain of Model 1 and Model 2 are 0.013 and 0.010, respectively.

Furthermore, the behavior of the steel can be studied by extracting the von Mises stress results from

a steel element node. Fig. 8 shows the results of reinforcement von Mises stress in the two finite
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Fig. 6 Comparison of the load-displacement curves
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element models. The reinforcement of Model 1 and Model 2 yielded at the top displacements of

45 mm and 75 mm, respectively. 

Those results indicate that the Element-Coupling model has a similar local simulation with the

solid column model.

Fig. 9 shows the contours of concrete max equivalent plastic strain of the two models. Fig. 10

Fig. 7 Top displacement-equivalent plastic strain curves

Fig. 8 Top displacement-von Mises stress curves

Fig. 9 Comparison of the concrete max PEEQ
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shows the contours of cross section strain distribution of the two models. PEEQ denotes the

equivalent plastic strain in uniaxial compression. The cross sections of Fig. 10 were at the bottom of

the columns in Model 1 and Model 2, respectively.

Fig. 11 shows the reinforcement von Mises stress of the two models. The cross section strain

distribution of Model 2 is similar to Model 1. And Model 1 can reflect the failures accurately. The

focus of Model 2 is at the bottom of the column where the major damage took place. In those

contour pictures, the “Avg: 75%” denotes averaging threshold at 75%.

The CPU calculation times of Model 1 and Model 2 are 4851 seconds and 786 seconds,

respectively. The computational efficiency of Model 2 is approximately six times to Model 1.

4. Modeling of the structure

Bai et al. (2008) have conducted pseudo-static and pseudo-dynamic model tests of a substructure

Fig. 10 Comparison of the concrete max PEEQ of the column section

Fig. 11 Comparison of the reinforcement von Misses stress (unit: MPa)
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from a direct air-cooled condenser support platform (see Fig. 12). This test is to study the dynamic

performance of the platform. The platform is a vertical hybrid structure consisting of reinforced

concrete pipe columns and steel truss. The pipe column height is about 40 m, its section diameter is

about 4m and its thickness is about 0.5 m. The steel truss height is about 8 m. The total weight of

the equipments on the platform is more than 10 thousand tons. The reduction scale of the test model

(see Fig. 13) is 1:8 for the overall dimensions of the structure as well as the dimension of the

members (columns and truss). More information can be found in Li (2006).

In the test model, the measured value of concrete compressive strength is 26.64 MPa, the strength

grades of longitudinal and hoop reinforcements are HRB400 (yielding stress 400 MPa) and

HRB235 (yielding stress 235 MPa) (GB50010-2002), respectively. The truss is made of square steel

tubular members, and the major sections are 60 × 2.5 mm2, 60 × 2.0 mm2, 50 × 1.5 mm2 and 25 ×
1.5 mm2. The steel strength grade is Q235 (yielding stress equal to 235 MPa) (GB50017-2003). The

pipe column had an external radius of 250 mm and a wall thickness of 50 mm. The pipe column

was reinforcend with 15 bars of longitudinal reinforcements (diameter 10 mm) and hoop reinforcements

(diameter 8 mm) with spacings of 100 mm at the bottom section and 200 mm elsewhere. The plane

and profile drawings of the test model are shown in Fig. 14.

Two hydraulic-servo actuators (see Fig. 13) were used to apply the loads on the structure through

the loading transfer device, which will transfer the loads from the hydraulic servo-actuator to 14

loading points of the structure (see Figs. 13 and 14). Displacement gauges were used to measure the

Fig. 12 A direct air-cooled condenser support platform

Fig. 13 Test model and loading transfer device
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structure top displacement, the truss displacement, the column top displacement and the column

middle displacement (see Fig. 14).

In the pseudo-dynamic test, El Centro (1940 NS) wave was the input at the loading points, with

peak accelerations 50 cm/sec2, 100 cm/sec2, 200 cm/sec2, 400 cm/sec2, 600 cm/sec2 and 800 cm/sec2.

According to the similarity principle, the time interval should be adjusted to . The structural

damping ratio is about 3.5 percent of critical damping under 50 cm/sec2 peak acceleration, 8 percent

under 100 cm/sec2 peak acceleration, and 1.2 percent under 200 cm/sec2, 400 cm/sec2, 600 cm/sec2

and 800 cm/sec2 peak acceleration. When the peak accelerations were 50 cm/sec2, 100 cm/s2, and

200 cm/sec2, the structural behavior was linearly elastic; when the peak acceleration was 400 cm/

sec2, some horizontal cracks occurred in the column bottom; when the peak acceleration was 600

cm/sec2, much more cracks occurred; when the peak acceleration reached 800 cm/sec2, the concrete

failed at the bottom of the column, while most longitudinal reinforcement and some hoop reinforce-

ment yielded.

In the pseudo-static test, the test loading was controlled by the top displacement. When the top

displacement reached 110 mm, the concrete failed at the column bottom (see Fig. 15). Truss failure

occurred mostly in the joint zone near the top of the columns.

∆t 8⁄

Fig. 14 Plane and profile drawing of the test model (unit: mm)

Fig. 15 Columns damage of the test model
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4.1 Calculation model

The test is simulated by two finite element models. The reinforcement is assumed elastic-plastic.

The yielding stresses of longitudinal reinforcement and hoop reinforcement were 360 MPa and 210

MPa, respectively. The structural steel is also assumed elastic-plastic with yielding stress equal to

215 MPa. The density of the steel is 7.9 g/cm3. The plastic model and the plastic damage model

(mentioned in section 2.3) were used in the 1D and 3D elements to describe the concrete nonlinear

behavior. The concrete cubic compressive strength was 26.64 MPa. The average mass density of

concrete was 2.4 g/cm3.

4.1.1 Model 1 – Full-3D-Elements model 

A finite element model in which the columns are solid elements is built for reference. The truss

was simulated with B31 elements of ABAQUS; the concrete slab on the truss was simulated with

S4R elements. S4R is a 4-node, quadrilateral, stress/displacement shell element with reduced

integration and a large-strain formulation. The concrete and reinforcement of the column were

simulated with C3D8R elements and T3D2 elements, and the bar elements were embedded in the

concrete elements.

4.1.2 Model 2 – Element-Coupling model

The truss was simulated with B31 elements of ABAQUS. Concrete and reinforcement in the

region from column bottom to the height of 1100 mm were simulated with C3D8R elements and

T3D2 elements of ABAQUS, and the bar elements were embedded in the concrete elements.

Concrete in the other region was simulated with the B31 elements without the reinforcement. The

coupling of the different concrete elements was realized by the kinematic coupling technique of

ABAQUS.

4.2 Dynamic calculation results

The fundamental frequencies computed by the two models are compared with the experiment

results in Table 1.

As shown in Figs. 16 and 17, the first two modal shapes of the two models indicate that the

model reflects the dynamic properties well.

In the dynamic analysis, an automatic incremental scheme is used with the general implicit

dynamic integration method. The computed top displacement and base shear are compared with the

experiment results in Table 2. The agreement is satisfactory.

The concrete max equivalent plastic strains in column and the reinforcement max von Mises

stress computed by the two models are compared in Table 3. The agreement is satisfactory.

Under the peak acceleration of 800 cm/sec2 waves, the column concrete max equivalent plastic

Table 1 Comparison of the dynamic properties

Mode
Measured 

frequency (Hz)

Model 1 Model 2

frequency (Hz) Modal shape frequency (Hz) Modal shape

1 3.20 3.06 Torsion 3.17 Torsion

2 4.59 3.43 y-Translation 3.43 y-Translation
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strain vs the structure top displacement and the reinforcement max stress vs the structure top

displacement are shown in Figs. 18 and 19, respectively.

Under the peak acceleration of 800 cm/sec2 waves, the concrete max equivalent plastic strains are

shown in Fig. 20. The column cross section concrete max equivalent plastic strain distributions are

Fig. 16 Modal shape of the first order

Fig. 17 Modal shape of the second order

Table 2 Comparison of the top displacement and the base shear of the structure

Peak 
acceleration

(cm/sec2)

Top displacement (mm) Base shear (kN)

Test Model 1 Model 2 Test Model 1 Model 2

50 1.73 1.49 1.40 11.55 10.94 8.27

100 2.20 2.89 2.80 16.36 18.25 15.70

200 4.93 5.68 5.60 29.33 29.73 24.08

400 16.80 16.73 17.26 48.04 53.53 50.47

600 22.20 25.04 24.83 65.57 72.11 69.21

800 33.23 33.36 34.00 102.2 92.47 90.17
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shown in Fig. 21. The reinforcement and the truss max stress of the two models are shown in Fig.

22. In Fig. 21, the cross sections were at the bottom of the column Z-B4.

Most of the concrete damage is at the bottom of the column. The longitudinal bars and the hoop

bars also yielded at the bottom of the columns. The truss failures occurred mostly in the region near

the top of the columns. The cross section strain distribution of Model 2 is similar to Model 1.

Model 1 predicts the failures completely and Model 2 reflects the major failures. 

Table 3 Comparison of the concrete max equivalent plastic strain and the reinforcement max von Mises stress

Peak acceleration
(cm/sec2)

Concrete max equivalent plastic strain (µε) Reinforcement max Mises stress (MPa)

Model 1 Model 2 Model 1 Model 2

50 90 0 910.3 998.2

100 90 0 920.9 918.4

200 90 0 948.0 952.9

400 933.6 925.5 198.0 212.3

600 133.2 115.7 269.9 309.1

800 258.2 277.7 341.3 360.0

Fig. 18 Top displacement-equivalent plastic strain curves 

Fig. 19 Top displacement-von Mises stress curves
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Table 4 shows the CPU calculation time for the two finite element models. In the linear stage, the

computational efficiency of Model 2 is approximately four times faster than that of Model 1; in the

nonlinear stage, the computational efficiency of Model 2 is approximately ten times faster than that

of Model 1.

Fig. 20 Comparison of the concrete max PEEQ

Fig. 21 Comparison of the concrete max PEEQ of the column section

Fig. 22 Comparison of the max Von Mises stress of the reinforcement and truss (unit: MPa)
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4.3 Static calculation results

The load-displacement curves of the two models and the test are shown in Fig. 23. 

The concrete max equivalent plastic strains and max reinforcement stresses in the two models are

compared in Fig. 24 and 25 respectively, which indicate that the model predicts a similar local

Table 4 Dynamic calculation efficiency comparison

Peak accelaration (cm/sec2) 50 100 200 400 600 800

CPU Time
(second)

Model 1 2367 2500 4257 13801 21976 27713

Model 2 571 751 790 1501 1636 2120

Fig. 23 Comparison of the load-displacement curves

Fig. 24 Top displacement-equivalent plastic strain curves

Fig. 25 Top displacement-von Mises stress curves
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behavior with the solid column model. Although the overall behavior predicted by the models

agrees with the experemental data, the models do not capture the slight softening behavior of the

test specimen.

The results of concrete max equivalent plastic strain, column cross section concrete max

equivalent plastic strain distribution, and reinforcement and truss Mises stress are shown in Figs. 26,

27 and 28, respectively. In Fig. 27, the cross sections were at the bottom of the column Z-B4 in

Model 1 and Model 2. Those static calculated results indicate that the model simulates the overall

Fig. 26 Comparison of the concrete max equivalent plastic strain

Fig. 27 Comparison of the concrete max PEEQ of the column section

Fig. 28 Comparison of the max Von Mises stress of the reinforcement and truss (unit: MPa)
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structural behavior and the local behavior well.

The CPU calculation times of Model 1 and Model 2 are 2940 seconds and 152 seconds,

respectively. The computational effort of Model 2 is significantly reduced.

5. Conclusions

An Element-Coupling model is studied in this paper using the kinematic coupling technique with

ABAQUS software. The concrete local damage can be reflected by the 3D models with the concrete

plastic damage model. The validity of the method is demonstrated by comparing the results of

nonlinear analysis with test results of a reinforced concrete pipe column and a composited structure

subjected to static and dynamic loadings.

Under static and dynamic actions, the Element-Coupling models of member and structure reflect

well the behavior in the member scale and the structure scale, and predict major failure areas as

well as local failures in the material scale, which are in good agreement with the test results.

The Element-Coupling model has a superior computational efficiency.
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